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Abstract

Background: Although single or multiple sessions of transcranial direct current stimulation 

(tDCS) on the prefrontal cortex over a few weeks improved cognition in patients with Alzheimer’s 

disease (AD), effects of repeated tDCS over longer period and underlying neural correlates remain 

to be elucidated.

Objective: This study investigated changes in cognitive performances and regional cerebral 

metabolic rate for glucose (rCMRglc) after administration of prefrontal tDCS over 6 months in 

early AD patients.

Methods: Patients with early AD were randomized to receive either active (n = 11) or sham 

tDCS (n = 7) over the dorsolateral prefrontal cortex (DLPFC) at home every day for 6 months 
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(anode F3/cathode F4, 2 mA for 30 minutes). All patients underwent neuropsychological tests and 

brain 18F-fluoro-2-deoxyglucose positron emission tomography (FDG-PET) scans at baseline and 

6-month follow-up. Changes in cognitive performances and rCMRglc were compared between the 

two groups.

Results: Compared to sham tDCS, active tDCS improved global cognition measured with Mini-

Mental State Examination (p for interaction = 0.02) and language function assessed by Boston 

Naming Test (p for interaction = 0.04), but not delayed recall performance. In addition, active 

tDCS prevented decreases in executive function at a marginal level (p for interaction < 0.10). 

rCMRglc in the left middle/inferior temporal gyrus was preserved in the active group, but 

decreased in the sham group (p for interaction < 0.001).

Conclusions: Daily tDCS over the DLPFC for 6 months may improve or stabilize cognition and 

rCMRglc in AD patients, suggesting the therapeutic potential of repeated at-home tDCS.
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Introduction

Alzheimer’s disease (AD) is the most prevalent type of dementia, affecting 5.5 million 

individuals over age 65 in the US alone [1]. Although AD is primarily characterized by 

progressive loss of memory, other cognitive domains such as language, visuospatial skills, 

and executive functions are also frequently impaired [2]. Despite its increasing prevalence 

and debilitating impact of AD, current treatment strategies demonstrate limited efficacy in 

preventing, slowing, or stopping the progression of the disease. Therefore, the exploration 

and development of novel treatments for AD are of highest importance.

Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique 

that delivers a weak electrical current to the brain through scalp electrodes. Previous 

research has indicated that tDCS can modulate cerebral cortical function by inducing 

changes in cortical excitability [3]. Compared to other brain stimulation methods such as 

transcranial magnetic stimulation (TMS), tDCS is relatively safe, simple, portable, and 

inexpensive to administer [4].

An increasing number of studies have reported cognitive enhancing effects of tDCS in both 

healthy individuals and patients with cognitive impairment. While some studies targeted the 

temporal lobe [5–7], several other studies targeted the dorsolateral prefrontal cortex 

(DLPFC) since it has widespread connections to cortical and subcortical regions and is 

involved in various cognitive functions including executive control and memory [8]. In 

particular, the left DLPFC may play crucial roles in self-initiation of memory strategy use 

and consolidation of information for the formation of long-term memory trace [9, 10]. In 

healthy individuals, tDCS over the left DLPFC have shown to improve long-term memory, 

working memory, verbal fluency, and planning ability [11–14]. In patients with AD, 

recognition memory was enhanced by a single session (2mA for 30 minutes) of tDCS in the 

left DLPFC [15]. Multiple tDCS sessions of the left DLPFC were also tried in AD patients 
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and global cognition was improved after 10 daily sessions (2mA for 25 minutes) [16]. A 

case report suggested that global cognitive function of a mild AD patient remained stable 

over 3 months after 10 daily sessions of tDCS over the left DLPFC (2mA for 20 minutes) 

combined with cognitive training [17]. However, effects of multiple tDCS sessions over 

longer period are needed to be further investigated, although a case study reported that 8 

months of daily tDCS in the temporal lobe (2mA for 30 minutes) improved memory and 

stabilized cognitive decline in an early-onset AD patient [18]. Recently, it has been 

suggested that home-based tDCS may be effective for repeated administrations over long 

periods [19].

Neuroimaging studies in early-stage AD have indicated structural and functional deficits 

mainly in the temporal and parietal regions [20]. However, neural correlates underlying the 

effects of tDCS in AD remain to be investigated. Our previous 18F-fluoro-2-deoxyglucose 

positron emission tomography (FDG-PET) study in patients with mild cognitive impairment 

(MCI) showed that 9 sessions of tDCS in the DLPFC over 3 weeks (2mA for 30 minutes) 

improve subjective memory functioning and regional cerebral metabolic rate for glucose 

(rCMRglc) in multiple brain areas such as the prefrontal, anterior cingulate, insular, 

hippocampal, and parahippocampal regions [21]. These results suggest that effects of tDCS 

may not be limited to the target site, but spread to other brain areas.

This study aimed to examine effects of home-based daily sessions of tDCS in the DLPFC 

over 6 months on cognitive function and rCMRglc in patients with early-stage AD, using 

neuropsychological tests and brain FDG-PET. We used bi-hemispheric stimulation (anode 

F3/cathode F4) based on our previous study in MCI [21] and following considerations. 

Bilateral prefrontal resources are often recruited for some cognitive processes such as 

working memory [22] and inhibitory effects of cathodal stimulation on cognition are weak 

or nonexistent [23]. In addition, bilateral stimulation may deliver current more deeply and 

broadly due to interhemispheric interactions and therefore may have wider effects on brain 

networks [24, 25].

Methods

Participants

Patients between the ages of 60 and 85 years with early-stage probable AD were recruited at 

the Incheon St. Mary’s Hospital (Incheon, South Korea) during the period from July to 

September 2017. The diagnosis of early-stage probable AD was made if the patient had a 

Clinical Dementia Rating (CDR) score of 0.5 or 1, and met the diagnostic criteria for 

probable Alzheimer’s disease based on the Diagnostic and Statistical Manual of Mental 

Disorders-IV [26] and the National Institute of Neurological and Communicative Disorders 

and Stroke and the Alzheimer’s Disease and Related Disorders Association (NINCDS-

ADRDA) criteria [27]. Participants were excluded from the study if they had 

contraindications to tDCS (e.g., metallic implants in the head or history of seizure), history 

of head trauma, epilepsy, stroke, mixed or vascular dementia, or other neurological or 

psychiatric disorders. All patients had not received tDCS before enrollment and were being 

treated with donepezil at a dosage of 5 mg/day during the study period. The study was 

approved by the Institutional Review Board of the Incheon St. Mary’s Hospital and carried 
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out in accordance with the Declaration of Helsinki, and all participants provided written 

informed consent.

Since no prior study examined effects of tDCS over several months in AD, sample size 

calculation was based on a previous study, whereby MMSE was improved after 10 daily 

sessions of tDCS over the left DLPFC in patients with AD [16]. At 2-month follow-up, the 

estimated effect size was 1.33 (Cohen’s d). With an alpha of 0.05 and power of 0.8, the 

sample size was calculated as 10 patients for each group. Assuming both potentially larger 

effect sizes and follow-up loss over the longer stimulation period in this study, we aimed to 

recruit 10 patients per group.

Study protocol

This study used a randomized, double-blind, sham-controlled design consisting of active or 

sham tDCS treatment. Participants visited the hospital on at least seven different days 

including one baseline visit, three hospital-based tDCS sessions, two regular check-up visits 

(2-month post-stimulation & 4-month post-stimulation), and one 6-month post-stimulation 

follow-up visit. After enrollment, a research nurse who was not involved in the evaluation 

and analysis randomly assigned the patients into active or sham tDCS group using a 

computer program and set the tDCS devices to active or sham stimulation mode. The first 

three tDCS sessions were completed at the hospital under the supervision of the research 

nurse. At the first session, the research nurse provided the training and made sure a family 

caregiver could independently set up and use the tDCS device at home. Participants 

underwent cognitive assessment and brain FDG-PET imaging before the first stimulation 

(baseline) and after the end of the treatment period (6-month post-stimulation follow-up).

Transcranial direct current stimulation

Active or sham tDCS was applied via two surface electrodes with saline-soaked sponges (6 

cm in diameter) every day for 6 months using the YDS-301N device (YBrain Inc, South 

Korea). The anodal electrode was placed over the left DLPFC (F3; 10 – 20 EEG system) and 

the cathodal electrode over the right DLPFC (F4). For the active condition, the current was 

ramped up to 2.0 mA (current density, 0.07 mA/cm2) over 30 seconds, remained at 2.0 mA 

for 29 minutes, and ramped down to 0 mA over 30 seconds. For the sham condition, the 

current was ramped up to 2 mA over 30 seconds and ramped down over next 30 seconds. 

The devices were set to be used only once a day and the usage logs were automatically 

stored after each session. We checked the logs after the patients returned the devices at the 

follow-up visits.

Neuropsychological assessment

The Mini-Mental State Examination (MMSE) [28] and neuropsychological test battery were 

administered at baseline and 6-month follow-up. The latter consists of subtests that assess 

multiple cognitive domains including attention (Digit Span Test: forward and backward), 

language (Boston Naming Test [BNT]; repetition), visuospatial function (Rey Complex 

Figure Test [RCFT]: copy; Clock Drawing Test), memory (Seoul Verbal Learning Test 

[SVLT]: immediate recall, delayed recall, and recognition; RCFT: immediate recall, delayed 

recall, and recognition), and executive function (Contrasting Program; Go-no go Test; 
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Controlled Oral Word Association Test [COWAT]: animal, supermarket, and Korean letters; 

Stroop Test: word reading, and color reading) (Supplementary Table 1). In addition, we 

administered the CDR [29] and CDR-Sum of Boxes (CDR-SOB). Neuropsychological 

testing was conducted by a licensed neuropsychologist.

Image acquisition and analysis

Brain FDG-PET scans were performed using a Discovery PET/CT scanner (GE Healthcare, 

Milwaukee, WI, USA) at baseline and 6-month follow-up. After intravenous injection of 185 

to 259 MBq of FDG, participants rested in a supine position with eyes closed in a quiet, 

dimly lit room for 40 minutes. Forty-seven transaxial images were acquired with a matrix of 

128 × 128 and a slice thickness of 3.27 mm (pixel size = 1.95 × 1.95 mm2) using 3D 

acquisition mode. Sixteen slices of CT images were also obtained for attenuation correction. 

The total scan time was 15 minutes. Standard filtering and ordered subset expectation 

maximization algorithm were applied for the reconstruction of PET images.

PET images were analyzed using Statistical Parametric Mapping 12 (SPM; Wellcome 

Department of Cognitive Neurology, Institute of Neurology, London, UK). All images were 

spatially normalized to the SPM PET template (Montreal Neurological Institute, McGill 

University, Montreal, Canada), resliced with a voxel size of 2 × 2 × 2 mm3, and smoothed 

with an 8 mm full-width at half-maximum (FWHM) isotropic Gaussian kernel. Then, the 

images were scaled to the mean uptake of the pons [30] using proportional scaling, followed 

by grand mean scaling to 50.

To compare changes in rCMRglc between the two groups, group-by-time interaction effects 

were tested on a voxel-by-voxel basis. The voxel-wise significance threshold was set at p < 

0.005 with a minimum cluster size of 100 contiguous voxels.

Computational modeling

When applying tDCS, the current distribution may be partially influenced by stimulation 

parameters and anatomical characteristics of the brain. Thus, computational modelling was 

performed to verify that the current reaches the targeted brain regions. Finite element 

method (FEM) models of two older adults of Asian ethnicity (S12, S13) from the ADNI 

database (www.loni.ucla.edu/ADNI) were created to predict cortical electric field generated 

during tDCS. High-resolution T1-weighted images were segmented into six tissue/material 

masks by adapting the ROAST pipeline [31] for older adult anatomy. Segmentation initiated 

with SPM 8 [32] and automatic touch-up on the segmentation results were performed. 

Residual errors were patched by manual segmentation (ScanIP, Synopsys Inc., Mountain 

View, USA). Previously validated compartment conductivities were assigned, virtual 

bilateral (F3, F4) electrodes positioned and energized (left electrode: 2 mA inward current; 

right electrode: ground) corresponding to the experimental dose, and volumetric anatomy 

converted to mesh for numerically solving the Laplace equation [33].

Statistical analysis

Mann-Whitney tests and Fisher’s exact tests were used to compare baseline demographic 

and clinical characteristics between the groups. Linear mixed models with robust standard 
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errors were used to test for group-by-time interaction effects on cognitive test scores. To 

check the robustness of the models, the residuals were tested for normality by visual 

inspection and Shapiro-Wilk tests. In case of skewed residuals, Mann-Whitney tests were 

conducted to compare pre-post changes between two groups. A two-tailed p < 0.05 was 

considered statistically significant. Due to the exploratory character of the current study, no 

correction for multiple comparisons was made. Statistical analyses were performed using 

Stata 13.1 (StataCorp., College Station, TX, USA).

Results

Participant characteristics

A total of 20 patients with early AD were recruited and randomized into either the active 

tDCS group (n = 12) or the sham tDCS group (n = 8). Two participants dropped out of the 

study due to refusal or time conflict of a care giver (one in the active group and one in the 

sham group). Thus, 11 participants in the active group and 7 participants in the sham group 

completed the study and were included in the analysis (Fig. 1). Baseline demographic and 

clinical characteristics of the participants who completed the study are presented in Table 1. 

There were no significant differences between the groups in baseline characteristics 

including age, sex, education, handedness, MMSE, CDR, and CDR-SOB.

Effects of tDCS on cognitive performance

Results from cognitive assessments at baseline and follow-up are presented in Table 2. There 

were no significant baseline differences in any individual tests between the groups.

After tDCS sessions, scores of MMSE (p for interaction = 0.02) and BNT (p for interaction 

= 0.04) were improved in the active tDCS group compared to the sham group. In addition, 

the active tDCS stabilized some measures of executive function including Contrasting 

Program (p for interaction = 0.07) and Stroop word reading test (p for interaction = 0.09) at 

a marginal level, while these scores were decreased in the sham group.

Effects of tDCS on rCMRglc

In comparison of changes in rCMRglc between the two groups, a significant group-by-time 

interaction effect was found in the left middle/inferior temporal gyrus (peak t = 4.70, peak p 
< 0.001, peak coordinates = −54, −24, −24, cluster size = 135 voxels; Fig. 2). The relative 

rCMRglc from this significant cluster remained stable in the active group (67.3 ± 8.3 to 67.7 

± 7.9), but decreased in the sham group (76.6 ± 9.4 to 72.7 ± 10.5).

High-resolution computational models

The induced electric field magnitude was calculated across the cortical surface using high-

resolution subject-specific models (Fig. 3). The distribution of electric field across the 

frontal cortex and peak magnitudes (Subject S12: 0.57 V/m. Subject S13: 0.62 V/m) were 

within the range previously reported for adults [34, 35].
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Discussion

The current study investigated effects of home-based daily tDCS in the DLPFC over 6 

months on cognition among patients with early-stage AD. In addition, we tried to examine 

underlying neural correlates of tDCS treatment using FDG-PET. Our findings indicate that 

the tDCS have significant beneficial effects on global cognition, language function, and 

rCMRglc in AD patients.

First, we found improved global cognitive performance assessed by the MMSE after active 

tDCS. Particularly, the mean MMSE score was increased by 1.1 points in the active group, 

whereas it was decreased by 1.5 points in the sham group over the 6-month treatment period. 

As reported previously, MMSE score is expected to decline 2 to 4 points per year in 

untreated patients with mild to moderate AD [36, 37]. Considering the expected annual 

decline of MMSE score, our finding may suggests that repeated tDCS over 6 months not 

only prevents the decline of global cognitive functioning but also improves it in patients with 

early-stage AD. Our findings are in line with the previous study, whereby 10 daily sessions 

of tDCS enhanced MMSE scores in AD patients [16]. However, since the MMSE was 

originally developed as a brief screening instrument, our result should be cautiously 

interpreted with other cognitive and neuroimaging findings.

Scores of BNT was also increased in the active tDCS group compared to the sham group. 

Anomia is commonly found in the early stage of AD. A previous study in healthy adults 

reported that anodal tDCS of the left DLPFC enhanced naming performance and this effect 

was not due to a general increase in arousal [38]. In addition, high-frequency repetitive TMS 

of the left and right DLPFC improved accuracy in action naming in AD patients [39]. These 

results suggest that the DLPFC may be a part of the cerebral network involved in lexical 

retrieval and selection processing in naming and tDCS over this region can ameliorate 

language deficits in patients with AD.

At a trend-level significance, performances in executive function and attention (Contrasting 

Program and Stroop word reading test) remained stable in the active tDCS group in contrast 

to reductions in the sham group. Besides memory impairment, executive and attentional 

deficits are thought to be integral components of the cognitive dysfunction in AD and these 

deficits are usually one of the earliest cognitive domains to be affected in AD patients [40–

42]. Moreover, deficits in executive functioning and attention, key indicators of need for 

supervision and care among AD patients, are closely linked to inability to carry out daily 

activities and caregiver burden [40, 43]. However, changes in delayed recall performance 

was not significantly different between the two groups, although an impairment in this 

function is one of the core characteristics of early AD. In addition, group-by-time interaction 

effects of RCFT copy and SVLT immediate recall also showed a marginal significance in 

favor of the sham group. These results may be due to the small sample size and relatively 

lower baseline scores in the sham group although the baseline differences were not 

significant.

Compared to the sham tDCS, the active treatment prevented decreases of rCMRglc in the 

left middle/inferior temporal gyrus. These areas have important interconnections with 
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medial temporal cortex and are affected in early pathological stages of AD [44]. 

Furthermore, atrophy in the lateral temporal lobe was found in AD patients and correlated 

with the severity of memory and language deficits [45]. A previous FDG-PET study in early 

AD patients demonstrated associations between verbal semantic memory and rCMRglc in 

the left inferior temporal gyrus [46] Effects of tDCS have been known to spread beyond the 

target site [47]. In this study, tDCS may have beneficial effects on glucose metabolism in the 

middle/inferior temporal regions and, in turn, cognitive functions. Potential mechanisms of 

tDCS on neural activity include NMDA receptors and dopaminergic and serotonergic 

systems [48]. In addition, a previous study using 31P magnetic resonance spectroscopy 

suggested that anodal tDCS increases cellular consumption of adenosine triphosphate (ATP) 

and synthesis of ATP and phosphocreatine by mitochondria [49].

Our study has some limitations. First, the small sample size and the unequal number of 

patients in each group might decrease the statistical power. Second, all patients were taking 

medication for AD during the study period. Although the medication status was not different 

between the groups, possible medication effects cannot be ruled out. Third, we did not check 

at the end of the study whether the patients or caregivers noticed the stimulation type from 

evoked sensations. Lastly, multiple comparison corrections were not applied for the analysis. 

Thus, further studies should use more stringent statistical thresholds.

In conclusion, our findings indicate that home-based daily tDCS over 6 months may be 

beneficial for global cognitive performance, language function, and rCMRglc in patients 

with early-stage AD, suggesting the therapeutic potential of repeated at-home tDCS. Our 

findings are preliminary and need to be replicated in larger samples with longer follow-up 

periods.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We examined effects of 6-month at-home tDCS over the DLPFC in AD 

patients.

• tDCS improved global cognition and language function.

• tDCS prevented decreases in glucose metabolism in the middle/inferior 

temporal gyrus.

• Repeated at-home tDCS may be a promising treatment option for AD.
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Figure 1. Flow diagram.
tDCS, transcranial direct current stimulation.
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Figure 2. 
Brain areas with significant group-by-time interaction effects of regional cerebral glucose 

metabolism are overlaid on the Montreal Neurological Institute (MNI) 152 template 

rendered in (a) 3D and (b) axial slices. Images are displayed in neurological convention. 

Color bar represents the voxel-level t-values.
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Figure 3. 
Prediction of cortical current and electrical field during transcranial direct current 

stimulation using the F3-F4 montage (6 cm diameter electrodes, anode left) in two older 

adults of Asian ethnicity (S12, S13). A.1 and B.1 show the montage on the subjects, while 

A.2, A.3, B.2, and B.3 show the electric field maps (false color) and flux lines (black) 

generated across outer cortical regions.
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Table 1.

Baseline demographic and clinical characteristics of the study participants
a

Characteristics
Treatment groups

Test statistic
b

Active tDCS (n = 11) Sham tDCS (n = 7)

Age, years 71.9 ± 9.2 74.9 ± 5.0 z = −0.41, p = 0.68

Female:male, n 10:1 5:2 p = 0.33

Education, years 6.3 ± 3.8 5.4 ± 5.9 z = 0.60, p = 0.55

Right handedness, n 11 7

MMSE 20.1 ± 3.8 22.1 ± 4.6 z = −1.32, p = 0.19

CDR p = 1.00

  0.5 10 7

  1 1 0

CDR-SOB 2.1 ± 1.4 1.8 ± 1.0 z = 0.24, p = 0.81

a
Data are presented as mean ± standard deviation or n.

b
Mann-Whitney tests for continuous variables and Fisher’s exact tests for categorical variables MMSE, Mini-Mental State Examination; CDR, 

Clinical Dementia Rating; CDR-SOB, Clinical Dementia Rating - Sum of Boxes; tDCS, transcranial direct current stimulation.
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Table 2.

Results of neuropsychological tests before and after 6-month transcranial direct current stimulation
a

Test
Active tDCS (n=11) Sham tDCS (n=7)

p (baseline)
b p (interaction)

Baseline Follow-up Baseline Follow-up

MMSE 20.1 ± 3.8 21.2 ± 4.4 22.1 ± 4.6 20.6 ± 4.5 0.19 0.02
c

Attention

 DST: forward 5.6 ± 1.6 4.9 ± 1.7 4.4 ± 1.3 4.6 ± 1.0 0.13 0.12
c

 DST: backward 2.7 ± 1.2 2.6 ± 1.0 2.4 ± 1.4 2.1 ± 1.8 0.60 0.88
c

Language

 BNT 28.3 ± 12.7 32.0 ± 13.3 26.4 ± 10.8 26.6 ± 9.6 0.82 0.04
c

 Repetition 14.8 ± 0.4 14.8 ± 0.4 14.1 ± 1.9 14.4 ± 1.1 0.53 0.44
d

Visuospatial Function

 RCFT: copy 26.2 ± 9.5 21.8 ± 12.1 19.1 ± 13.3 21.4 ± 8.3 0.17 0.08
c

 Clock Drawing Test 2.3 ± 0.9 2.1 ± 1.0 2.3 ± 0.8 2.0 ± 0.8 0.92 0.63
c

Memory

 SVLT: immediate recall 12.3 ± 5.3 13.1 ± 5.2 9.3 ± 5.3 14.3 ± 2.1 0.19 0.07
c

 SVLT: delayed recall 2.6 ± 2.7 2.0 ± 3.1 0.4 ± 0.8 1.0 ± 1.7 0.06 0.16
c

 SVLT: recognition 15.1 ± 5.9 15.6 ± 4.0 17.7 ± 1.4 16.6 ± 4.0 0.27 0.44
d

 RCFT: immediate recall 2.6 ± 3.8 3.2 ± 2.9 3.5 ± 3.7 4.0 ± 4.7 0.30 0.49
d

 RCFT: delayed recall 3.3 ± 4.9 3.3 ± 4.1 1.4 ± 3.4 3.0 ± 3.9 0.55 0.48
d

 RCFT: recognition 14.1 ± 5.4 15.2 ± 3.5 17.3 ± 2.2 15.6 ± 1.9 0.14 0.15
d

Executive Function

 Contrasting Program 15.5 ± 6.9 15.5 ± 6.9 14.3 ± 7.9 10.3 ± 7.8 0.75 0.07
d

 Go-no go Test 15.7 ± 5.9 15.3 ± 7.1 10.7 ± 7.4 8.3 ± 8.3 0.12 0.36
c

 COWAT: animal 8.8 ± 4.0 8.9 ± 3.3 8.1 ± 2.6 8.9 ± 2.0 0.49 0.65
c

 COWAT: supermarket 10.5 ± 5.7 11.4 ± 5.9 7.4 ± 5.7 7.7 ± 4.6 0.25 0.78
c

 COWAT: phonemic 12.9 ± 8.4 12.9 ± 8.4 14.7 ± 9.7 14.7 ± 9.7 0.96 0.71
c

 Stroop Test: word reading 91.4 ± 32.8 85.2 ± 36.3 97.8 ± 23.1
e

66.7 ± 25.5
e 0.77 0.09

d

 Stroop Test: color reading 41.7 ± 28.6 39.5 ± 33.6 45.5 ± 26.5
e

50.8 ± 32.7
e 0.61 0.46

c

a
Data are presented as mean ± standard deviation

b
p for comparisons of baseline scores using Mann-Whitney test

c
p for group-by-time interaction from linear mixed model

d
Mann-Whitney test for changes between groups due to skewed residuals of linear mixed model

e
n = 6
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BNT, Boston Naming Test; COWAT, Controlled Oral Word Association Test; DST, Digit Span Test; MMSE, Mini-Mental State Examination; 
RCFT, Rey Complex Figure Test; SVLT, Seoul Verbal Learning Test; tDCS, transcranial direct current stimulation.
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