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Abstract

In addition to being the leading cause of morbidity and mortality in premature infants, germinal 

matrix hemorrhage (GMH) is also the leading cause of acquired infantile hydrocephalus. The 

pathophysiology of post-hemorrhagic hydrocephalus development after GMH is complex and 

vaguely understood, although evidence suggests fibrosis and gliosis in the periventricular and 

subarachnoid spaces disrupts normal cerebrospinal fluid dynamics. Theories explaining general 

hydrocephalus etiology have substantially evolved from the original bulk flow theory developed by 

Dr. Dandy over a century ago. Current clinical and experimental evidence supports a new 

hydrodynamic theory for hydrocephalus development involving redistribution of vascular 

pulsations and disruption of Starling forces in the brain microcirculation. In this review, we 

discuss cerebrospinal fluid flow dynamics, history and development of theoretical hydrocephalus 

pathophysiology, and GMH epidemiology and etiology as it relates to post-hemorrhagic 

hydrocephalus development. We highlight known mechanisms and propose new avenues that will 

further elucidate GMH pathophysiology, specifically related to hydrocephalus.
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Introduction

Germinal matrix hemorrhage (GMH) occurs in approximately 3 live births per 1,000, has a 

20–30% mortality rate, and accounts for 1.7% of all neonatal deaths in the United States 

(Ballabh 2014; Osterman et al. 2015). Premature infants have a much higher rate of 

occurrence; for infants born before 32 weeks of gestation up to 20%, (about 12,000 infants) 

develop GMH each year in the US (Kochanek et al. 2012). Fortunately, the premature 

birthrate and percentage of low birthweight (<2500g) infants have steadily declined between 

2006 and 2013, although remaining higher than in the 1980s and 1990s. In 2006, the preterm 

birthrate was 12.8% and, in 2013, the preterm birthrate declined to 11.39% while the 

percentage of low birthweight infants was relatively unchanged at 8.02%. The percentage of 

very low birthweight (<1500g) was 1.41% in 2013 (Osterman et al. 2015). A study 

investigating premature infants dating back to 1914 determined median postnatal survival 

increased from 2 to 26 days, and median gestational age decreased from 33 to 27 weeks. 

Interestingly, GMH incidence was 4.7% before 1960, but it increased to 50.0% between 

1975 and 1980, and then decreased to 12.5% after 2005 (Hefti et al. 2015). The introduction 

of positive pressure ventilation in preterm clinical management after the 1960s increased 

survival while simultaneously increasing GMH incidence, which may be attributed to 

cardiorespiratory and hemodynamic instability associated with mechanical ventilation, and 

the decline in GMH incidence after the 1980s may be attributed to improvements in 

mechanical ventilation methodology as well as the use of antenatal steroids and surfactant. 

Despite improving trends in premature birth incidences and outcomes, GMH remains the 

leading cause of morbidity and mortality in premature and/or very low birthweight infants, 

and its incidence has remained steady in the past decade.

Premature and very low birthweight infants are prone to hemodynamic and cardiorespiratory 

instability, leading to abrupt fluctuations in cerebral blood flow (Ballabh 2014). The fetal 

brain is hypothesized to lack vascular autoregulatory mechanisms to adequately prevent 

cerebral blood flow fluctuations, although clinical research involving cerebral blood flow 

monitoring in preterm infants has produced ambiguous results (Alderliesten et al. 2013; 

Caicedo et al. 2011; du Plessis 2008; Soul et al. 2007; Tsuji et al. 2000; Wong et al. 2008). 

The germinal matrix layer, which is present in the fetus and matures by term, contains many 

neuronal and glial precursor cells and is a site of rapid angiogenesis relative to other parts of 

the brain (Ballabh et al. 2004; Ballabh et al. 2007). The germinal matrix neurovascular unit, 

consisting of neurons, astrocytes, pericytes, vascular smooth muscle cells, and vascular 

endothelial cells, is deficient in fibronectin at the endothelial basal lamina, glial fibrillary 

acidic protein at astrocyte end-feet, and pericyte coverage (Ballabh 2010; Ballabh 2014). 

Thus, the germinal matrix vasculature is inherently weak and vulnerable to hemorrhage 

under abnormal conditions, regardless if the premature infant brain has autoregulatory 

mechanisms to adequately prevent cerebral blood flow fluctuations.

GMH severity is graded on an I-IV scale based on the extent and localization of bleeding. 

Incidence of higher GMH grades (III-IV) increases as gestational age and/or birthweight 

decreases (Robinson 2012). Between 50–75% of GMH survivors develop long-term 

neurocognitive sequelae, including cerebral palsy, learning disabilities, psychiatric disorders, 

and post-hemorrhagic hydrocephalus (PHH), and higher-grade GMH survivors are most 
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vulnerable to worse long-term outcomes (Ballabh 2010; Ballabh 2014). The mortality rate 

for severe grade (III-IV) GMH is approximately 44%, with 60% of survivors developing 

PHH and 25% requiring surgical installation of shunts (Vassilyadi et al. 2009). Another 

study estimates 10% of GMH patients (any grade) and 20% of severe GMH patients (III-IV) 

will require surgical insertion of permanent shunts (Robinson 2012). Shunt dependency is 

not desirable, given the large, costly, detrimental complications that occur due to shunt 

infection, occlusion, and displacement. Additional approaches to manage or prevent PHH 

include serial lumbar punctures, ventricular taps, external ventricular drainage, ventricular 

access device, ventricular-subgaleal shunt, endoscopic third ventriculostomy, and 

endoscopic coagulation of the choroid plexus (Tully and Dobyns 2014). A non-invasive, 

therapeutic approach towards ameliorating PHH would significantly improve long-term 

quality of life for GMH patients.

PHH pathophysiology after GMH remains vague and complex, and minimal advancements 

have been made in its clinical management. In this review, we discuss CSF flow dynamics, 

particularly focusing on its importance in GMH. We highlight advancements made in 

hydrocephalus research after Dr. Dandy first proposed the bulk flow theory over a century 

ago. We discuss the current hydrodynamic theory for hydrocephalus pathophysiology and 

how it applies to PHH development after GMH. Special attention is given to CSF dynamics, 

CSF production at the choroid plexus, and CSF circulation through the glymphatic system. 

We identify gaps in current research and propose avenues for further exploration.

Cerebrospinal Fluid Flow Dynamics

Cerebrospinal fluid (CSF) is an isotonic solution that primarily acts as a mechanical cushion 

for the brain, although it serves many other physiologically vital functions as well 

(Chakravarthi 2012). CSF has a lower specific gravity than brain tissue, creating a buoyant 

force that reduces the effective mass of the brain. CSF [H+] concentration is detected by 

central chemoreceptors located at the ventrolateral medullary surface, which help regulate 

pulmonary ventilation and cerebral blood flow to ensure the brain receives ample oxygen 

and nutrients. CSF also maintains a stable external environment for growth and development 

of neurons and glia (Chakravarthi 2012). Importantly, CSF removes brain metabolic waste 

and transporting neuropeptides, glucose, and lipids (Iliff et al. 2012; Xie et al. 2013).

Production

In adults, between 400–600 mL of CSF is produced per day and the brain renews its CSF 

between 3–4 times within a 24 hour period (Cutler et al. 1968; Pierce et al. 1962; Sahar 

1972; Sato et al. 1975). CSF is primarily produced by the choroid plexus epithelial lining 

and, to a minimal extent, the cerebral ventricular ependymal lining, which compose the 

blood-CSF barrier. Choroid plexus epithelial cells are interconnected by tight junctions that 

are leakier than endothelial cells of the blood-brain barrier. Over two thirds of produced CSF 

originates from the choroid plexus (Pollay 1975; Segal and Pollay 1977). The choroid plexus 

lines the lateral ventricles from the inferior horns to the interventricular foramen, where it 

becomes continuous into the third ventricle and continues into the fourth ventricle. The 

choroid epithelium protrudes into the ventricles through invaginations of the pia matter 
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containing choroidal capillaries, called tela choroidea, which significantly increase the 

surface area of the choroidal epithelium (Davson and Segal 1970; Johanson et al. 2011; 

Keep and Jones 1990; Speake and Brown 2004). The choroid plexus vasculature is also 

fenestrated to better facilitate CSF production. Non-choroidal ependymal cells, brain 

interstitial fluid, and capillaries may be other CSF sources as well, which is secreted by 

transependymal seepage into the brain ventricles or transpinal seepage into the subarachnoid 

space (Davis and Milhorat 1975; Milhorat et al. 1975; Pollay and Curl 1967; Saunders et al. 

1999).

The posterior choroidal, anterior choroidal, inferior cerebellar and superior cerebellar 

arteries supply the choroid plexus of the lateral ventricles, third ventricle, fourth ventricle, 

and temporal horns, respectively (Chakravarthi 2012; Milhorat 1978; Sakka et al. 2011). In 

adults, blood flow to the choroidal epithelium is estimated at 4 – 6 mL / minute / gram 

tissue, which is significantly greater than blood flow to other brain tissue estimated at 0.9 – 

1.8 mL / minute / gram tissue (Maktabi et al. 1991). The choroidal interstitial compartment 

is the region between choroidal capillaries and choroidal ependymal cells. Choroidal 

capillaries lack tight junction proteins in their endothelial cells, making them more 

permeable, and blood plasma filtrate passively crosses into the choroidal interstitial 

compartment from the choroidal capillaries primarily by Starling forces (Welch 1975; 

Wright 1972). Starling forces are hydrostatic, and oncotic forces that govern the movement 

of fluid across capillary membranes. Hydrostatic forces refer to the difference in fluid 

pressure between the capillary and interstitium, where higher capillary fluid pressure will 

drive water into the interstitium. Oncotic forces refer to the difference in solute 

concentration between the capillary and interstitium, where higher interstitial solute and 

macromolecule concentration will drive fluid from the capillary into the interstitium. Net 

fluid movement is the net combined hydrostatic and oncotic forces. Thus the main source for 

produced CSF is technically choroidal capillaries, not the choroid plexus itself (Bulat and 

Klarica 2011; Oreskovic and Klarica 2010; Oreskovic and Klarica 2011), although this 

assertion is contentious.

[Na+] and [Cl−] from choroidal interstitium are actively exchanged for [H+] and [HCO3
−], 

generated by cytosolic carbonic anhydrase on choroidal ependymal cells, using carrier 

proteins in the choroidal ependymal basolateral membrane. Pumps on the choroidal 

ependymal apical membrane then expel [Na+], [Cl−], [K+], and [HCO3
−] into the ventricle 

lumen, which generates an osmotic pressure (Keep and Jones 1990; Pollay 1975; Spector 

and Johanson 1989). Water flows down the created osmotic gradient with the help of 

aquaporin 1 on the choroidal ependymal apical membrane (Reiber 2003). The CSF contains 

higher concentrations of [Na+], [Mg2+], and [Cl−] than blood plasma but less [Ca2+], [K+], 

[HCO3
−], [PO4

+], protein (contains 0.3% plasma proteins), amino acids, and glucose 

(Felgenhauer 1974). Several holes exist in the assertion that CSF is produced by cerebral 

capillaries via filtration, which need to be kept in mind. The difference in small solutes 

between plasma and interstitium is small and the concentration of plasma protein is 

significantly less in brain tissue interstitium, which significantly diminishes the oncotic 

pressure gradient. Additionally, flux between cerebral capillaries and the interstitium is not 

unidirectional in reality, as there is almost as much back flux as forward flux (Hladky and 

Barrand 2014; Hladky and Barrand 2016).
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The choroidal epithelium can alter CSF secretion in response to multiple factors and 

mechanisms. Most regulatory mechanisms target membrane transporters, carbonic 

anhydrase, and aquaporins (Faraci et al. 1990; Sakka et al. 2011). The NaK2Cl 

cotransporter, located on the choroidal ependymal apical membrane, helps regulate CSF 

composition and secretion by its bidirectional transport ability. Arginine vasopressin, atrial 

natriuretic peptide, serotonin, melatonin, and dopamine receptors are located on choroidal 

epithelium. Arginine vasopressin and atrial natriuretic peptide decrease CSF secretion. CSF 

secretion can also be increased by sympathetic innervation and decreased by cholinergic 

innervation (Chakravarthi 2012). Pharmaceutical drugs that inhibit carbonic anhydrase or 

sodium transporters, such as diuretics, reduce CSF production, while drugs that augment 

cerebral blood flow tend to increase CSF production. Increased intracranial pressure also 

tends to decrease CSF production, although evidence suggests CSF production tends to 

remain constant despite large increases in hydrostatic pressure (Sakka et al. 2011).

Circulation

CSF flows from the sites of secretion at the choroidal epithelium to the sites of absorption in 

the subarachnoid space. The mean CSF volume within the adult brain is 150 mL, with 25 

mL in the ventricles and 125 mL in the subarachnoid space (Sakka et al. 2011). Generally, 

CSF flows from the lateral ventricles, passes through the interventricular foramen of Monro 

into the third ventricle, and finally passes into the cerebral aqueduct of Sylvius into the 

fourth ventricle. From the fourth ventricle, CSF enters through three openings, the lateral 

apertures of Lushka and median aperture of Magendie, into the subarachnoid space where it 

is absorbed. A portion of the CSF exits the cranium through arachnoid villi and cranial 

nerves while the remainder enters along the spinal cord and exit through spinal nerve roots 

(Chakravarthi 2012; Dichiro 1964; Milhorat 1976).

CSF circulates through the brain’s ventricular system and spinal cord in a pulsatile manner. 

Cerebral arterial pulse waves are the primary drivers of CSF circulation, although jugular 

venous pressure, respiratory waves, and even physical activity play minor roles as well (Post 

et al. 1974; Williams 1976). CSF flow, however, is very slow and sometimes occurs bi-

directionally through ventricle compartments with each cardiac and/or respiratory cycle, but 

net CSF flow occurs from the lateral ventricles to the subarachnoid space. Additionally, 

ventricular ependymal cells have cilia that mix CSF while it is circulating. CSF pressure 

gradients, which are generated by continuous CSF secretion and arterial pulsations, are also 

important for maintaining CSF flow. This pressure gradient is particularly important in 

driving CSF flow through the subarachnoid spaces and venous sinuses. In adults, CSF flow 

across the subarachnoid epithelium is driven by a 6 cm H2O pressure difference between 

subarachnoid CSF pressure (approximately 15 cm H2O) and superior sagittal sinus pressure 

(approximately 9 cm H2O), and the pressure continues to drop into the jugular vein and 

systemic venous system (Bradley 1970; Milhorat 1975; Sahar et al. 1970; Shulman et al. 

1964).

Reabsorption

Conventionally CSF is reabsorbed in the subarachnoid space and enters through the dural 

venous sinuses, where it returns to the internal jugular system (Chakravarthi 2012). 
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Subarachnoid villi, called pacchonian bodies, were originally thought to be the main 

reabsorption sites (Brierley and Field 1948; Welch 1975; Welch and Friedman 1960), but 

evidence suggests other potential CSF outflow and reabsorption routes through either 

cerebral lymphatic channels or the venous system [(Bradbury et al. 1981; Bulat and Klarica 

2011; Oreskovic and Klarica 2010; Oreskovic and Klarica 2011; Zakharov et al. 2003). 

Evidence for the venous system being the main reabsorption site suggests the vast majority 

of CSF outflow occurs at the superior sagittal sinus with the remainder occurring at dural 

sinusoids in dorsal root nerves. CSF outflow is driven by pressure gradients between the 

subarachnoid space and venous sinuses (Cutler et al. 1968; Pollay 2010; Saunders et al. 

1999; Zlokovic et al. 1990). Increased intracranial pressure tends to increase CSF outflow, 

but very high intracranial pressure that persists for a long period of time tends to actually 

decrease CSF outflow, mostly because venous pressure tends to increase with intracranial 

pressure while the overall pressure gradient diminishes. Evidence for cerebral lymphatic 

channels being the main reabsorption site suggests CSF flows along cranial nerves and 

spinal nerve roots and is reabsorbed in lymphatic channels (Bradbury et al. 1981; Zakharov 

et al. 2003). Indeed, CSF outflow in the nasal submucosal lymphatic channels through the 

cribriform plate, which feed into the cervical lymph nodes, is relatively important (Courtice 

and Simmonds 1951; Cserr et al. 1992; Erlich et al. 1986; Kida et al. 1993; Mollanji et al. 

2002; Silver et al. 1999). Lymphatic vessels have also been recently characterized 

surrounding the dural sinuses, which are also connected to cervical lymph nodes, further 

suggesting the lymphatic system plays an important role in CSF outflow (Aspelund et al. 

2015; Bradbury et al. 1981; Iliff et al. 2015; Louveau et al. 2015; Zakharov et al. 2003; 

Zervas et al. 1982). Lymphatic-mediated CSF reabsorption is thought to play a greater role 

in neonates, since subarachnoid granulations are more sparsely distributed.

While the central nervous system lacks a conventional lymphatic system, evidence suggests 

the presence of a functional waste clearance pathway involving exchange between CSF and 

interstitial fluid, occurring mostly within perivascular Virchow-Robin spaces in the brain 

parenchyma (Iliff and Nedergaard 2013; Iliff et al. 2012; Jessen et al. 2015). This exchange 

system is called the glymphatic system for its lymphatic-like function and dependence upon 

glial cells (Figure 1). Cerebral arteries at the cortical surface extend into pial arteries running 

through the subarachnoid space and subpial space, which turn into arterioles surrounded by 

astrocyte end-feet as they run deeper into the brain parenchyma. The Virchow-Robin space 

is the CSF containing perivascular space between the astrocyte end-feet and arteriole, with 

both walls lined by a leptomeningeal cell layer (Kulik et al. 2008; Prince and Ahn 2013; 

Zhang et al. 1990; Zlokovic 2011). Virchow-Robin spaces along veins lack this 

leptomeningeal cell layer. Arteriole Virchow-Robin spaces become continuous with the 

basal lamina, which has minimal resistance to CSF flow due to its loosely structured 

extracellular matrix (ECM). CSF flows along arteriole Virchow-Robin space, through basal 

lamina surrounding capillaries, and exits through the venous Virchow-Robin space. Arterial 

pulsation is the main force driving perivascular fluid bulk movement from the subarachnoid 

space into the Virchow-Robin spaces; although respiration, slow vasomotion, and CSF 

pressure gradients play minor roles too (Iliff and Nedergaard 2013; Iliff et al. 2012; Jessen et 

al. 2015). Astrocyte end-feet have high expression of aquaporin 4 and are important for CSF 

exchange with interstitial fluid, since astrocyte end-feet surround perivascular spaces and 
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facilitates water movement across cell membranes down osmotic pressure gradients from 

periarterial to perivenous spaces. Interstitial fluid then drains into cervical lymph channels 

from perivenous spaces (Johnston et al. 2004; Murtha et al. 2014).

The glymphatic system is particularly important for removing soluble proteins and 

metabolites from the brain (Rangroo Thrane et al. 2013). Glymphatic-mediated exchange is 

greatest during sleep, which is thought to be important for removing metabolic waste during 

the resting state (Xie et al. 2013). In rodent models of Alzheimer’s disease, glymphatic-

mediated exchange was reduced by 65% in aquaporin 4 knockout mice, resulting in 

increased accumulation of β-amyloid plaques (Iliff et al. 2012). In a mouse repeated 

traumatic brain injury model, glymphatic exchange was reduced at 24 hours after the last 

injury and persisted for up to 4 weeks, which was attributed to gliosis (Plog et al. 2015). 

Furthermore, the glymphatic system was significantly impaired after subarachnoid 

hemorrhage, due to blood clots occluding perivascular spaces, and during ischemic stroke, 

due to reduced arterial pulsations (Gaberel et al. 2014). The glymphatic hypothesis, 

however, has been challenged by a few groups who identified a few shortcomings with the 

model, which need to be taken into consideration (Abbott et al. 2018; Smith and Verkman 

2018). For instance, it is not entirely clear the role aquaporin-4 plays in interstitial fluid flow 

and no evidence has been provided for its ability to transport solutes. In addition, the brain 

extracellular matrix significantly hinders fluid movement. The brain extracellular space also 

allows for the diffusion of small and large molecules naturally (Abbott et al. 2018; Smith 

and Verkman 2018). Regardless, a system in which CSF enters perivascular arterioles, 

diffuses with the brain extracellular space, and is cleared along with interstitial fluid and 

waste products through perivascular venules does have a presence and warrants further 

investigation. More research is further elucidating the pathophysiological role the 

glymphatic system plays in multiple neurodegenerative diseases and injuries, and this 

system may be particularly important in neonatal GMH and consequent PHH 

pathophysiology due to the role it plays in CSF dynamics.

Hydrocephalus

The International Hydrocephalus Imaging Working Group defines hydrocephalus as “an 

active distension of the ventricular system resulting from inadequate passage of 

cerebrospinal fluid from its point of production within the cerebral ventricles to its point of 

absorption into the systemic circulation” (Rekate 2008). Clinical consequences can include 

increased intracranial pressure, seizures, mental deterioration, tunnel vision, gait 

disturbance, headaches, mental impairment, urinary incontinence, dementia, vomiting, and 

nausea. Most treatments involve surgical implantation of shunts that divert CSF from the 

brain or surgery, if possible, to repair any malformations that contribute towards 

hydrocephalus development (Kahle et al. 2015). Dr. Dandy and Dr. Blackfan classified 

hydrocephalus into communicating and non-communicating hydrocephalus in 1914 after 

inducing hydrocephalus in dogs by obstructing the foramen of Monro (Dandy 1914). They 

proposed the bulk flow theory, which states that CSF flows in bulk from the sites of 

production in the ventricles to the sites of reabsorption in the subarachnoid space. 

Hydrocephalus, according to bulk flow theory, had to result from an imbalance in CSF 

production and absorption. Using the same conceptual framework, Dr. Russell proposed a 
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more specific classification of hydrocephalus in 1949 into non-obstructive and obstructive 

hydrocephalus, which corresponds to communicating and non-communicating 

hydrocephalus, respectively (Russell 1949). The original terms proposed by Dr. Dandy, 

however, remain the most pervasively utilized. Advancements involving CSF tracers and 

imaging technology, however, has produced evidence challenging the bulk flow theory 

(Symss and Oi 2013). New hydrocephalus classifications have been proposed based on more 

recent experimental and clinical evidence, which will be discussed.

Non-communicating Hydrocephalus

Hydrocephalus resulting from an obstruction of CSF flow through ventricular and 

subarachnoid spaces is called non-communicating hydrocephalus, also known as obstructive 

hydrocephalus (Kahle et al. 2015; McAllister 2012). Non-communicating hydrocephalus is 

typically caused by congenital cerebral malformations. Arnold-Chiari malformation, which 

is the displacement of the cerebellar tonsils through the foramen magnum, often obstructs 

the fourth ventricle, leading to dilation of the lateral ventricles and cerebral aqueduct 

(Gardner 1965). Dandy-Walker malformations, characterized by the absence of the 

cerebellar vermis, often obstruct the foramina of Luschka and foramen of Magendie, 

resulting in prominent dilation of the fourth ventricle (Hirsch et al. 1984). Colloid cysts may 

obstruct the Foramen of Monro, resulting in lateral ventricular dilation (Camacho et al. 

1989). Other lesions may cause abhorrent narrowing of the aqueduct of Sylvius, called 

aqueductal stenosis, resulting in third and lateral ventricular dilation.

Communicating Hydrocephalus

Communicating hydrocephalus is impaired CSF reabsorption in the absence of any 

obstruction to CSF flow through the ventricles and subarachnoid spaces (Kahle et al. 2015; 

McAllister 2012). Communicating hydrocephalus was believed to primarily result from 

impaired arachnoid granulations, resulting in reduced reabsorption of CSF. Indeed, cerebral 

malformations resulting in the absence of arachnoid villi has resulted in hydrocephalus 

development (Gutierrez et al. 1975). Subarachnoid hemorrhage and intraventricular 

hemorrhage, which induce inflammation and glial scarring in the subarachnoid space, can 

cause communicating hydrocephalus as well (Korobkin 1975; Vassilouthis and Richardson 

1979). Accumulating evidence, however, challenges the presumption that CSF is mostly 

absorbed by subarachnoid villi (Greitz 2004; Oreskovic and Klarica 2011). Normal pressure 

hydrocephalus is a form of communicating hydrocephalus that results in ventriculomegaly 

without increased CSF pressure. CSF pressure readings are within normal range because 

ventricular dilation compensates for accumulated CSF in the ventricles, thus increased CSF 

pressure is compensated by increased ventricular volume in this pressure-volume 

compensatory relationship (Black and Ingraham 2008). In general, the elderly population is 

most vulnerable to normal pressure hydrocephalus, and causes are either idiopathic or 

related to other central nervous system diseases and injuries, particularly subarachnoid 

hemorrhaging. Hydrocephalus ex vacuo is different from normal pressure hydrocephalus 

because ventricular dilation results from brain tissue atrophy, usually due to a 

neurodegenerative disorder, and not as a compensatory mechanism for increased CSF 

pressure (Rekate 2009). Normal pressure hydrocephalus, however, seems to contradict bulk 

flow theory, because the ventricles should not dilate without increased mean CSF pressure, 
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although differing pressure waveforms may lead to hydrocephalus despite average pressures 

remaining the same.

Current Hydrodynamic Theory

Although bulk flow theory is congruent with non-communicating hydrocephalus 

development, when a ventricular obstruction creates back pressure that dilates the ventricles 

preceding the obstruction, it is incongruent with communicating hydrocephalus, because the 

apparent obstruction is within the subarachnoid space, which does not dilate or increase in 

volume (Greitz 2004; Oreskovic and Klarica 2011). In 1914, Dr. Weed injected Prussian 

blue into the ventricles of dog and cat brains and found the dye accumulated near 

pacchonian bodies (Weed 1914). Prussian blue, however, was also found in other brain 

parenchymal areas, and further research concluded Prussian blue cannot cross pacchonian 

bodies under normal conditions (Symss and Oi 2013). Even Dr. Dandy recognized reduced 

bulk flow across pacchonian bodies should result in subarachnoid CSF pressure being 

greater than ventricular CSF pressure and the subarachnoid space should expand before the 

ventricles, neither of which is observed. Dr. Dandy concluded CSF is primarily reabsorbed 

in the subarachnoid space and quickly enters the circulatory system, based on intrathecal dye 

injections that rapidly entered the blood and urine (Dandy 1929). The idea that CSF is 

mostly reabsorbed at pacchonian bodies, however, remained pervasive. In 1960, Dr. Welch 

reported pacchionian bodies could act as mechanical valves, although future anatomical 

studies found no mechanical valve presence (Welch and Friedman 1960). Dr. Di Chiro 

started experimenting with radionuclide cisternography and, in 1966, suggested CSF was 

reabsorbed at pacchionian bodies because radionuclide accumulated there after 24 hours (Di 

Chiro 1966). Future studies, however, challenged this conclusion since other radionuclides 

enter the circulatory system within minutes and most are reabsorbed in the spinal canal 

(Greitz 1993; Greitz et al. 1997; Greitz and Hannerz 1996). Furthermore, sites where 

radionuclides accumulate after a long period of time may indicate sites where CSF 

reabsorption is actually very limited. A radionuclide cisternography study in patients with 

venous vasculitis and high intracranial pressure, performed by Dr. Greitz and Dr. Hannerz in 

1996, found no tracer in vessel outlets near capillary beds of pacchonnian bodies, providing 

evidence for an alternative site of CSF reabsorption (Greitz and Hannerz 1996). Another 

major issue is pacchonian bodies are absent in infants and young children, suggesting CSF 

must be reabsorbed by a different mechanism (Papaiconomou et al. 2002).

Some scientists investigated if abnormal vascular and CSF pulsations may be the root cause 

for communicating hydrocephalus. In 1943, after observing normal pressure hydrocephalus 

patients and noting inconsistencies with the bulk flow theory, Dr. O’Connell proposed 

communicating hydrocephalus may result from increased ventricular pulse pressure 

(O’Connell 1943). Dr. Bering provided experimental evidence in 1962 that choroid plexus 

pulsations deliver the means for ventricular enlargement instead of increased mean CSF 

pressure (Bering 1962). Dr. Bering used a kaolin-induced hydrocephalic dog model and 

excised the choroid plexus from one lateral ventricle, which resulted in asymmetric 

ventricular dilation. Increased mean CSF pressure, therefore, could not account for 

asymmetric ventricular dilation. Dr. Di Rocci provided additional experimental evidence in 

1978 in which extreme ventricular pulsation, caused by inflating and deflating a microballon 
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inserted into the lateral ventricles, can produce hydrocephalic ventricular dilation in sheep 

(Di Rocco et al. 1978). Concurrently, Dr. Guinane in 1977 produced olfactory ventricular 

dilation, which lacks a choroid plexus, in rabbits by obstructing surrounding subarachnoid 

spaces with silicone rubber (Guinane 1977). The silicone rubber obstruction decreased 

subarachnoid arterial and venous compliance as well as increased capillary pulsations. 

Increased capillary pulsations, therefore, had to generate the force necessary for the 

observed ventricular dilation. Using magnetic resonance imaging and radionuclide 

cisternography, Dr. Greitz reported in the early to mid-1990s arterial pulsation and 

expansion provides the force necessary for CSF pulsatile circulation in both the brain and 

spinal cord, and arterial compliance is important for keeping capillary and venous pulsation 

low (Greitz 1993; Greitz 2004; Greitz et al. 1997; Greitz and Hannerz 1996).

According to bulk flow theory in which CSF malabsorption is a causative factor for 

communicating hydrocephalus, the subarachnoid CSF-venous pressure gradient would 

increase, the subarachnoid space would expand, and the ventricles would dilate after 

subarachnoid space compliance is at maximum. In actuality, the subarachnoid space is 

smaller, and the subarachnoid CSF-venous pressure gradient is diminished, although both 

the subarachnoid CSF pressure and venous pressure increase. In 2002, Dr. Egnor developed 

a mathematical model of communicating hydrocephalus caused by a redistribution of CSF 

pulsations in the brain (Egnor et al. 2002). Decreased intracranial compliance causes 

abnormal distribution of vascular pulsations, such that arterial pulsations are weaker while 

capillary and venous pulsations are stronger, and stronger pulsations reach the ventricles 

while weaker pulsations reach the subarachnoid space. Thus, this vascular pulsation 

redistribution causes the ventricles to expand at the expense of the subarachnoid space and 

decreases the subarachnoid CSF-venous pressure gradient. Dr. Edgor’s model, based on 

alternating current electric circuitry, accounted for experimentally and clinically observed 

CSF malabsorption, increased resistive index, ventricular dilation, intracranial pressure 

waves, reduced cerebral blood flow, and diminished CSF-venous pressure gradient. Dr. 

Greitz elaborated on this concept in 2004 in his discussion of hydrodynamic theory of 

chronic hydrocephalus development. Reduced intracranial compliance causes decreased 

arterial pulsations and increased compensatory capillary pulsations, generating transmantle 

pulsatile stress responsible for hydrocephalus. CSF malabsorption, therefore, is not a 

causative factor of communicating hydrocephalus but an effect from vascular pulsatile 

redistribution (Greitz 2004). Dr. Oreskovic further suggests that disruption of Starling forces 

in the brain parenchymal microvasculature lead to an imbalance in interstitial fluid and CSF 

exchange, contributing to hydrocephalus development (Oreskovic and Klarica 2011).

In light of our increased understanding of hydrocephalus pathophysiology, Dr. Oi and Dr. Di 

Rocco proposed a new classification based on the involved pathway: major pathway 

hydrocephalus and minor pathway hydrocephalus (Oi and Di Rocco 2006). Major pathway 

hydrocephalus accounts for CSF circulation disruption from the ventricles to the 

subarachnoid spaces. Major pathway hydrocephalus encompasses most obstructive / non-

communicating hydrocephalus cases. Minor pathway hydrocephalus accounts for 

disruptions in CSF circulation within the subarachnoid space and brain parenchyma. 

Evidence suggests this pathway is very important for CSF reabsorption in the embryo, fetus, 

and infants, making it critical for infantile hydrocephalus development (Papaiconomou et al. 
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2002). Minor pathway hydrocephalus is disruption of CSF flow and reabsorption in newly 

elucidated channels in the brain parenchyma, which involve deep vascular structures and 

lymphatic channels (Figure 2). Dr. Nedergaard further characterized this pathway in rodents 

using in vivo two photon imaging and coined the term “glymphatic system”, since this 

functional waste clearance pathway involves astroglia and lymphatic-like paravascular 

channels (Iliff et al. 2012). CSF enters from the subarachnoid space into paravascular artery 

channels and exchanges with interstitial fluid, which is cleared through paravascular veins. 

Additional lymphatic channels lining the dural sinuses and meningeal arteries were 

characterized by Dr. Louveaue and Dr. Aspelund (Aspelund et al. 2015; Louveau et al. 

2015). However, it is unclear if these meningeal lymphatic vessels are anatomically 

connected with the glymphatic system. As the cerebral glymphatic / lymphatic systems are 

further characterized, more research is warranted on their potential pathophysiological roles 

played in hydrocephalus development.

Post-hemorrhagic Hydrocephalus Pathophysiology and Potential 

Mechanisms

PHH is a common debilitating consequence of severe grade GMH, and the mechanisms 

contributing to PHH development remain to be elucidated. Cerebroventricular expansion 

leads to mechanical compression of surrounding brain tissue, causing injury and consequent 

neurological deficits in patients surviving the initial bleed (Robinson 2012). PHH was 

commonly theorized to be caused by blood clots obstructing the cerebral aqueduct or 

foramina of Luschka and Magendie or by microthrombi obstructing small CSF outflow 

passages in the subarachnoid space. Much evidence suggests a variety of inter-related 

pathophysiological mechanisms that potentially alter normal CSF dynamics play significant 

roles in PHH development as well (Strahle et al. 2012; Tang et al. 2016; Whitelaw and 

Aquilina 2012). Applying concepts in current hydrocephalus theory towards PHH 

development after GMH may better illuminate potential mechanisms for therapeutic 

intervention (Figure 3).

Blood Clots, Hemoglobin, and Iron

Non-communicating / obstructive PHH may result from cerebroventricular blood clots and 

microthrombi directly impairing CSF circulation and absorption by obstructing the cerebral 

aqueduct, foramina of Luschka and Magendia, and subarachnoid CSF outflow passages. 

Subsequently, it was hypothesized intraventricular fibrinolytic therapy would remove 

cerebroventricular blood clots and reduce PHH incidence (Whitelaw and Aquilina 2012). In 

an adult intraventricular hemorrhage dog model, in which intraventricular blood injection 

resulted in 80% of dogs developing PHH, intraventricular urokinase injection reduced PHH 

incidence to 10% (Pang et al. 1986). Clinical investigations of intraventricular streptokinase, 

urokinase, or tissue plasminogen activator injections after GMH, however, concluded 

fibrinolytic therapy did not improve long-term dependence on ventriculo-peritoneal shunts 

(Whitelaw 1993). Thus, cerebroventricular obstruction from thrombi may play only a minor 

role in long-term PHH development.
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Although intraventricular fibrinolytic therapy failed to improve clinical PHH outcomes, 

evidence suggests hemoglobin and iron may play an important role in PHH development 

(Strahle et al. 2014). Erythrocyte lysis after hemorrhage, typically from complement 

activation and consequent membrane attack complex formation, releases hemoglobin and 

iron into surrounding brain tissue. Experimental adult cerebral hemorrhage models conclude 

hemoglobin metabolites and iron contributes towards brain edema (Chen et al. 2011). 

Hemoglobin metabolites were also found in the CSF of rabbit pups with intraventricular 

hemorrhage, and iron was elevated in the CSF of preterm infants with PHH (Lee et al. 2010; 

Savman et al. 2001). Intraventricular injection of hemoglobin or iron into neonatal rat pups 

also resulted in significant acute ventricular dilation (Strahle et al. 2014). Additionally, acute 

and delayed iron chelation by Deferoxamine reduced long-term PHH development in 

neonatal rats after GMH (Klebe et al. 2014). Iron, thus, is a quintessential player in PHH 

formation, although the exact mechanisms remain unclear.

Gene deletion studies determined iron transport and iron-dependent metabolic proteins are 

highly expressed in the ependymal lining compared to other brain tissue (Keep and Smith 

2011). Thus, the ependymal lining may be adversely affected from iron overload due to 

GMH. Indeed, ependymal cells are theorized to prevent iron diffusion into the brain 

parenchyma by up-taking it from the CSF (Moos 2002). Additionally, iron overload has 

been associated with increased expression of aquaporin 4 in adult rats with cerebral 

hemorrhage, and Deferoxamine treatment reduced aquaporin 4 expression (Qing et al. 

2009). Iron, thus, may regulate expression of ependymal ion and water channels, such as 

aquaporin 4, and contribute towards PHH by altering CSF production dynamics at the 

ependymal layer. It should be noted, however, that combinatorial furosemide and 

acetazolamide diuretic treatments targeting choroid plexus epithelial transport were 

evaluated in clinical trials of preterm GMH patients and determined to have no clinical 

benefit, although other diuretics have been recommended for further investigation (Whitelaw 

et al. 2001). More research is needed to further elucidate iron’s pathophysiological role in 

development of hydrocephalus.

Inflammation, Fibrosis, and Gliosis

Inflammation has been associated with subependymal gliosis, fibrosing arachnoiditis, and 

meningeal fibrosis after GMH (Cherian et al. 2004b; Oi and Di Rocco 2006). GMH patients 

also have increased expression levels of inflammatory markers in their CSF, including TNF-

α (Savman et al. 2002). Vessel rupture results in blood and serum components entering the 

brain parenchyma. Resident immune cells, namely microglia, are activated by stimulating 

toll-like receptors and nod-like receptors with damage-associated molecular patterns, 

molecules that induce a non-infectious inflammatory response (Klebe et al. 2015). Activated 

microglia secrete pro-inflammatory cytokines, extracellular proteases, and oxidative species, 

which damage surrounding tissue and recruit leukocytes that exacerbate inflammation (Chen 

et al. 2015; Yang et al. 2015). In neonatal rat pups with GMH, microglia proliferation was 

observed in the perihematoma region, microglia activation was associated with 

phosphorylated ERK, and modulating microglia activation with minocycline or cannabinoid 

receptor 2 agonist ameliorate inflammation and improved outcomes (Tang et al. 2015a; Tang 

et al. 2015b). Additionally, in an IVH adult rat model, IVH caused a TLR4 and NF-κB-
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dependent inflammatory response in the choroid epithelium, causing an up-to 3-fold 

increase in CSF production and consequent PHH (Karimy et al. 2017). In the same study, 

genetic depletion of TLR4 or SPAK as well as pharmacological inhibition of TLR4-NF-κB 

or SPAK-NKCC1 signaling ameliorated excess CSF production in the choroid epithelium 

and attenuated PHH. Interestingly, microglia may play an important role in hematoma 

resolution, since stimulating PPARγ improved short-term hematoma resolution, which was 

dependent upon CD36 scavenger receptor and was associated with inducing the alternatively 

activated M2 microglia/macrophage phenotype (Flores et al. 2016).

Fibrosis is the forming of excess connective tissue as a consequence of a reparative process 

after inflammation (Birbrair et al. 2014). Excess fibrous tissue formation may disrupt the 

normal functioning of surrounding tissue. Multiple factors trigger fibrosis after GMH. 

Thrombin, which is significantly active up to 10 days after GMH in neonatal rats, cleaves 

fibrinogen into fibrin to form fibrin clots, activates the complement pathway to augment 

inflammation, and stimulates protease-activated receptors (PARs), a family of G protein-

coupled receptors (Babu et al. 2012; Lekic et al. 2015; Luo et al. 2007). PAR stimulation has 

been associated with fibrosis in several tissues, including liver, renal, pulmonary, and cardiac 

tissues. PAR stimulation upregulates mammalian target of rapamycin (mTOR), which is 

associated with ECM protein proliferation. Additionally, PAR stimulation exacerbates 

inflammation by upregulating cyclooxygenase 1 and 2 activity (Kataoka et al. 2003; Luo et 

al. 2007; Steinhoff et al. 2005). Phosphorylated mTOR and cyclo-oxygenase 2 levels were 

increased by 72 hours after GMH in rats, which were both reduced by combinatorial 

PAR-1,4 inhibitor administration (Lekic et al. 2015). ECM proteins are theorized to deposit 

within the cerebroventricular system, similar to blood clots and microthrombi (Bowen et al. 

2013; Strahle et al. 2012; Tang et al. 2016). ECM protein overproduction, therefore, may 

obstruct normal CSF flow pathways. Indeed, fibronectin and vitronectin expression levels 

are significantly increased in GMH rats with long-term PHH (Klebe et al. 2014; Manaenko 

et al. 2014). Inhibiting mTOR with rapamycin and inhibiting cyclo-oxygenase 2 activity 

ameliorated long-term PHH and neurocognitive deficits in GMH rats, although expression 

levels of ECM proteins was not determined in this study (Lekic et al. 2015).

TGF-β stimulates mesenchymal stem cells and fibroblasts, which produce ECM matrix 

proteins and deposit connective tissue (Bowen et al. 2013). TGF-β can be secreted from 

activated microglia, and TGF-β secretion can be induced by thrombin (Schuliga 2015). 

ECM production induced by TGF-β stimulation may deposit in the cerebroventricular 

system, disrupting CSF dynamics (Tada et al. 1994). A rabbit pup GMH model indicated 

TGF-β, fibronectin, and laminin expression levels were significantly increased in the 

ependymal and subependyma tissue after GMH (Cherian et al. 2004a). Mice with transgenic 

TGF-β overexpression developed hydrocephalus with higher expression of ECM proteins in 

the brain than wild-types (Wyss-Coray et al. 1995). In a clinical study, increased TGF-β1 

and ECM protein expression in the CSF were associated with PHH development in preterm 

infants (Aquilina et al. 2012; Douglas-Escobar and Weiss 2012). The TGF-β1 isoform is 

most associated with PHH after IVH in neonates and adults (Gomes et al. 2005). Intrathecal 

TGF-β1 injection in mice resulted in hydrocephalus development, and TGF-β1 expression 

was significantly increased in brains of neonatal rats with PHVD after intraventricular blood 

injection (Cherian et al. 2004a; Tada et al. 1994). Indeed, TGF-β1 was elevated in both 
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animal models and premature infants with PHH, although some studies dispute this (Heep et 

al. 2004). In a rat GMH model, TGF-β1 was elevated within hours after GMH, but 

normalized by 24 hours post-ictus (Tang et al. 2015a). Additionally, inhibiting TGF-β1 

ameliorated long-term PHH and neurocognitive deficits as well as reduced vitronectin and 

GFAP expression in rats (Manaenko et al. 2014). Although the mechanism of TGF-β 
signaling after GMH and its association with PHH development has been established, 

studies are lacking that discern the changes to CSF dynamics as a consequence of TGF-β 
signaling and fibrosis.

Gliosis results from damage to the central nervous system and is characterized by the 

nonspecific reactive proliferation of astrocytes, microglia, and oligodendrocytes (Sofroniew 

2009). Hydrocephalus development is also associated with neuroinflammation and reactive 

gliosis (Del Bigio et al. 2003; Deren et al. 2009). Gliosis was observed in cerebral cortical 

biopsies from hydrocephalic children with shunts (Glees and Hasan 1990). Increased 

expression of Iba-1 and GFAP, markers for microglia and astrocytes respectively, were also 

observed in the brains of neonatal rats with hydrocephalus (Deren et al. 2010). Reactive 

gliosis in the subarachnoid space was associated with hydrocephalus development after 

subarachnoid hemorrhage in rats. In an IVH rat model, long-term GFAP expression is 

markedly increased, and injection of umbilical cord blood-derived mesenchymal stem cells 

reduced GFAP expression as well as long-term PHH development (Ahn et al. 2013). 

Aquaporin 4 knockout mice more rapidly developed hydrocephalus after kaolin injection, 

although increased aquaporin 4 expression is observed in hydrocephalus too (Bloch et al. 

2006; Mao et al. 2006). Aquaporin 1 is expressed on the choroid plexus apical membrane 

and aquaporin 1 knockout mice had decreased CSF production (Oshio et al. 2005). Given 

the important role astrocytes play in the blood-brain barrier function as well as in 

glymphatic mediated CSF-interstitial fluid exchange, gliosis may have a profound effect on 

CSF dynamics and PHH development, which warrants further investigation.

Conclusions

Our understanding of hydrocephalus has changed significantly since Dr. Dandy’s first 

experiments in the early 20th century and the bulk flow theory was proposal. CSF is 

produced by the choroid plexus epithelial lining and, to a minimal extent, the cerebral 

ventricular ependymal lining, and, following glymphatic mediated CSF-interstitial fluid 

exchange, CSF outflow occurs through perivascular channels, meningeal lymph vessels, 

spinal nerve roots, and the cribriform plate. Our purpose is to reconcile our knowledge of 

GMH and PHH development with the current hydrodynamic theory of hydrocephalus. PHH 

after GMH may be obstructive, non-communicating hydrocephalus during the acute phase 

due to the hematoma, but generally develops as chronic communicating hydrocephalus into 

adolescence and adulthood. Our proposed mechanisms explore the latter. Indeed, many 

GMH/IVH studies suggest PHH is a consequence of obstructions within the 

cerebroventricular system and subarachnoid drainage pathways due to thrombi, gliosis, and 

fibrosis. In line with current hydrocephalus school of thought, we suggest thrombi, gliosis, 

and fibrosis after GMH are not merely obstructing CSF passages but are altering barrier 

dynamics in the microvasculature and ependymal lining, altering CSF dynamics and CSF-
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interstitial fluid exchange to cause PHH development. Future research should elucidate these 

potential mechanisms.
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Significance Statement

Germinal matrix hemorrhage (GMH) is a leading cause of morbidity and mortality in 

preterm and very low birthweight infants. A common long-term consequence of GMH is 

hydrocephalus. This comprehensive review discusses cerebrospinal fluid dynamics, our 

current knowledge of hydrocephalus development and GMH pathophysiology, and 

proposes new mechanisms that warrant further investigation.
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Figure 1: 
Overview of the glymphatic system. Cerebrospinal fluid enters within para-arterial Virchow-

Robin spaces in the brain parenchyma and an astroglia-mediated mechanism exchanges 

cerebrospinal fluid with interstitial fluid and flushes wastes out within para-venous Virchow-

Robin spaces (A). Astrogliosis (B) from brain injury possibly disrupts this astroglia-

dependent mechanism.
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Figure 2: 
Axial non-contrasted adult brain MRI demonstrating perivascular spaces (arrows) that 

appear hypointense to brain tissue and isointense to CSF in T1-weighted (A) and T2-

weighted (B) sequences.
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Figure 3: 
Know pathways and potential mechanisms disrupting cerebrospinal fluid dynamics and 

contributing to post-hemorrhagic hydrocephalus development after germinal matrix 

hemorrhage.
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