
ARTICLE

Metabolic landscape of the tumor
microenvironment at single cell resolution
Zhengtao Xiao 1, Ziwei Dai 1 & Jason W. Locasale 1

The tumor milieu consists of numerous cell types each existing in a different environment.

However, a characterization of metabolic heterogeneity at single-cell resolution is not

established. Here, we develop a computational pipeline to study metabolic programs in single

cells. In two representative human cancers, melanoma and head and neck, we apply this

algorithm to define the intratumor metabolic landscape. We report an overall discordance

between analyses of single cells and those of bulk tumors with higher metabolic activity in

malignant cells than previously appreciated. Variation in mitochondrial programs is found to

be the major contributor to metabolic heterogeneity. Surprisingly, the expression of both

glycolytic and mitochondrial programs strongly correlates with hypoxia in all cell types.

Immune and stromal cells could also be distinguished by their metabolic features. Taken

together this analysis establishes a computational framework for characterizing metabolism

using single cell expression data and defines principles of the tumor microenvironment.
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Metabolic reprogramming in cancer cells supports spe-
cific demands for energy, biomass, redox maintenance,
and cellular communication1. Cellular metabolism is

shaped by both genetic and environmental factors including the
somatic driver mutations selected during tumor evolution,
the tissue of origin, and the local nutrient environment1–5. Given
the importance of environmental factors, tumor metabolism
exhibits grossly different properties in laboratory cell culture
settings than in vivo. Differences in the metabolism of humans
and model organisms are also substantial. Nevertheless, most
conclusions surrounding tumor metabolism have been obtained
using cell culture models and model organisms and the number
of direct observations of cellular metabolism are few. Indeed,
nearly all observations of human tumor metabolism in vivo have
been conducted using measurements obtained from bulk tumors.
These findings have advanced our understanding of tumor
metabolism tremendously. Nevertheless, they do result from a
population average over the genetic and environmental variables
of each cell.

There are numerous sources of intratumoral heterogeneity.
Tumor cells exist within a microenvironment consisting of stro-
mal cells such as cancer-associated fibroblasts (CAFs), immune
cells, endothelial cells and many others. Each of these cell types
takes an active role in tumor cell proliferation. For example, CAFs
may release cytokines and growth factors that are received by and
function to signal in cancer cells6. The immune compartment of
an established malignant tumor is collectively immunosuppres-
sive7. Endothelial cells provide vasculature to provide nutritional
support in challenging environments8. Each cell type has unique
metabolic demands that enable specific function. In addition to
the unique metabolic demands of each cell type, each cancer
experiences a distinct nutrient environment, distinct engagement
of extracellular signals, and may derive from a different cell of
origin thus possibly having distinct mutational patterns9.
Therefore at the cellular level, each cell within the tumor is likely
to have a different metabolic status10–13. Nevertheless, direct
observations of cellular metabolism in vivo at the single-cell level
is difficult. Most conclusions about the nature of the tumor
microenvironment have relied on in vitro models such as co-
culture systems14–16 or measurements of single variables such as
immunohistochemical staining for the expression of a metabolic
enzyme17.

Metabolism and its associated phenotypic biology are governed
by the concentrations of metabolites and the rates or fluxes by
which one metabolite is converted to another. A comprehensive
understanding of metabolism requires knowledge of both con-
centrations and fluxes. These measurements are difficult to obtain
in humans and have so far been exclusively conducted in bulk
tumors. Global gene expression however is readily measurable
and the advent of single-cell sequencing technologies enables
expression profiling of individual cells within entire tissues or
tumors18–23. It is also an indirect means of assessing metabolism.
Nevertheless, gene expression has provided many insights into
metabolic pathway activity and in many documented instances
the gene expression is predictive of metabolic flux24,25. Thus
single-cell sequencing could provide some insight into metabo-
lism at the single-cell level in human tumors.

In this study, we analyze metabolic gene expression profiles of
more than 9000 single cells from two representative human
tumor types including melanoma20 and squamous cell carcinoma
of the head and neck (HNSCC)22. We find that activities of
metabolic pathways in malignant cells are in general more active
and plastic than those in non-malignant cells, and the metabolic
features of single cancer cells are poorly captured by measure-
ments done with bulk tumors. Variation in mitochondrial activity
is the major contributor to the metabolic heterogeneities among

both malignant cells and non-malignant cells, and, strikingly, the
activities of glycolysis and oxidative phosphorylation both cor-
relate with hypoxia at the single-cell level. We also identify
metabolic features of different immune and stromal cell subtypes
and find patterns distinct from behaviors of these cells in ex
vivo culture conditions. These findings begin to unravel principles
of how malignant transformation affects the metabolic pheno-
types of tumor and non-tumor cells within the tumor
microenvironment.

Results
Landscape of metabolic gene expression at single-cell level. We
developed a computational pipeline for analyzing metabolic gene
expression profiles at the single-cell level (Fig. 1a, Methods). In
brief, we applied missing data imputation and data normalization
to gene expression profiles to account for the influence of tech-
nical noise. We then characterized the global structure of single-
cell metabolic programs using clustering analysis, identified cell
type-specific metabolic programs using quantitative metrics we
developed, and designed algorithms for quantitation of metabolic
heterogeneity of malignant and non-malignant cells. We applied
this pipeline to two single-cell RNA-seq (scRNA-seq) datasets for
human melanoma20 and HNSCC22, which include an expansive
set of gene expression of 4054 cells and 5502 cells respectively
(Methods). These datasets were selected because they covered the
largest numbers of cells and included detailed annotation of the
cell types, while many of the currently available scRNA-seq
datasets for human cancer are limited by cell number and
sequencing depth. Each dataset covers both malignant and non-
malignant cells isolated from patient-derived human tumors with
different genotypic and phenotypic backgrounds (Fig. 1b, c), thus
enabling an in-depth investigation of the expression of metabolic
genes and pathways in each cell type.

We first analyzed the global structure of metabolic gene
expression in these two datasets using t-distributed stochastic
neighbor embedding (t-SNE)26 based on expression levels of 1566
metabolic genes (Methods). Imputation of zero values was
performed before applying t-SNE to correct for the influence of
the high frequency of dropout events (i.e. failure in detecting
expressed genes due to low sequencing depth) in certain cell types
(Methods). The imputation effectively reduced the dropout rates
in all cell types (Supplementary Fig. 1a–d) without changing
the pattern of the metabolic gene expression (Supplementary
Fig. 1e, f). Clustering analysis after dimensionality reduction with
t-SNE showed that metabolic gene expression profiles of the
malignant cells formed distinct clusters that corresponded to their
tumors of origin (i.e. from which tumor the cell was derived) for
both melanoma (Fig. 1d) and HNSCC (Fig. 1e), suggesting that
metabolic gene expression in malignant cells is largely set by
patient-specific factors. This was further corroborated by the
higher correlation coefficients of metabolic gene expression
profiles between malignant cells from tumors within the same
patient (average Spearman’s correlation= 0.91) than those
between cells from tumors from different patients (average
Spearman’s correlation= 0.79, Fig. 1f, g). Cells from patients of
the same genotypic background also showed higher similarity
than those from different genotypic backgrounds (average
Spearman’s correlation= 0.87 compared to 0.79 for melanoma,
0.87 compared to 0.77 for HNSCC, Fig. 1f, g). In contrast,
metabolic gene expression profiles of non-malignant cells showed
no distinguishable differences between patients (average differ-
ence between intratumoral and intertumoral Spearman’s correla-
tion= 0.01 for non-malignant cells in melanoma and 0.007 for
those in HNSCC, Fig. 1h, i), indicating that metabolism of these
normal cells in the tumor microenvironment exhibits no
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observable interpatient heterogeneity. Similar trends were also
observed for the distributions of correlation coefficients of
metabolic gene expression between cells from the same patient
or different patients, in which only malignant cells showed
significantly stronger intratumoral correlation than intertumoral
correlation (Supplementary Fig. 2). We next repeated the t-SNE
analysis on a randomly selected set of genes (Supplementary
Fig. 3a–d) and the complete set of genes (Supplementary
Fig. 3e–h) and found that the clustering patterns of these gene
sets were similar (relative mutual information close to 1,
Supplementary Table 1, Supplementary Methods) to that of the
metabolic genes, implying that the metabolic plasticity of
malignant cells reflects their intrinsic flexibility in gene expression
program that influences both metabolic and non-metabolic genes.

Taken together, these results suggest that malignant cells exhibit
higher metabolic plasticity which likely leads to patient-specific
metabolic reprogramming of cancer cells but not the supporting
cells in the tumor microenvironment.

Cell type-specific metabolic reprogramming. We next sought to
identify the overall features of metabolic pathway variation
among the different cell types, especially between malignant and
non-malignant cells. To quantify the activity of a metabolic
pathway, we developed a pathway activity score defined as the
relative gene expression value averaged over all genes in this
pathway and all cells of this type (Fig. 2a, b, Methods). To enable
comparison between different cell types, we normalized the gene
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Fig. 1 Landscape of metabolic gene expression at single-cell level. a Schematic representation of the scRNA-seq data analysis pipeline. b Numbers of each
type of cells in the melanoma dataset. c Numbers of each type of cells in the head and neck squamous cell carcinoma (HNSCC) dataset. d t-SNE plot of
metabolic gene expression profiles of malignant cells from the melanoma dataset. The color of each dot indicates the tumor which the cell comes from.
e Same as in d but for the HNSCC dataset. f Clustered correlation matrix showing Spearman’s rank correlation coefficients of metabolic gene expression
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Fig. 2 Cell type-specific metabolic reprogramming. a Metabolic pathway activities in cell types in the melanoma dataset. Statistically non-significant values
(random permutation test p > 0.05) are shown as blank. b Metabolic pathway activities in cell types in the HNSCC dataset. Statistically non-significant
values (random permutation test p > 0.05) are shown as blank. c Metabolic pathway activities in HNSCC tumor samples and matched adjacent normal
samples from TCGA computed based on bulk RNA-seq data. The color bar on the top marks the pathways with similar activity changes in single malignant
cells compared to single non-malignant cells and bulk tumors compared to normal tissue samples. d Scatter plot comparing pathway activities between
bulk HNSCC tumors in TCGA and single malignant cells in the HNSCC scRNA-seq dataset. e Difference between bulk and single-cell RNA-seq in
characterizing gene expression profiles in tumors. f Distributions of pathway activities in different cell types from the HNSCC scRNA-seq dataset (left) and
in bulk tumors and normal samples from TCGA (right)
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expression values using a deconvolution method27 which resulted
in the highest similarity of normalized expression value dis-
tributions between cell types among four commonly used data
normalization methods (Supplementary Fig. 4, Methods). Among
the 80 metabolic pathways with at least 5 genes included, over 70
were more highly expressed (pathway activity score >1 and per-
mutation test p-value < 0.01) in at least one cell type compared to
other cell types, indicating that the activities of most metabolic
pathways are determined by cell type. As an example, the dif-
ferential expression of oxidative phosphorylation (OXPHOS) and
glycolysis across cell types was further supported by directly
comparing distributions of the mean expression level of genes
within these pathways across different cell types (one-way
ANOVA p-value < 0.01 for both datasets, Supplementary Fig. 5).
To further characterize the cell type-specific metabolic features,
we grouped the metabolic pathways into 11 categories based on
KEGG classifications (Supplementary Fig. 6a, b), and assessed
enrichment of each category in pathways up-regulated in each cell
type using a one-sided Fisher’s exact test. These categories
reflected different aspects of cellular metabolism such as carbo-
hydrate metabolism, amino acid metabolism and nucleotide
metabolism. To our surprise, most categories (11 out of 11 for
melanoma and 10 out of 11 for HNSCC) were not enriched in
pathways up-regulated in a specific cell type (i.e. one-sided
Fisher’s exact p-value > 0.05 for all cell types, Supplementary
Fig. 6c, d), indicating that each cell type undergoes global up- or
down-regulation of metabolic pathways in all categories. Malig-
nant cells had the largest number of metabolic pathways sig-
nificantly up-regulated in both melanoma (45 pathways up-
regulated in malignant cells compared to 20 in cancer-associated
fibroblasts, 22 in macrophages and <10 in all other cell types,
Fig. 2a, Supplementary Data 1) and HNSCC (56 pathways up-
regulated in malignant cells compared to 28 in fibroblasts, 24 in
macrophages, 11 in B cells and <10 in all other cell types, Fig. 2b,
Supplementary Data 1), and the up-regulated pathways included
many different parts of cellular metabolism such as central car-
bon metabolism, one carbon metabolism, methionine metabo-
lism, steroid biosynthesis, and beta-alanine metabolism. Thus,
compared to non-malignant cells, malignant cells undergo a
global up-regulation of metabolic activity. Importantly, the global
up-regulation was only observed for metabolic pathways but not
for non-metabolic pathways (median value of non-metabolic
pathway activities close to 1 for all cell types, Supplementary
Fig. 6e–g). Interestingly, comparison of pathway activities
between melanoma and HNSCC in the cell types shared by the
two datasets (Supplementary Fig. 6h) revealed high concordance
between the two tumor types in the metabolic features of T cells
(Spearman’s correlation= 0.58, p-value= 3.6e-8), malignant cells
(Spearman’s correlation= 0.45, p-value= 4.9e-5), endothelial
cells (Spearman’s correlation= 0.43, p-value= 1.2e-4) and mac-
rophages (Spearman’s correlation= 0.44, p-value= 6.9e-5), while
metabolic pathway activities of B cells and fibroblasts correlated
poorly between the two tumor types (Spearman’s correlation
< 0.1, p-value > 0.01 for both cell types), suggesting that meta-
bolism of these cell types is more sensitive to environmental
factors and the effector status of these immune cells.

To evaluate whether patterns of pathway activities in single
malignant cells were consistent with the more commonly used
transcriptomic profiling of bulk tissue samples, we computed
pathway activity scores based on RNA-seq data for bulk tumor
samples and matched normal tissue samples from The Cancer
Genome Atlas (TCGA)28 and compared the results to our
analysis in single malignant cells. Since there are no matched
normal samples for melanoma in the TCGA database, here we
only considered the HNSCC dataset which contains 43 paired
tumor and normal samples29. First, to confirm that the gene

expression values in TCGA bulk tumors are comparable to
tumors in the single-cell RNA-seq dataset, we reconstructed bulk
gene expression profiles for tumors in the single-cell dataset by
pooling gene expression profiles of all single cells derived from
one tumor. We then compared them to those in the TCGA
database to show that the reconstructed bulk tumors, but not the
negative control that we generated by pooling 500 single T cells,
showed a very strong correlation of gene expression levels with
the TCGA tumor samples (average Pearson’s R= 0.77 for
reconstructed bulk tumors compared to 0.69 for pooled T cells,
Supplementary Fig. 7), suggesting that tumor samples in the
single-cell dataset and those in TCGA are approximately
equivalent. We found 6 pathways up-regulated and 34 pathways
down-regulated in tumor samples compared to normal samples
(Permutation test p-value < 0.01, Fig. 2c). Among these pathways,
only 24 showed a consistent pattern of activity in single malignant
cells and bulk tumors (Fig. 2c). Notably, 25 out of the 56
pathways up-regulated in the single malignant cells were
identified as down-regulated in tumors based on the bulk RNA-
seq, and the pathway activities correlated poorly (Pearson’s R=
−0.14, p-value= 0.22) between bulk tumors and single malignant
cells (Fig. 2d). The discrepancy between single-cell and bulk
RNA-seq in identifying tumor-associated metabolic pathway
activities is likely due to the intrinsic heterogeneity in cellular
composition of the tumors (Fig. 2e). Bulk RNA-seq measures the
average expression levels over a mixture of different cell types
thus masking the difference between cell types in the same
sample. This was further supported by an analysis of the
distributions of pathway activities in single cells and bulk samples
showing higher variation of pathway activities between different
types of single cells than between bulk tumors and normal tissues
(average standard deviation of pathway activities= 0.27 for single
cells compared to 0.14 for bulk samples, Fig. 2f). The higher
metabolic activity and variation in single malignant cells
compared to bulk tumors was further confirmed by comparison
of metabolic pathway activities between single malignant cells and
reconstructed bulk tumors (one-sided Wilcoxon’s rank-sum test
p-value= 2.5e-5 for melanoma and 4.6e-4 for HNSCC,
Kolmogorov-Smirnov test p-value= 2.9e-5 for melanoma and
8.7e-5 for HNSCC, Supplementary Fig 8). Taken together, these
results reveal a global enhancement of metabolic activity in single
malignant cells which can only be detected with gene expression
profiling at the single-cell level.

Intratumoral metabolic heterogeneity of malignant cells. In
addition to the common routes of metabolic reprogramming in
malignant cells, metabolism is also affected by a location-specific,
fluctuating nutrient supply and interactions with other neigh-
boring cells in space. It is thus intriguing to investigate what parts
of cellular metabolism are impacted by these environmental
factors. To identify major contributors to intratumoral metabolic
heterogeneity of malignant cells (i.e. variation of metabolism
among malignant cells from the same tumor), we performed
principal component analysis (PCA) and gene set enrichment
analysis (GSEA)30 to identify metabolic pathways enriched in
genes explaining most of the variance among malignant cells in
each tumor (Fig. 3a, Supplementary Fig. 9). We found that for
both melanoma and HNSCC, OXPHOS was the top-scoring
pathway in most tumors (Fig. 3b, c). Similarly, tricarboxylic acid
cycle (TCA cycle) also showed a substantial contribution to
metabolic heterogeneity in several tumors, indicating that varia-
tion in mitochondrial activity is the major contributor to intra-
tumoral metabolic heterogeneity of malignant cells. We also
tested two alternative metrics including coefficient of variation
(CV, Supplementary Fig. 10a) and standard deviation (SD,
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Supplementary Fig. 10b) on the melanoma dataset to exclude
potential bias in choice of metric. We found that the top-scoring
pathways identified by SD (Supplementary Fig. 10b) were highly
consistent with those by computed PCA score (Fig. 3b), and PCA
score and SD were less dependent on average gene expression
levels compared to the CV which tends to be higher for low
abundant genes (Supplementary Fig. 10c-e). Moreover, the top-
scoring pathway identified by CV, steroid hormone biosynthesis,
showed visibly less variation in expression and much lower
expression levels compared to OXPHOS (Supplementary
Fig. 10f).

We next sought to investigate the coupling between mitochon-
drial activity and environmental factors such as oxygen and other

nutritional supplies in single malignant cells. Since direct
measurements of nutritional status of the cells are not available,
we used the average expression level of a set of genes known to
respond to hypoxia as a metric of oxygen supply which is an
environmental factor known to have great impact on cellular
metabolism (Methods). We used the average expression level of
genes in OXPHOS as a surrogate of mitochondrial activity. We
also considered glycolysis since it is another important pathway
in supplying energy and material for cell survival and prolifera-
tion, and its relationship with OXPHOS in cancer metabolism is
still a matter of interest. We found that activity of glycolysis and
the hypoxia signature were highly correlated in both melanoma
and HNSCC (Pearson’s R= 0.72 for melanoma and 0.52 for
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HNSCC, Fig. 3d, e), which agrees with previous studies showing
that hypoxia increases glycolytic activity31,32. To our surprise, we
also found that OXPHOS significantly correlated with glycolysis
(Pearson’s R= 0.67 for melanoma and 0.53 for HNSCC, Fig. 3d, e)
and the response to hypoxia (Pearson’s R= 0.49 for melanoma
and 0.27 for HNSCC, Fig. 3d, e). To exclude the possibility that
the positive correlations were driven by a few correlated genes
with high variation in expression levels while most other genes
were not correlated, we confirmed that most pairwise correlation
coefficients of expression levels between individual genes from the
pathways were also positive (Supplementary Fig. 11). Notably, the
correlations between OXPHOS and glycolysis and that between
OXPHOS and hypoxia were lost in cultured cancer cells from the
Cancer Cell Line Encyclopedia (CCLE)33 (Fig. 3f), suggesting that
the unexpected coupling between aerobic respiration and
hypoxia-related pathways is an unique feature of single malignant
cells in the tumor microenvironment. Moreover, for both
melanoma and HNSCC, malignant cells with lowest expression
levels of OXPHOS, glycolysis and hypoxia were associated with a
gene expression feature that up-regulates genes related to the GO
term negative regulation of execution phase (Fig. 3g, h,
Supplementary Fig. 12), suggesting that this subpopulation of
cells exhibited reduced apoptosis which may facilitate cancer
progression. These results together indicate that mitochondrial
OXPHOS is the most important contributor to intratumoral
metabolic heterogeneity, and OXPHOS is not mutually exclusive
with glycolysis as routes for energy production in adapting to the
tumor microenvironment with varying oxygen supply.

Metabolic heterogeneity of non-malignant cells. We next
explored the metabolic heterogeneity of non-malignant cells.
Since metabolic gene expression profiles of non-malignant cells
were clustered according to cell type, and there were no sig-
nificant differences between different tumors for the same cell
type (Fig. 1h, i and Supplementary Fig. 2a, b), We focused on
identifying the major contributors to metabolic heterogeneity in
each non-malignant cell type. For each non-malignant cell type,
we repeated the PCA and GSEA analyses as we did for malignant
cells and found that variations in OXPHOS also dominated the
metabolic heterogeneity in all non-malignant cell types (Fig. 4a, b,
Supplementary Fig. 13). In addition to OXPHOS, TCA cycle also
substantially contributed to the metabolic heterogeneity of all
non-malignant cell types. These results demonstrate that similar
to the case of malignant cells, mitochondrial activity is also the
major contributor to metabolic heterogeneity in non-malignant
cells.

To evaluate how mitochondrial activity in non-malignant cells
relates to oxygen availability, we correlated activities of OXPHOS
and glycolysis with the hypoxia-associated feature in each cell
type (Fig. 4c, d). Similar to the case of malignant cells, glycolysis,
OXPHOS and the hypoxia feature were also significantly
correlated in almost all cell types except for macrophages in the
HNSCC dataset, in which OXPHOS and hypoxia showed no
significant correlation (Pearson’s R=−0.02, p-value= 0.87).
These findings, together with the results for malignant cells,
challenge the long-standing concept that metabolic reprogram-
ming of central carbon metabolism frequently takes the form of a
switch between glycolysis and mitochondrial respiration. At the
single-cell level, it is plausible that cells facing more severe oxygen
deprivation tend to up-regulate both glycolysis and mitochondrial
OXPHOS, which may help cells to more effectively compete with
other cells for limited resources. Such a positive correlation
between the hypoxia signature and energy-producing pathways is
conserved in almost all cell types included in the single-cell RNA-
seq datasets.

Metabolic features of non-malignant cell subtypes. Non-
malignant cells such as immune and stromal cells are impor-
tant constituents of the tumor microenvironment. These cells are
known to differentiate into subtypes with distinct roles, and this
process involves metabolic reprogramming to satisfy their cell
autonomous metabolic demands and enable interactions with
other cell types10,11,34,35. Next, we use scRNA-seq to characterize
the metabolic features of T cell and fibroblast subpopulations
which together constitute the largest non-malignant cell popu-
lations in the melanoma and HNSCC datasets. T cells were first
separated into CD8+ and CD4+ subtypes based on the expression
of CD4 and CD8A36 (Fig. 5a, Methods). The CD4+ T cells were
further classified into regulatory T cells (Tregs) and T helper cells
(Ths) based on expression levels of FOXP3 and CD25 which are
known to be specifically expressed in these specific cell types37

(Fig. 5a, Methods). We then performed GSEA analysis to identify
metabolic pathways enriched in each subtype. We found that
OXPHOS was the most important metabolic pathway distin-
guishing T cell subtypes: CD4+ T cells exhibited significantly
higher levels of OXPHOS compared to CD8+ T cells in both
melanoma (GSEA p-value= 0.002) and HNSCC (GSEA p-value
< 0.001, Fig. 5b, c, Supplementary Fig. 14a, b, Supplementary
Data 2). Interestingly, compared to Ths, Tregs exhibited up-
regulation of glycolysis (GSEA p-value < 0.001 for both tumors)
in addition to OXPHOS (GSEA p-value < 0.001 for both tumors,
Fig. 5d, e, Supplementary Fig. 14c, d, Supplementary Data 2). This
appears to contradict with previous studies showing that among
immune cells derived from healthy mice not bearing tumors, Ths
tend to be more glycolytic compared to Tregs38. On the other
hand, the OXPHOS preference of CD4+ T cells and Tregs is
consistent with previous studies39–41, highlighting enhanced
mitochondrial oxidative metabolism as a universal metabolic
feature of these T cell subtypes in different contexts. These results
suggest that subpopulations of immune cells in the tumor
microenvironment have metabolic features that differ from their
behaviors in normal tissues.

We next characterized the metabolic features of subpopulations
of fibroblasts which serve as a major component of tumor stroma
and have diverse roles in both normal functions such as wound
healing and tumor-promoting functions such as remodeling the
extracellular matrix and interacting with tumor cells to support
their growth42. According to a previous study22, the 1422
fibroblasts in the HNSCC dataset formed two major subpopula-
tions exhibiting gene expression corresponding to CAFs or
myofibroblasts, respectively (Fig. 5f, Methods). We thus performed
GSEA analysis to compare metabolic gene expression between the
two fibroblast subtypes (Fig. 5g, Supplementary Fig. 14e, Supple-
mentary Data 2). We found significant up-regulation of 15
metabolic pathways (GSEA p-value < 0.05) that distinguished
CAFs from myofibroblasts. On the other hand, inositol phosphate
metabolism was the only metabolic pathway up-regulated in
myofibroblasts (p-value < 0.001), indicating that CAFs are more
metabolically active compared to myofibroblasts. Glycolysis was
significantly up-regulated in CAFs (GSEA p-value= 0.048), which
is in line with a hypothesized metabolic feature of CAFs, in which
CAFs exhibit enhanced glycolysis which produces excess lactate
that can be utilized by adjacent tumor cells to support growth43,44.
Notably, we also found several other groups of metabolic pathways
up-regulated in CAFs. These pathways included arachidonic
acid metabolism (GSEA p-value < 0.001) and linoleic acid
metabolism (GSEA p-value= 0.002), which are known to produce
inflammatory mediators45, and a group of pathways related to
glycan biosynthesis and degradation. Up-regulation of these
pathways in CAFs may support the function of CAFs in secreting
small molecule compounds and proteins to remodel the tumor
microenvironment. Taken together, these results identify a
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metabolic phenotype of CAFs that potentially helps establish their
roles in interacting with other cell types and modulating the tumor
microenvironment.

Discussion
We have characterized the rewiring of metabolic pathways in
single malignant cells compared to their normal partners in the
same tumor microenvironment by analyzing metabolic gene
expression profiles of single malignant and non-malignant cells.
Although metabolic gene expressional levels are not equivalent to
metabolic fluxes or metabolite abundance, there is some evidence
that metabolic gene expression can be to some if not a large
extent predictive of metabolic fluxes, and metabolite
concentrations24,46. Thus, our findings with the single-cell gene
expression profiles provide clues about the overall trends of
metabolic activities in single cells. We found that, compared to
non-malignant cells, malignant cells not only exhibit high
metabolic plasticity that allows them to adapt their metabolism to
different genotypic and environmental contexts, but also follow a
common pattern of global up-regulation of activities of metabolic
pathways in almost all functional categories. The global up-
regulation of metabolic genes but not non-metabolic genes
implies that malignant cells allocate more transcriptional
resources to the expression of metabolic genes and having likely
higher fluxes for most metabolic reactions. These results point to
the principle that metabolism of cancer cells is in general more
flexible and active than that of non-malignant cells. Notably, most
of the metabolic changes detected in single malignant cells
compared to single non-malignant cells were not captured by
comparing expression levels of metabolic genes between bulk
tumor and normal samples, implying that comparison of meta-
bolic configurations between tumors and normal tissues based on
bulk measurements tends to underestimate the differences

between malignant and non-malignant cells due to the highly
complicated cellular composition of the bulk samples. Con-
sistently, our results appear to be different from previous studies
comparing metabolic network expression in tumor and normal
tissues47,48.

There are several interesting findings around the role of
mitochondrial activity in shaping the metabolic heterogeneity of
tumors. First, variation in OXPHOS gene expression is the most
important contributor to the metabolic heterogeneity among
malignant cells from the same tumor and that among non-
malignant cells of the same type. The high variation in OXPHOS
activity suggests that this pathway might be responsible for
adapting to environmental factors. It is thus interesting to
investigate how such variability in OXPHOS activity contributes
to tumor progression.

The role of mitochondria (OXPHOS and TCA cycle) in cancer
is still a matter of debate. In addition to the well-known Warburg
effect49, several studies comparing metabolic gene expression
between bulk tumors and normal tissues have also identified
suppression of OXPHOS as a recurrent metabolic phenotype in
tumors47,50–52. However, there are also numerous studies show-
ing that active OXPHOS is in fact required for cancer progres-
sion. Mitochondrial inhibitors such as metformin are known to
suppress cancer cell growth53–55. In this study, we found that
OXPHOS gene expression levels were in general higher in single
malignant cells (Fig. 2a, b, Supplementary Fig. 5), which appears
to contradict observations based on bulk gene expression
levels47,50–52. Further work is needed to resolve the discrepancy
between single-cell and bulk RNA-seq in evaluating the role of
OXPHOS in tumors, but it is likely due to the complexity of
cellular composition of tumors that is almost impossible to be
dissected by bulk measurements.

Another interesting finding about OXPHOS activity in single
cells is that it is correlated with both glycolysis and response to
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hypoxia in almost all cell types. This at the first glance is coun-
terintuitive because hypoxia activates signal transduction path-
ways that induce glycolysis and suppress OXPHOS and other
mitochondria-associated pathways32. Nevertheless, OXPHOS also
has established role in mediating the response to hypoxia by
serving as a sensor of oxygen availability through stabilization of
hypoxia-induced factors (HIF)56,57. Therefore, the interplay
between glycolysis, OXPHOS, and hypoxia is highly dynamic in
living cells, and the quantitative relationship between them is at
least partly determined by the interaction between the inhibitory
effects of the HIF signaling pathway and the positive feedback
from OXPHOS activity to HIF signaling in response to oxygen
availability. Our analysis of single-cell transcriptomic profiles
clarifies that activities of these pathways tend to be positively
correlated in single cells from the tumor microenvironment with
scarce and fluctuating oxygen supply. Whether such coupling at
single-cell level exists in other types of tumor and whether it
benefits the cancer cells needs further investigation.

With the gene expression profiles of single cells from tumors,
we were able to identify metabolic features that distinguish sub-
populations of immune and stromal cells. This approach has the
advantage of providing a direct snapshot of the metabolic land-
scape of tumors and their microenvironment consisting of
numerous known and unknown types of cells whose metabolism
is greatly influenced by the interactions between them and the
shortage of nutrients in the tumor microenvironment11,58,59. We
found that some non-malignant cell subpopulations, Ths and
Tregs for instance, adopt metabolic phenotypes distinct from
what they show in ex vivo culture conditions38. Metabolic
reprogramming of CAFs compared to myofibroblasts was also
shown to involve more pathways than what is currently known.
These results highlight the great impact of the tumor micro-
environment on cellular metabolism. It is worth noting that
currently the ability to characterize metabolic phenotypes of cell
subpopulations is still limited by the number of single cells that
can be profiled at the same time due to the diversity of cell types
and noisy gene expression in single cells. Improvement in single-
cell omics techniques will help address this issue and provide
higher resolution in identifying cell subpopulations with different
metabolic phenotypes.

To summarize, this study offers a global picture of metabolic
gene expression in single tumor and non-tumor cells from the
highly complex tumor microenvironment. These cells display
metabolic activities distinct from the average pattern at the bulk
level. Although this study only focused on two tumor types
consisting of the highest quality data at this time that allowed for
the current scope of analysis, the principles about metabolic
landscape of single cells in tumors – the metabolic plasticity and
activity of malignant cells, the dominant role of mitochondrial
programs in shaping metabolic heterogeneity of malignant and
non-malignant cells, and the metabolic features of immune cell
subtypes - were applicable to both tumor types, and the data
analysis pipeline that we developed here can easily be extended to
datasets of other tumor types. With the rapid development of
novel single-cell omics techniques and accumulation of data in
more tumor types and patients, we are optimistic that a com-
prehensive portrait of metabolic features of every unique tumor
cell will emerge in the near future.

Methods
Data processing. Gene expression levels were quantified using the metric log2
(TPM+ 1). Tumors and non-malignant cell types containing <50 cells were
excluded from the downstream analysis. Missing gene expression values were
imputed using the scImpute algorithm60 with default parameters and TPM values
and gene lengths (for a gene associated with multiple transcripts, the length of the
longest transcript was used) as the input. Imputation was only applied to genes
with dropout rates (i.e. the fraction of cells in which the corresponding gene has

zero expression value) larger than 50% to avoid over-imputation60. Lists of
metabolic genes and pathways were obtained from the KEGG database (http://
www.kegg.jp). The imputed expression values were then used in clustering analysis
using the t-SNE method26 implemented in the Rtsne package61 with default
parameters. Bulk RNA-seq data for matched HNSCC tumor and normal samples
were downloaded from TCGA database (https://portal.gdc.cancer.gov/).

Evaluation of normalization methods. The relative log expression (RLE)
method62 was implemented using the estimateSizeFactorsForMatrix function in
DESeq263. The trimmed mean of M-values (TMM)64 and upper quartile65 meth-
ods were performed using the calcNormFactors function in the edgeR package64.
For deconvolution normalization27 for scRNA-seq data with annotated cell type
information, the computeSumFactors function in the scran package was used to
compute cell type-specific size factors66. TPM values were transformed to read
counts by multiplying TPM values and gene lengths (for genes with multiple
transcripts, the length of the longest transcript was used). Normalized gene counts
were computed by dividing read counts by the size factor corresponding to the cell
and then transforming back to TPM by dividing the gene lengths. To avoid noise
caused by low expressed and undetected genes, only genes with dropout rate <0.75
(i.e. genes with non-zero expression levels in at least 25% of the cells) were used as
the reference genes to do normalization. The distributions of relative gene
expression values (defined in the Calculation of pathway activity section) in dif-
ferent cell types were used to evaluate the performances of these methods. The
method minimizing differences in distributions of relative gene expression levels
between cell types was selected for the following analysis.

Calculation of pathway activity. For the i-th metabolic gene, we first calculated its
mean expression level across cells of the j-th cell type:

Ei;j ¼
Pnj

k¼1 gi;k
nj

; i 2 1¼M; j 2 1¼N ð1Þ

In which nj is the number of cells in the j-th cell type, gi,k is the expression level
of the i-th gene in the k-th cell in this cell type,M is the number of metabolic genes,
and N is the number of cell types. The relative expression level of the i-th gene in
the j-th cell type was then defined as the ratio of Ei,j to its average over all cell types:

ri;j ¼
Ei;j

1
N

PN
j Ei;j

ð2Þ

Here ri,j quantifies the relative expression level of gene i in cell type j comparing
to the average expression level of this gene in all cell types. A ri,j value >1 means
that expression level of gene i is higher in cell type j compared to its average
expression level over all cell types. The pathway activity score for the t-th pathway
and the j-th cell type was then defined as the weighted average of ri,j over all genes
included in this pathway:

pt;j ¼
Pmt

i¼1 wi ´ ri;j
Pmt

i¼1 wi

ð3Þ

Where pt,j represents the activity of the t-th pathway in the j-th cell type, mt is the
number of genes in the pathway t, wi is the weighting factor equal to the reciprocal
of number of pathways that include the i-th gene. To avoid the possibility that
pathway activity scores were affected by genes with low expression level or high
drop-out rates, we excluded the outliers in each pathway defined by genes with
relative expression levels greater than three times 75th percentile or below 1/3
times 25th percentile. Statistical significance of higher or lower pathway activity in
a specific cell type was then evaluated by a random permutation test, in which the
cell type labels were randomly shuffled for 5000 (for the scRNA datasets) or 1000
times (for the TCGA data) to simulate a null distribution of the pathway activity
scores and compare to the pathway activity scores in the original, non-shuffled
dataset. For the pathway activity score pt,j, we then calculated a p-value defined as
the fraction of random pathway activity scores larger than pt,j (if pt,j is >1) or
smaller than pt,j (if pt,j is <1) to assess if activity of this pathway is significantly
higher or lower in this cell type than average.

Analyzing heterogeneity of metabolic pathways. The PCA analysis was applied
on the log2-transformed TPM (log2(TPM+ 1)) values without imputation of
missing values. The function prcomp in R was used to perform the PCA analysis.
For each metabolic gene, we computed its PCA score defined as the sum of
absolute values of the loadings of this gene in the top PCs that in total account for
at least 80% of the variance to measure variability of gene expression across cells.
We then sorted the PCA scores of the genes in descending order and applied GSEA
analysis to the ranked list of genes to identify metabolic pathways enriched in genes
with highest variability. GSEA analysis was done by the software javaGSEA
available at http://software.broadinstitute.org/gsea/downloads.jsp with the option
pre-ranked and default parameters. The hypoxia signature genes were retrieved
from the gene set HALLMARK_HYPOXIA in the molecular signature database
(MSigDB) available at http://software.broadinstitute.org/gsea/msigdb/index.jsp.
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Analysis of non-malignant cell subtypes. T cells were classified as CD4+ or
CD8+ based on expression levels of CD4 and CD8A. T cells with CD4 expression
level higher than 1 and CD8A expression level lower than 1 were classified as CD4+

T cells, while those with CD4 expression level lower than 1 and CD8A expression
level higher than 1 were classified as CD8+ T cells. Cells with CD4 and CD8A
expression levels both higher than 1 were excluded from the following analysis.
CD4+ T cells with the total expression level of FOX3P and CD25 higher than 2
were further defined as Tregs, while CD4+ T cells without these two genes
expressed (i.e. both genes have zero expression values in these cells) were defined as
Ths. For fibroblast cells, after excluding cells with FOS and VIM expression levels
both <1, k-means clustering analysis was performed on the expression levels of a
set of gene markers (Fig. 5f) to classify them into CAFs and myofibroblasts. The
metabolic gene expression profiles were then compared between different cell
subtypes using GSEA with the following parameters: nperm= 1000, metric=
Diff_of_Classes, permute= gene_set, set_max= 500, set_min= 5. The metabolic
pathways with GSEA nominal p-value < 0.05 were considered as significant.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Processed gene expression profiles for melanoma and HNSCC were retrieved from Gene
Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/gds) under accession
numbers GSE72056 and GSE103322. Raw and processed gene expression values and
annotation of cell and tumor types used in this study are available at https://doi.org/
10.6084/m9.figshare.7174922 (ref. 67). All other data supporting the findings of this study
are available within the article and its Supplementary Information files.

Code availability
Computer codes used in this study are available at the GitHub page of the Locasale Lab:
https://github.com/LocasaleLab/Single-Cell-Metabolic-Landscape.
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