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Cross comparison and prognostic 
assessment of breast cancer 
multigene signatures in a large 
population-based contemporary 
clinical series
Johan Vallon-Christersson1, Jari Häkkinen   1, Cecilia Hegardt1, Lao H. Saal   1, 
Christer Larsson2, Anna Ehinger   1,3, Henrik Lindman4, Helena Olofsson4,5, Tobias Sjöblom4, 
Fredrik Wärnberg6, Lisa Ryden7, Niklas Loman1,8, Martin Malmberg1,8, Åke Borg1 & 
Johan Staaf   1

Multigene expression signatures provide a molecular subdivision of early breast cancer associated 
with patient outcome. A gap remains in the validation of such signatures in clinical treatment groups 
of patients within population-based cohorts of unselected primary breast cancer representing 
contemporary disease stages and current treatments. A cohort of 3520 resectable breast cancers 
with RNA sequencing data included in the population-based SCAN-B initiative (ClinicalTrials.gov ID 
NCT02306096) were selected from a healthcare background population of 8587 patients diagnosed 
within the years 2010–2015. RNA profiles were classified according to 19 reported gene signatures 
including both gene expression subtypes (e.g. PAM50, IC10, CIT) and risk predictors (e.g. Oncotype 
DX, 70-gene, ROR). Classifications were analyzed in nine adjuvant clinical assessment groups: TNBC-
ACT (adjuvant chemotherapy, n = 239), TNBC-untreated (n = 82), HER2+/ER− with anti-HER2+ 
ACT treatment (n = 110), HER2+/ER+ with anti-HER2 + ACT + endocrine treatment (n = 239), 
ER+/HER2−/LN− with endocrine treatment (n = 1113), ER+/HER2−/LN− with endocrine + ACT 
treatment (n = 243), ER+/HER2−/LN+ with endocrine treatment (n = 423), ER+/HER2−/LN+ with 
endocrine + ACT treatment (n = 433), and ER+/HER2−/LN− untreated (n = 200). Gene signature 
classification (e.g., proportion low-, high-risk) was generally well aligned with stratification based 
on current immunohistochemistry-based clinical practice. Most signatures did not provide any 
further risk stratification in TNBC and HER2+/ER– disease. Risk classifier agreement (low-, medium/
intermediate-, high-risk groups) in ER+ assessment groups was on average 50–60% with occasional 
pair-wise comparisons having <30% agreement. Disregarding the intermediate-risk groups, the exact 
agreement between low- and high-risk groups was on average ~80–95%, for risk prediction signatures 
across all assessment groups. Outcome analyses were restricted to assessment groups of TNBC-ACT 
and endocrine treated ER+/HER2−/LN− and ER+/HER2−/LN+ cases. For ER+/HER2− disease, 
gene signatures appear to contribute additional prognostic value even at a relatively short follow-up 
time. Less apparent prognostic value was observed in the other groups for the tested signatures. The 
current study supports the usage of gene expression signatures in specific clinical treatment groups 
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within population-based breast cancer. It also stresses the need of further development to reach 
higher consensus in individual patient classifications, especially for intermediate-risk patients, and the 
targeting of patients where current gene signatures and prognostic variables provide little support in 
clinical decision-making.

Breast cancer is the most common malignancy in women worldwide1. It is a heterogeneous disease at the molec-
ular level that translates into diverse clinical manifestation, patient management, therapy options, and ultimately 
patient outcome. Breast cancer survival has improved greatly over the last decades due to improved screening 
programs, surgery and adjuvant therapy. However, a therapeutic ceiling may seem to have been reached in terms 
of curability with approximately 30% of patients eventually relapsing despite recommended adjuvant treatment2. 
The heterogeneity in clinical outcome for patients with similar a priori prognostic variables proposes that, irre-
spective of treatment, additional tools are required to improve patient stratification, prognostication, and predic-
tion of response to therapy in primary breast cancer.

Gene expression profiling has been used since the early 2000s to stratify early stage breast cancer into molecu-
larly driven subsets associated with patient outcome and specific clinicopathological characteristics. Some studies 
have resulted in commercial multigene expression profiling tests that can guide physicians in tailoring treat-
ment decisions for individual patients3. Two main types of gene expression classifiers have evolved, one aimed 
at defining subtypes or gene expression phenotypes (GEPs), and one comprised of prognostic or predictive risk 
predictors (RPs). For both types, a trained classification model (hereafter referred to as a classifier) based on gene 
expression characteristics of individual samples is used to divide patients into two or more subtypes (GEPs) or 
risk groups (RPs). Gene signature classifiers may allow for clinically useful disease stratification independent of 
current prognostic variables, pending adequate validation and clinical implementation. Three RP examples are 
the Oncotype DX®, MammaPrint® and Prosigna® assays that have been validated in large prospective trials and 
are now offered as commercial tests, of which some are recommended in national and international guidelines 
(see e.g.4–10).

While gene signatures can be assessed and validated in thousands of publicly available breast cancer gene 
expression profiles (see e.g.11–13) and even via online tools14,15, there remains a gap in the validation of many 
signatures in clinical treatment groups in large cohorts of unselected, population-based, primary breast cancer 
receiving current standard of care therapy. In the current study, we aimed to address this gap by analyzing clas-
sification proportions and patient outcome associations of 19 different GEP and RP type gene signatures within 
a 3520-sample consecutive observational cohort of resectable primary breast cancers from south Sweden. The 
primary aim was to assess the association with overall survival (OS) for tested gene signatures in nine relevant 
clinical assessment groups. The secondary aim of the study was to describe the classification proportions and clas-
sification consensus of the gene signatures in these clinical assessment groups.

Methods
Ethics approval and consent to participate.  Patients included in this study was enrolled in the Sweden 
Cancerome Analysis Network - Breast (SCAN-B) initiative16,17 (ClinicalTrials.gov ID NCT02306096), approved 
by the Regional Ethical Review Board in Lund, Sweden (Registration numbers 2009/658, 2010/383, 2012/58, and 
2013/459). All patients provided written informed consent prior to study inclusion. All analyses were performed 
in accordance with patient consent and ethical regulations and decisions.

Patient material.  Out of 5417 patients enrolled in SCAN-B between September 1 2010 and March 31 2015 
with primary invasive disease, 4221 had primary surgery without neoadjuvant treatment and with a fresh tumor 
sample taken by a pathologist during the clinical diagnostic routine. Patients were recruited from the following 
hospitals through sites participating in SCAN-B during the time period: Lund, Malmö, Helsingborg, Kristianstad, 
Växjö, Halmstad, Uppsala, Karlskrona, Varberg, and Ljungby. 3520 patients were identified with high quality 
RNA sequencing (RNAseq) data as outlined in Fig. 1. Population-based representativeness for each step in the 
patient selection process was assessed through comparison between: i) the general comparable breast cancer 
population in the catchment region (n = 8587), ii) the subset of enrolled SCAN-B patients (n = 5417), and iii) 
the RNAseq cohort subset (n = 3520). Comparisons were done using clinicopathological data from the Swedish 
national breast cancer quality registry (NKBC) (Fig. 1). Patient characteristics and clinicopathological varia-
bles are described in Table 1, and are according to current clinical definitions in Sweden. Fresh collected tumor 
samples preserved in RNAlater (Qiagen, Hilden, Germany) were obtained as per established SCAN-B proto-
cols integrated in routine clinical practice and performed by clinical pathologists in regional pathology depart-
ments throughout the healthcare region16,17. RNA was extracted using the Qiagen Allprep extraction kit (Qiagen, 
Hilden, Germany) as described16,17.

Gene expression analysis.  Gene expression profiling of the 3520 patients were performed using RNA 
sequencing as described16,18. Gene expression data is available through Gene Expression Omnibus19 (GEO) series 
GSE96058. Expression data (Fragments Per Kilobase per Million reads, FPKM) was extracted for each case. 
Nineteen gene classifiers, originating from 15 public gene classifiers, representing different subtype predictors or 
prognostic predictors were used to classify samples as described in detail in Supplementary Methods using either 
described/provided algorithms from studies, or implementations available in existing R packages, e.g., genefu20 
(Table 2). A complete list of classifications for each sample and signature is available as Supplementary Table S1 
together with patient characteristics and survival data.

Gene set activation status, activated (1), repressed (−1), or latent (NA) for molecular processes was deter-
mined using absolute inference of patient signatures (AIPS) models21. Activation status from available AIPS 
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models for gene ontology gene sets derived from the Biological Process or Molecular Function ontology22 was 
used to cluster tumors using the R package pheatmap with manhattan based distance and complete linkage.

Survival analysis.  Survival analyses were performed in R version 3.3.0 using the survival package with overall 
survival (OS) as endpoint. OS was the only endpoint time variable with full coverage for SCAN-B patients at the time 
of this study. Survival curves were compared using Kaplan-Meier estimates and the log-rank test. Hazard ratios were 
calculated through univariable or multivariable Cox regression using the coxph R function. In multivariable analyses 
tumor size (mm), patient age at diagnosis, lymph-node (LN) status (node-positive/node-negative), and tumor grade 
were included as covariates. The full available follow-up time was used in calculations.

Figure 1.  Consort diagram of patient selection and population-based representativeness. (A) Consort diagram 
of patient inclusion. (B) Population representativeness for the selection process and final RNAseq cohort 
illustrated by proportional bar charts for important clinicopathological variables in breast cancer. For each 
variable, the three bars correspond to the background population (left), enrolled SCAN-B patients (center), and 
SCAN-B patients with RNA-seq (right) NKBC: Swedish national breast cancer quality registry.
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Results
A population-based breast cancer cohort for representative real-world follow-up analysis.  The 
study cohort is derived from the complete background population of 8587 patients diagnosed with primary 
resectable breast cancer in the wider catchment region during September 1 2010 and March 31 2015. A total 
of 5417 cases from the background population were enrolled in the SCAN-B study (Fig. 1), of which 3520 had 
quality-controlled RNAseq data available. Patient demographics for the SCAN-B study cohorts were evaluated 
based on national breast cancer quality registry data and found to be highly similar to the background population 
(Fig. 1B). One exception was a lower proportion of small node-negative tumors in the RNAseq cohort due to 
scarcity of tissue left after routine clinical diagnostics (Fig. 1B). Together, this assures the approximation of the 
SCAN-B RNAseq cohort as a good representation of population-based contemporary breast cancer in the South 
Swedish Healthcare region (comprising ~1.8 million inhabitants) and suitable for making general inferences 
regarding, e.g., classification proportions and outcome.

Of the 3520 cases with RNAseq, 34% had ≥5 years of follow-up (OS), 23% 4–5 years, 24% 3–4 years, and 
16% 2–3 years at the time of this study. Patients were stratified into nine clinical groups based on administered 
adjuvant treatment and relevant clinicopathological variables. These groups are referred to as clinical assessment 
groups herein and include: i) triple negative breast cancer (TNBC) with adjuvant chemotherapy (ACT, n = 239), 
ii) adjuvantly untreated TNBC (n = 82, only treatment was surgery), iii) HER2+/ER− with adjuvant anti-HER2+ 
ACT treatment (n = 110), iv) HER2+/ER+ with adjuvant anti-HER2+ACT + endocrine treatment (n = 239), v) 

All samples ER+/HER2−/LN+ ER+/HER2−/LN− HER2+/ER+ HER2+/ER− TNBC

Number of samples 3520 943 1527 321 140 340

ER status (%)

Negative (ER IHC ≤ 10%)* 14.5 0 0 0 100 100

Positive (ER IHC > 10%)* 84.2 100 100 100 0 0

NA 1.3 0 0 0 0 0

PR status (%)

Negative (PR IHC ≤ 10%)* 26.5 13 12 32 96 100

Positive (PR IHC > 10%)* 72.1 87 88 68 4 0

NA 1.4 0 0 0 0 0

HER2 status (%)

Negative 82.4 100 100 0 0 100

Positive 13.2 0 0 100 100 0

NA 4.4 0 0 0 0 0

Age (median and range) 65 (25–100) 65 (25–95) 65 (30–100) 63 (30–95) 70 (35–95) 65 
(30–95)

Tumor size (median mm and range) 17 (0–126) 20 (0–126) 15 (1–110) 18 (1–120) 20.5 (0–70) 20 
(0–100)

NHG (%)

1 15 13 24 2 0 1

2 47 56 55 30 11 11

3 36 30 20 66 84 84

NA 2 2 1 3 4 3

Lymph node status (%)

0 positive nodes 59 0 100 54 43 64

1–3 positive nodes 27 71 0 27 31 24

≥4 positive nodes 9 23 0 12 19 8

Sub micro metastasis 2 6 0 3 2 2

NA 3 0 0 4 6 2

Treatment (%) All samples ER+/HER2−/LN+ ER+/HER2−/LN− HER2+/ER+ HER2+/ER− TNBC

Endocrine only 49 48 71 17 1 1

ACT only 8 1 0 0 1 70

Endocrine & ACT 22 49 15 2.5 0 1

Anti-HER2 & ACT 3 0 0 2 79 1

Anti-HER2 & ACT & endocrine 8 0.7 0 74 6 0

Untreated 10 1.6 13 3 8 24

NA or other combination 0 0 1 1.5 5 3

Table 1.  Patient characteristics and clinicopathological variables of the study cohort based on national 
cancer quality registry data. *In Sweden the cut-off by IHC for ER and PR is ≤10% staining intensity. NHG: 
Nottingham grade index. ACT: Adjuvant chemotherapy. Anti-HER2: HER2-targeted therapy (mainly 
trastuzumab). NA: data not available. Bold groups indicate clinical treatment groups used for signature 
evaluation.
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ER+/HER2−/LN− with adjuvant endocrine treatment (n = 1113), vi) ER+/HER2−/LN− with adjuvant endo-
crine + ACT treatment (n = 243), vii) ER+/HER2−/LN+ with adjuvant endocrine treatment (n = 423), viii) 
ER+/HER2−/LN+ with adjuvant endocrine + ACT treatment (n = 433), and ix) adjuvantly untreated ER+/
HER2−/LN− (n = 200, only treatment was surgery) (Table 1, highlighted fields).

Subtype proportions of 19 gene signatures in population-based breast cancer.  The 3520 tumors 
were classified according to 19 gene signatures (Table 2), as detailed in Supplementary Methods. Subtype pro-
portions across all 3520 samples for four molecular subtype classifiers (AIMS-PAM50, PAM50, CIT, and IC10) 
in breast cancer are shown in Fig. 2A. To further verify the generalizability of the population-based cohort with 
respect to classifications, we stratified classifications by the AIMS-PAM50 single sample predictor (which is inde-
pendent of cohort centering and thus insensitive to cohort composition bias) by year of diagnosis (2012, 2013, 
2014). As seen in Fig. 2B, subtype proportions for enrolled patients were highly similar across inclusion years. 
Correspondingly, proportions of administered treatment regime were also consistent across year of diagnosis 
(Fig. 2C). Together, these results support that classification findings and outcome results made in this cohort may 
be generalized to future patient populations of similar demographic composition.

Classification proportions for all signatures across the nine clinical assessment groups are shown in Fig. 3 
and Supplementary Table S2. Reassuringly, predicted class assignment of reported low-risk and high-risk groups 
match, in general, the corresponding clinical management of the patients according to Swedish national breast 
cancer quality registry data. For ER+/HER2− patients receiving only adjuvant endocrine treatment or no adju-
vant treatment, risk-classifiers such as the Oncotype DX, the 70-gene signature (Gene70), ROR-variants, and 
GGI (genomic grade index) mainly predicted cases as low-risk or medium/intermediate risk (approximately 
40–80%) (Fig. 3C). The Endopredict signature was an exception, with nearly 80% high-risk classified samples in 
these assessment groups. In contrast, among ER+/HER2− patients receiving additional adjuvant chemotherapy, 
a minority was predicted as low-risk, consistent with, e.g., a higher proportion of Luminal B cases in such groups. 
Also, for HER2− positive and TNBC patients (Fig. 3A,B) most RP classifiers predicted only a small number of 
cases as low-risk. The proportional analyses also demonstrate the heterogeneity in clinical assessment groups 
defined by IHC within TNBC, ER+/HER2−, and HER2-positive disease with respect to gene expression subtypes 
with all molecular subtypes represented, albeit at varying degree depending on assessment group. For instance, 
while relatively high heterogeneity was observed in TNBC and HER2+/ER+ disease without adjuvant treatment, 
considerably lower heterogeneity was observed among TNBC and HER2+/ER− tumors administered chemo-
therapy (approximately 70–80% were basal-like or HER2-enriched tumors, respectively). While these subtype 
differences in part represent underlying biology, it should be noted that this observation is likely also driven by 
the inherent problems in classification by nearest centroids as aptly illustrated previously for PAM5023.

Gene signature associations with patient outcome in clinical breast cancer subgroups.  Across 
all patients, the nine clinical assessment groups were significantly associated with differences in OS (Fig. 4A). 
Observed differences in OS are to a great extent explained by the clinical management and patient demographics 
(e.g. patient age) of the assessment groups. Thus, gene signatures need to be evaluated and compared for prognos-
tic value within the specified assessment groups. Six of the nine clinical assessment groups were deemed unsuited 

Signature Reference Type Developed for

1. PAM50 – AIMS 23 GEP All breast cancer

2. PAM50* 38 GEP All breast cancer

3. IC10 11,12 GEP All breast cancer

4. CIT 27 GEP All breast cancer

5. TNBCtype 28,46 GEP TNBC

6. HDPP 43 GEP HER2+ breast cancer

7. SDPP 42 GEP All breast cancer

8. SCMOD2 34 GEP All breast cancer

9. GGI 39 RP All breast cancer

10. Gene70 47 RP All breast cancer

11. Oncotype DX 7 RP ER+ breast cancer

12. Gene76 48 RP LN-negative breast cancer

13. Endopredict 49 RP ER+/HER2− breast cancer

14. Genius 37 RP All breast cancer

15. ROR-S* 38 RP All breast cancer

16. ROR-P* 38 RP All breast cancer

17. ROR-T* 38 RP All breast cancer

18. ROR-PT* 38 RP All breast cancer

19. ROR-Tot* 8 RP All breast cancer

Table 2.  Gene signatures used for classification. *Implementation was performed by using a reference set 
similar in composition to Parker et al.38 for gene centering. GEP: Gene expression phenotype signature. RP: Risk 
prediction signature.
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for prognostic evaluation at this time (Fig. 4B). Group exclusion was due to combinations of group size, low num-
ber of events (recorded deaths), or bias in age (untreated TNBC) not compatible with overall survival as endpoint. 
The low number of events is mainly attributed to the short follow-up time that accompany a contemporary cohort 
with patients diagnosed 2010–2015 and subjected to modern clinical management including extensive HER2 
blockade. For ER+ disease, the follow-up time is relatively short considering the nature of late recurrences in 
this subgroup of breast cancer with modern therapy24. After group exclusion, three groups remained for further 
outcome analyses: i) ER+/HER2−/LN− tumors with endocrine treatment, ii) ER+/HER2−/LN+ tumors with 
endocrine treatment, and iii) TNBC with adjuvant chemotherapy.

For these three assessment groups we performed Kaplan-Meier analysis, univariable, and multivariable Cox 
regression modeling for each signature using tumor size (mm), patient age, lymph node status (when applicable), 
and tumor grade (Nottingham Histological Grade) as covariates (Figs 4C,D and 5A). While many signatures 
showed significant hazard ratios in univariable analysis (Supplementary Fig. S1) statistical significance in the 

Figure 2.  Molecular subtypes and administered therapy for the study cohort. (A) Proportions of subtypes 
from four molecular subtype signatures in the complete RNAseq cohort. (B) Subtype proportions of the 
AIMS-PAM50 single sample predictor for patients diagnosed 2012, 2013, and 2014 respectively, illustrating the 
stability of the underlying patient demographics across inclusion years. (C) Treatment proportions according to 
national registry data for RNAseq patients diagnosed 2012, 2013, and 2014 respectively, illustrating the stability 
of the underlying patient demographics during inclusion years. ACT: adjuvant chemotherapy. Endocrine: 
endocrine treatment.
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Figure 3.  Gene signature class proportions across nine clinical assessment groups in population-based breast 
cancer. (A) HER2+ disease stratified into two clinical assessment groups: i) HER2+/ER− with anti-HER2 
and adjuvant chemotherapy (ACT), and ii) HER2+/ER− with anti-HER2, adjuvant chemotherapy (ACT) and 
endocrine therapy. (B) TNBC disease stratified into two clinical assessment groups: i) TNBC with adjuvant 
chemotherapy, and ii) untreated TNBC. (C) ER+/HER2− disease stratified by lymph-node status (lymph-node 
negative: LN−, positive: LN+) and adjuvant therapy into five clinical assessment groups: (i) ER+/HER2−/
LN− untreated, (ii) ER+/HER2−/LN− with endocrine therapy only, (iii) ER+/HER2−/LN+ with endocrine 
therapy only, (iv) ER+/HER2−/LN− with adjuvant chemotherapy (ACT) and endocrine therapy, and (v) ER+/
HER2−/LN+ with adjuvant chemotherapy (ACT) and endocrine therapy.
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Figure 4.  Outcome analyses for clinical assessment groups and gene signatures in ER+/HER2− disease. (A) 
Kaplan-Meier plot of OS for the nine clinical assessment groups using all available samples. Percentages in 
parentheses represent proportion of entire cohort. (B) Table of events per clinical assessment group, outlining 
the number of cases with events, and a note on whether a group is kept for subsequent outcome analysis. (C) 
Forest plot of hazard ratios (HR) with 95% confidence interval for each signature class from multivariable Cox 
regression analysis using tumor size, patient age, lymph node status (where applicable), and tumor grade as 
covariates in the 1113 ER+/HER2−/LN− tumors with endocrine treatment only. Signature classes smaller than 
8% of the total population are excluded from multivariable analysis. If not otherwise stated, the reference group 
is the low-risk group for a signature. Significant classes marked (sig). Bottom: selected Kaplan-Meier plots for 
the ROR-S and HDPP signatures in these cases. (D) Similar forest plot as in C but for the 423 ER+/HER2−/
LN+ tumors with endocrine treatment only. Significant classes marked (sig). Bottom: selected Kaplan-Meier 
plots for the ROR-Tot and Oncotype DX signatures in these cases. * indicates significance level of a likelihood 
ratio test. ACT: adjuvant chemotherapy. Endo: endocrine treatment. mAB: anti-HER2 blockade. P-values in 
Kaplan-Meier plots were calculated using the log-rank test.
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comparably challenging multivariable analysis (correcting for tumor size, age, and grade) was limited to only a 
few signatures in the two HER2-negative luminal clinical assessment groups, including SDPP, HDPP and ROR-S 
in ER+/HER2−/LN− endocrine treated tumors, and Oncotype DX in ER+/HER2−/LN+ endocrine treated 
tumors (Fig. 4C,D). Importantly, while not reaching statistical significance, many signatures were borderline 
non-significant in the analyses, likely due to the limited follow-up time (see Supplementary Fig. S2 for all multi-
variable analyses).

Based on neoadjuvant studies it has been suggested that for HER2+ disease the PAM50 HER2-enriched 
molecular subtype could be associated with a higher complete response rate (a surrogate end-point for long term 
outcome) to HER2-blockade25,26. While not possible to fully evaluate this in multivariable analysis, we performed 
Kaplan-Meier analysis of the PAM50 subtypes versus OS for subtypes defined by either the AIMS-PAM50 sin-
gle sample predictor, or through a more conventional centroid-based approach in HER2+ disease stratified by 
ER-status. We did not observe any support for tumors of the HER2-enriched subtype having a better OS after 
HER2-blockade + additional adjuvant treatments in our population-based series in neither HER2+/ER− nor 
HER2+/ER+ disease (Fig. 5B-C).

Consensus of risk prediction signatures.  Class proportions for the tested gene signatures (Fig. 3) 
demonstrate that, within clinical assessment groups, many gene signatures produce overall similar proportions of 
classification (e.g. risk predictions in HER2-negative luminal subgroups, Fig. 3C). Also, whereas risk prediction 
signature classification is in general well aligned with clinical assessment groups, the class proportions reveal that 
contrasting classification do exist. For example, the low-risk clinical assessment group of untreated ER+/HER2− 
disease does not exclusively display low-risk signature classes.

However, the class proportion results within assessment groups do not resolve specific signature classification 
concordance for individual tumors. To more thoroughly study consensus we focused on the risk prediction (RP) 
signatures, as these provide a straightforward comparison of low-, medium/intermediate- and high-risk class, and 
cross-comparisons of different subtyping schemes have been reported previously12,23,27,28. For the RP signatures 
(ROR variants, Oncotype DX, Gene70, GGI, Endopredict, Genius, Gene76 and SDPP) we first summarized the 
pairwise percentage of exact agreement between signature predictions using available classes (low-, medium/
intermediate-, and high-risk, Fig. 6A), or using only low- and high-risk classes (thus excluding all samples with 
an medium/intermediate risk class, Fig. 6B) across all clinical assessment groups. This analysis revealed that for 
all pairwise agreements using all available classes, between 50–60% of samples on average in ER+ assessment 
groups had exact prediction agreement (Fig. 6A). For ER-negative assessment groups the average was higher. 
When using only low- and high-risk samples the average was consistently higher in all groups (between 80–95%, 
Fig. 6B). To illustrate these findings we created detailed agreement maps for each assessment group using all 
available cases (example in Fig. 6C, all groups in Supplementary Fig. S3) or using low- and high-risk, and also 
detailed agreement plots of individual signature pairs (Fig. 6D). Figure 6C shows that in ER+/HER2−/LN− 
endocrine treated disease the different ROR variants showed high exact agreement, extending to the majority of 
clinical assessment groups (Supplementary Fig. S3). We also observed higher exact agreement between the ROR 
variants, Gene76, GGI, and Genius signatures, while the Endopredict signature showed low agreement with most 
other signatures (Fig. 6C, Supplementary Fig. S3). When analyzing exact agreement for only low- and high-risk 
cases in the ER+/HER2−/LN− endocrine assessment group we noted generally high (>60%) to very high agree-
ment (>80%), except for Endopredict (Fig. 6D). The detailed agreement charts for ROR-Tot, Oncotype DX, and 
Gene70 in Fig. 6E illustrates that discrepant classification is mainly of low- versus medium/intermediate-risk, and 
high- versus medium/intermediate-risk (gray zones, Fig. 6E) substantiating our general observations in Fig. 6A,B. 
In the HER2+/ER− and TNBC assessment groups we observed high exact agreement between the majority of 
signatures, except for Genius and Gene76 (Fig. 6F and Supplementary Fig. S3). This high agreement is mainly due 
to the fact that most signatures predict these tumors as high-risk (see Fig. 2A,B). For the HER2+/ER+ assessment 
group generally lower exact agreement was observed, more in line with the ER+/HER2− groups (Fig. 6G).

Gene signatures, consensus and association with transcriptional programs.  To further assess 
gene signature agreement as well as the clinical assessment groups with respect to molecular function activity, 
we used a binary-like gene set activity approach, AIPS [19]. We determined activation status from RNAseq data 
using AIPS models available for gene ontology terms for molecular processes and clustered tumors based on 
these (Fig. 7 and Supplementary Fig. S4). For ER+/HER2−/LN− and ER+/HER2−/LN+ disease, overall con-
sensus between different risk predictors matches the activation status of gene sets related to proliferation, with the 
high-risk class coinciding with activation (Fig. 7A, and Supplementary Fig. S4A,B). The results also demonstrate 
the nature of low-, medium/intermediate-, high-risk classifications for the risk predictors that are clearly asso-
ciated with gene expression related to proliferation, which in turn, is not strictly dichotomized in two or more 
separate groups. Heterogeneity within the clinical groups of ER+ disease is also clearly visualized by groups of 
tumors with essentially the same molecular phenotypes, for instance related to active cell proliferation, found in 
both the LN− and LN+ subsets and with mixed administered treatment (see Fig. 7A treatment group annotation 
and Supplementary Fig. S4A,B, respectively). For the molecular subtype signatures in these two clinical groups, 
it is also evident that high-risk subtypes like luminal B follow the same pattern and coincide with high-risk class 
predictions and the molecular phenotype of active proliferation.

For TNBC, consensus among risk predictors appears highest for the tumors with activated cell proliferation 
(Fig. 7B and Supplementary Fig. S4C). This is not surprising considering that cell proliferation is known to be a 
key prognostic component of most of the initial gene signatures reported in breast cancer, and that cell prolifer-
ation is typically high in TNBC. More heterogeneity in the class consensus of both risk predictors and molecular 
subtype signatures is evident in TNBC tumors without activated cell proliferation. For HER2+ disease the same 
molecular phenotypes are discernible but there is heterogeneity of risk predictor and molecular subtype classes 
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Figure 5.  Outcome analyses in TNBC and HER2+ disease. Signature classes <8% are excluded from 
multivariable analysis. If not stated, the reference group is the low-risk group for a signature. (A) Forest plot 
displaying hazard ratios (HR) with 95% confidence interval for respective signature class from multivariable 
Cox regression analysis using tumor size, patient age, lymph node status, and tumor grade as covariates in the 
239 TNBC tumors with adjuvant chemotherapy. Significant classes marked (sig). For several signatures only 
one class existed, thus no values were calculated. Right: selected Kaplan-Meier plots for the TNBCtype and 
Genius signatures in these cases. (B) Kaplan-Meier plots of PAM50 subtypes defined through the single sample 
predictor AIMS or a centroid-based approach in HER2+/ER− disease treated with combined HER2-blocade 
and adjuvant chemotherapy. (C) Kaplan-Meier plots of PAM50 subtypes defined through the single sample 
predictor AIMS or a centroid-based approach in HER2+/ER+ disease treated with combined HER2-blocade, 
endocrine therapy, and adjuvant chemotherapy. ACT: adjuvant chemotherapy. Endo: endocrine treatment. 
P-values in Kaplan-Meier plots were calculated using the log-rank test.
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Figure 6.  Signature class consensus for risk prediction signatures. (A) Distribution of exact agreements 
between risk prediction signature pairs summarized by clinical assessment group. Analyzed risk prediction 
signatures include ROR variants, Oncotype DX, Gene70, GGI, Endopredict, Genius, Gene76 and SDPP. For 
each compared signature pair the exact classification agreement using all available classes (low-, medium/
intermediate-, and high-risk) was calculated. Next, all agreement values from all signature combinations were 
summarized into a box plot for each assessment group. (B) Same analysis as in A, but now only for comparisons 
after omitting medium/intermediate-risk classified samples. I.e., all patients with a medium/intermediate-risk 
prediction in a signature pair comparison were omitted before calculating the exact agreement. (C) Percentage 
of exact risk class agreement for risk prediction signature pairs in ER+/HER2−/LN− endocrine treated 
samples using all available signature classes in the individual comparisons. The heatmap corresponds to all 
values included in the corresponding assessment group box plot in A. (D) Similar display as in C, both now 
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and less clear association (Supplementary Fig. S4D,E). However, regarding at TNBC and HER2+ breast cancer it 
should be noted that the majority of initial risk predictor signatures assessed herein were developed and targeted 
for use in ER+/HER− breast cancer only.

Discussion
In the current study we have analyzed classification proportions and prognostic impact of 19 gene signatures in 
contemporary population-based early breast cancer stratified into clinical assessment groups by clinicopatholog-
ical variables and adjuvant treatment. Studies of the prognostic value of different gene signatures in breast cancer 
have been reported since more than a decade (see e.g.13,29–35). Prior studies have mainly reported on either smaller 
patient cohorts or from larger meta-analyses involving the merger of heterogeneous publicly available datasets. 
Agreement in classification has been suggested to be moderate even for commercial tests31,32,36. In this context, the 
novelty and impact of this study lies in the RNAseq analysis of ~3500 consecutive breast cancer patients collected 
over a period of five years (2010–2015) in a defined geographic region and healthcare region (south Sweden) 
following contemporary treatment guidelines. Based on a rigorous population-based approach with consistently 
high inclusion rates due to a seamless integration of patient enrollment and tissue sampling with routine clinical 
practice in the participating SCAN-B regional hospitals, the current study cohort is clearly representative of the 
general patient demographics in the region (Figs 1 and 2). Importantly, this unique setting provides a context and 
support for that overall themes in the results can be extended and generalized to a national or North European 
breast cancer population.

The primary aim of this study was to investigate the association of 19 different gene signatures with OS in 
actual clinical assessment groups in population-based breast cancer. We did not aim to identify (select) a winning 
signature and this study is not designed to do so for a number of reasons, including that treatment in the SCAN-B 
cohort is not based on randomization. Firstly, for many gene signatures analyzed in this or other studies there 
are no RNAseq specific classifiers available with appropriately optimized risk stratification cut-offs. We therefore 
chose to use a straightforward approach to gene signature implementation, based on classification strategies sim-
ilar to previous studies and occasionally representing mimicked signatures (see e.g.13,29,33,37). We acknowledge 
that more adapted classifier implementations could alter classifications for individual samples. However, the latter 
was not the focus of this study, and even so, we argue that our results still remain valid due to the comprehen-
sive population-based context, and moreover that an adaptive implementation approach is fraught with its own 
complications. It is also important to acknowledge that derived classifications are relative to a population, and 
not to individual patients. Secondly, the current study is limited to the use of overall survival as this was the only 
clinical endpoint with complete coverage through the Swedish national quality registry for breast cancer at pres-
ent. Finally, due to the contemporary nature of the SCAN-B initiative, follow-up time for included patients is still 
relatively short for large subgroups considering the use of modern standard of care therapy, especially for ER+ 
disease that is characterized by late recurrences.

Despite the above limitations we find that most investigated gene signatures already provide additional prog-
nostic information beyond conventional clinicopathological factors in specific clinical assessment groups, mainly 
the ER+/HER2− ones (Figs 4, 5 and Supplementary Figs S1–S2). Variants of the risk of recurrence score, ROR, 
appear to do generally well, in line with recent head to head studies of corresponding commercial signatures36. 
However, we note little difference in classifications and prognostic performance between the simpler and earliest 
variant, ROR-S38, and the most recent ROR-Tot that incorporates tumor size, proliferation as well as optimized 
risk cut-offs dependent on lymph-node status8. It should also be emphasized that the multivariable models used 
in this study are challenging for any gene signature considering stratification in assessment groups and the covar-
iates used, including tumor grade and tumor size. Tumor grade has repeatedly been tightly linked to tumor cell 
proliferation39,40 that in turn represents a key prognostic component in most early predictive and prognostic 
breast cancer gene signatures, including the molecular subtypes13,41. Thus, despite not reaching formal statistical 
significance, we expect that the majority of tested signatures will, at least in ER+/HER2− disease treated with 
adjuvant endocrine therapy, demonstrate independent prognostic value when longer follow-up is available. For 
clinical assessment groups other than ER+/HER2− disease, less apparent prognostic value was observed for the 

for low-risk and high-risk classified samples only in ER+/HER2−/LN− endocrine treated patients. In this 
analysis, all patients with a medium/intermediate-risk prediction in a signature pair comparison were omitted 
before calculating the exact agreement. (E) Specific agreement charts for Oncotype DX versus ROR-Tot (left), 
Gene70 versus Oncotype DX (center), and Gene76 versus ROR-Tot (right) in ER+/HER2−/LN− endocrine 
treated samples similar as described32. Briefly, rectangles are drawn for each level of the test outcomes, i.e., 
low-, medium/intermediate-, and high-risk, based on the row and column cumulative totals. The boundaries 
of the rectangles along both axes represent the number of tumors categorized as that outcome group for each 
test. Black squares within the rectangles represent exact agreement between the levels of the two tests and are 
of size based on the cell frequencies and located according to the cumulative totals of the previous levels. Gray 
rectangles represent partial agreement, where the scores from one test are within one level of those from the 
other test, i.e., a low-risk prediction in one test but medium/intermediate-risk in the other test. White areas 
within the rectangle reflect disagreement by more than one level, i.e., low-risk in one test and high-risk in the 
other test. (F) Percentage of exact risk class agreement for risk prediction signature pairs in the HER2+ER− 
assessment group using all available signature classes in the individual comparisons. (G) Percentage of exact 
risk class agreement for risk prediction signature pairs in the HER2+ER+ assessment group using all available 
signature classes in the individual comparisons. ACT: adjuvant chemotherapy. Endo: endocrine treatment.

https://doi.org/10.1038/s41598-019-48570-x


13Scientific Reports |         (2019) 9:12184  | https://doi.org/10.1038/s41598-019-48570-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

tested signatures. In part, this may be explained by the fact that the majority of signatures were not developed to 
specifically target these subgroups. As shown multiple times, these subgroups appear to have other transcriptional 
programs associated with prognosis than those important in ER+/HER2− disease (e.g.13,41). For instance, within 
the HER2+ assessment groups we did not observe any signs of molecular subtype being associated with better 
overall survival, in contrast to results suggesting better response in neoadjuvant studies25,26. Taken together, our 
results demonstrate in a population-based breast cancer context, despite certain limitations, that gene expression 

Figure 7.  Signature classification consensus and transcriptional programs in clinical assessment groups. 
AIPS was used to derive activation status of gene signatures related to gene ontology terms. (A) Signature 
classifications and AIPS heatmap for 1563 ER+/HER2−/LN− tumors. (B) Signature classifications and AIPS 
heatmap for 321 TNBC tumors.

https://doi.org/10.1038/s41598-019-48570-x


1 4Scientific Reports |         (2019) 9:12184  | https://doi.org/10.1038/s41598-019-48570-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

analysis has independent prognostic information of real clinical value. In a few years’ time, the contemporary 
SCAN-B cohort will be able to provide more definite answers on gene signature value based on longer follow-up 
time and the addition of metastasis-free survival as endpoint.

The second aim of this study was to describe gene signature class proportions in breast cancer stratified into 
actual clinical assessment groups. Due to the population-based setting of our cohort, we argue that the results 
shown in Fig. 3 are representative of breast cancer in Sweden and likely northern Europe too, and they are not 
affected by the current limited follow-up time. Here, our results demonstrate that clinicians, using current clinical 
tools and practice, are generally well aligned with gene signature classifications in identifying patients with dif-
ferent prognosis. For example, the proportion of tumors classified as low-risk is markedly lower in ER+/HER2− 
breast cancer patients receiving adjuvant chemotherapy as compared to corresponding patients not administered 
any adjuvant systemic treatment (Fig. 3C). The class proportion and consensus analyses also illustrate that many 
of the analyzed signatures (e.g. most risk predictors, but also molecular subtyping signatures) provide little poten-
tial value to further stratify the clinical groups of TNBC and HER2+ disease. The patient outcome, proportional, 
and consensus analyses also illustrate the interchangeability of many gene signatures on a patient group level, 
meaning that it matters less which specific signature that is used, an observation that has been reported previously 
(e.g.13,29,32). However, on an individual patient level the picture appears more complicated with exact agreement 
between risk prediction signatures ranging between 50–60% on average in ER+ assessment groups when using all 
prediction classes (low-, medium/intermediate-, high-risk), and with occasional pair-wise comparisons dropping 
below 30% (Fig. 6A). Bartlett et al. recently reported that only ~40% of cases were uniformly classified by four 
commercial gene signature tests in high-risk ER+/HER2− disease32. Our findings support these results for the 
corresponding ROR-Tot, Oncotype DX, and Gene70 comparisons in ER+/HER2− disease (Fig. 6). In contrast, 
other signature combinations show clearly higher agreement (e.g. Fig. 6E and Supplementary Fig. S3). Moreover, 
when omitting medium/intermediate-risk samples from the comparisons, a substantially higher exact predic-
tion agreement was observed in all assessment groups (Fig. 6B and Supplementary Fig. S3), suggesting that the 
prediction of medium/intermediate-risk cases represent the greatest source of variation between signatures (at 
least for 3-class RP signatures). Three conclusions from these observations are: i) dedicated gene signatures for 
non-ER+/HER2− clinical subgroups are needed, of which a few have indeed been reported (e.g.42,43 in this study) 
but none are in clinical use, ii) robust classifiers are needed, perhaps in the form of “true” single sample classifiers 
or mixed predictors (e.g. involving scores instead of current binary classes and with additional integration of 
clinicopathological variables), and iii) consensus signature voting may yield better confidence in classification 
results. To explore the latter assumption, we created voted risk predictions based on exact agreement between 
seven or eight specific RP signatures, showing that these voted predictions in ER+ disease defines a low-risk sub-
group 7–19% in size with >95% overall survival in the ER+/HER2− clinical assessment groups (Supplementary 
Fig. S5). Obviously, consensus risk voting favors global transcriptome analyses such as RNAseq over single signa-
ture tests through the possibility to derive any number of different signatures from the same sample data.

For the first conclusion, the AIPS analysis of activated gene signatures illustrates the heterogeneity within clin-
ical assessment groups (Fig. 7 and Supplementary Fig. S4). Even though the observed misalignment only covers 
part of the cases, it suggests that further refinement of clinical assessment groups and even molecular subtyping 
schemes (for instance PAM50) is feasible and can complement current practice to improve disease stratification. 
It is also clear that other transcriptional profiles, e.g. involving immune characterization, as well as mutational 
signatures may complement clinically relevant stratification of HER2+ and TNBC. An example of the latter is 
the development of specific whole genome sequencing (WGS) based tools for prediction of BRCA1 and BRCA2 
mutation status44,45. This represents an approach of defining novel patient subgroups based on genetic phenotypes 
that may be targetable in a similar way as in hereditary cancer.

Based on the availability of large population-based RNAseq cohorts like the SCAN-B initiative, current and 
new signatures may be developed with respect to a more general contemporary breast cancer population. We have 
demonstrated the possibility to enroll large cohorts of patients and generate RNAseq data in real-time for possible 
implementation and use at multidisciplinary tumor board conferences across a wide geography17. Combined with 
existing and new classifiers transferred into single sample proxies, this approach can represent a crucial bridge 
in bringing gene signatures closer to actual clinical use for early stage breast cancer in the increasingly complex 
clinical management of the disease.

Conclusions
Based on analysis of 19 gene signatures in ~3500 consecutive, contemporary breast cancer cases collected in a 
truly population-based context, our results support the usage of gene expression signatures in specific clinical 
treatment groups. Our study also stresses the need of further development to reach higher consensus in individ-
ual patient classifications and the targeting of the patient subsets where current gene signatures and prognostic 
variables provide little support in clinical decision-making.

Data Availability
Gene expression data is available through Gene Expression Omnibus19 (GEO) series GSE96058. A complete list 
of classifications for each sample and signature is available as Supplementary Table S1.
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