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Abstract

The lakes on the Qinghai-Tibet Plateau (QTP) are the largest and highest lake group in the world.

Gymnocypris selincuoensis is the only cyprinid fish living in lake Selincuo, the largest lake

on QTP. However, its genetic resource is still blank, limiting studies on molecular and genetic

analysis. In this study, the transcriptome of G. selincuoensis was first generated by using PacBio

Iso-Seq and Illumina RNA-seq. A full-length (FL) transcriptome with 75,435 transcripts was

obtained by Iso-Seq with N50 length of 3,870 bp. Among all transcripts, 75,016 were annotated

to public databases, 64,710 contain complete open reading frames and 2,811 were long non-

coding RNAs. Based on all- vs.-all BLAST, 2,069 alternative splicing events were detected, and

80% of them were validated by reverse transcription polymerase chain reaction (RT-PCR). Tissue

gene expression atlas showed that the number of detected expressed transcripts ranged from

37,397 in brain to 19,914 in muscle, with 10,488 transcripts detected in all seven tissues.

Comparative genomic analysis with other cyprinid fishes identified 77 orthologous genes with

potential positive selection (Ka/Ks > 0.3). A total of 56,696 perfect simple sequence repeats were

identified from FL transcripts. Our results provide valuable genetic resources for further studies

on adaptive evolution, gene expression and population genetics in G. selincuoensis and other

congeneric fishes.
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1. Introduction

The lakes on the Qinghai-Tibet Plateau (QTP) are the largest and
highest lake group in the world. The lake Selincuo (4,530 m asl) is
the largest lake among them. Gymnocypris selincuoensis is the only
cyprinid fish living in lake Selincuo, which adapts to the extreme
environment with cold climate, high-altitude and limited resources.
Two obvious characteristics of this cyprinid fish were late-maturing

and slow-growing. The males and females of G. selincuoensis reach
sexual maturity at the age of 8 and 9 which are much older than other
cyprinid fishes, such as Hypophthalmichthys molitrix, Cyprinus carpio
and Carassius auratus.1–5 With the climate warming trend on the QTP,
the reproductive phenology of G. selincuoensis has advanced 2.9 days
per decade on average.6 The average age of G. selincuoensis reaching
the weight of 500 g is age 14–16 which is also older than other
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cyprinid fishes.7,8 As a migration fish species, G. selincuoensis lives in
river before age 5, then inhabits in lake, and returns to river during the
reproductive season, indicating its adaptation to both saline and fresh
water environments.8 Hence, G. selincuoensis is a good model species
for studies on adaptive evolution, population genetics and climate
change. In our previous studies, much progress has been made in G.
selincuoensis, which mainly focused on studying the life history, bioge-
ography, and reproduction and growth under climate change.6–11

However, the genomic or gene resources are still blank in this species,
limiting the studies on molecular or genetic analysis.

The transcriptome represents all the genes expressed in one cell or a
population of cells. A reference transcriptome provides valuable
information for studying gene expression and evolution, discovering al-
ternative splicing (AS) events and long non-coding RNAs (lncRNAs),
and developing molecular markers.12–15 During the last decade,
transcriptomic analysis has vastly increased our understanding on the
molecular adaptation to various environments. Gene expression, evolu-
tionary selection and AS are believed to be associated with local adap-
tation in natural environments. For example, differentially expressed
genes associated with the immune function have been identified
between lake and river sticklebacks, supporting the hypothesis that
parasites contribute to adaptation of sticklebacks in lake and river hab-
itats.16,17 Six transcriptome sequences exhibiting signals of strong di-
versifying selection have been identified between two sympatric and
cologically divergent species, benthic Amphilophus astorquii and lim-
netic Amphilophus zaliosus.18 A high degree of AS events has been
detected among cichlid species with disparities in jaw morphology, in-
dicating AS may play an important role in cichlid adaptive radiation.19

The transcriptomes of many model and non-model organisms
have been generated by short-read sequencing on next-generation se-
quencing platforms.20 However, owing to the inherent length
limitations, short-read sequencing do not provide full-length (FL)
transcript sequences, limiting their utility for discovering alternative
spliced isoforms.21,22 Furthermore, short-read sequencing may gener-
ate low-quality transcripts, leading to incorrect annotations.23,24

Recently, long-read sequencing technology (e.g. PacBio) can help over-
come these limitations by providing sequence information of FL cDNA
molecules without the need for further assembly.25 This technique
has been successively used for transcriptome analysis in a few plant
and animal species, providing useful information for reliable transcrip-
tome assemble and annotation and identification of AS.21,22,26–30

Owing to the relatively high cost, long-read sequencing has not been
directly used to quantify gene expression for the moment.

In this study, we sequenced and analysed the transcriptome of G.
selincuoensis by using PacBio Iso-Seq and Illumina RNA-seq technol-
ogies. The aims of this study include: (i) generation and annotation
of an FL reference transcriptome for G. selincuoensis; (ii) detecting
alternatively spliced transcript isoforms; (iii) exploring gene expres-
sion patterns among various tissues; (iv) identifying potential
positively selected genes; and (v) development of gene-associated mi-
crosatellite markers. Our results would increase our understanding
of the complexity of the transcriptome of G. selincuoensis and
provide a valuable genetic resource for further studies on gene ex-
pression, adaptive evolution, population genetics, conservation and
phylogeny in such species and other Gymnocypris fishes.

2. Materials and methods

2.1 Sample collection and RNA preparation

Three wild females of G. selincuoensis were collected during the re-
productive season from the Zageng Tsangpo River (31�48.7700 N;

88�25.4200 E), a primary tributary of lake Selincuo on 8 May 2018.
After anaesthesia with MS222, seven tissues including brain, heart,
liver, kidney, gill, muscle and ovary were sampled immediately and
stored in liquid nitrogen until RNA extraction. All experimental ani-
mal programmes involved in this study were approved by the Animal
Care and Use Committee at the Institute of Hydrobiology, Chinese
Academy of Sciences.

For each tissue from each fish, total RNA was extracted using
EZNA HP Total RNA Kit (Omega Bio-tek, USA) following the man-
ufacturer’s instructions. RNA degradation and contamination were
verified by ethidium bromide staining of 28s and 18s ribosomal
RNA on a 1% agarose gel. RNA integrity was checked using an
Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA,
USA). The concentration of each RNA sample was determined using
Qubit RNA HS Assay Kit in Qubit 2.0 Fluorometer (Life
Technologies, Carlsbad, CA, USA). For PacBio Iso-Seq, 1 mg of each
RNA sample was pooled together for cDNA library construction.
For Illumina RNA-Seq, an equal amount of total RNA from three
fish was pooled for each tissue, indexed cDNA libraries were then
prepared for each tissue sample. The polyA containing mRNA was
extracted using oligo-dT attached magnetic beads.

2.2 PacBio Iso-Seq library preparation and sequencing

The Iso-Seq library was prepared according to the Pacific Biosciences
protocol. Briefly, 1 mg of polyA mRNA was reversely transcribed
into cDNA using the Clontech SMARTer PCR cDNA Synthesis Kit.
The optimal amplification cycle number was determined for generat-
ing dsDNA. After amplification, PCR product was purified using
AMPure PB beads (Pacific Biosciences, Menlo Park, CA, USA) and
was subjected to construction of SMRTbell library using SMRTBell
Template Prep Kit (Pacific Biosciences, Menlo Park, CA, USA). The
library was then sequenced on a Pacific Biosciences RSII sequencer
using P2.1–C2.1 chemistry with 20 h movies (Pacific Biosciences,
Menlo Park, CA, USA).

2.3 Illumina RNA-seq and de novo assembly

The Illumina library for each tissue sample was constructed using the
TruSeq RNA Sample Prep Kit (Illumina, San Diego, CA, USA) fol-
lowing the manufacturer’s instructions. Briefly, the polyA mRNA
was fragmented using divalent cations at elevated temperature. The
RNA fragments were reverse transcribed into first strand cDNA us-
ing reverse transcriptase and random primers, followed by second-
strand cDNA synthesis, end repair and ligation of the adapters. The
ligated fragments were purified and enriched through PCR to gener-
ate the final cDNA library. Finally, seven transcriptomic libraries
were sequenced on Illumina HiSeq X Ten platform to obtain 150 bp
pair-end reads. The raw paired-end reads were filtered using fastp
0.18.0 with the following parameters: -q 28 -u 20 -l 50 -3 -W 4 -M
30.31 The clean paired-end reads from each library were merged to-
gether and then de novo assembled by using Trinity 2.8.4 software
with the default parameters.32

2.4 PacBio Iso-Seq data processing and error correction

PacBio Iso-Seq data were processed using the SMRTlink 5.1 soft-
ware. Briefly, effective subreads were obtained from the raw reads
(parameters: –minLength = 200, –minReadScore = 0.65). Circular
consensus sequence (CCS) reads were generated from subread BAM
files using the parameters of max_drop_fraction 0.8, min_passes 2
and min_predicted_accuracy 0.8. By searching for the presence of
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poly(A) signal, 50 and 30 primers, full-length non-chimera (FLNC)
reads and non-full-length (NFL) were identified from CCS reads.
Consensus isoforms were produced by clustering FLNC reads using
the iterative clustering for error correction (ICE) algorithm, and pol-
ished by NFL reads using the Arrow algorithm. Additional nucleo-
tide errors in the polished consensus isoforms were corrected using
the Illumina RNA-seq short reads with the software LoRDEC
(parameters: -k 21, -s 3). Finally, the FL reference transcriptome was
obtained after a further clustering with CD-HIT-EST (c = 0.95).33

2.5 Functional annotation and CDS prediction

The FL transcripts were annotated based on the following databases
with the latest releases until 12 August 2018: NCBI non-redundant
protein sequences (Nr), non-redundant nucleotide sequences (Nt),
Cluster of Orthologous Groups of proteins (COG/KOG), Swissprot,
Pfam, Gene Ontology (GO) and KEGG Ortholog database (KEGG).
Four kinds of software were used for functional annotation with the
e-value of 1e�10, including BLAST34 for Nt, Diamond35 for Nr,
KOG, Swissprot and KEGG, Hmmscan36 for Pfam and Blast2GO37

for GO. The ANGLE pipeline was used to predict open reading
frames (ORFs) of each FL transcript.38

2.6 Prediction of lncRNAs

The lncRNAs were predicted by using four methods, including
PLEK,39 CNCI (Coding-Non-Coding Index),40 CPC (Coding
Potential Calculator)41 and Pfam protein structure domain analy-
sis,42 with default parameters. These methods can effectively distin-
guish protein-coding and non-coding transcripts. Transcripts were
removed that did not pass any of these analyses, the intersection of
the four results were then selected as lncRNAs.

2.7 Identification and validation of AS events

Owing to the absence of an annotated reference genome in G. selin-
cuoensis, the de novo detection of AS events was performed based on
the all- vs.-all BLAST according to the method described by Liu
et al.28 For example, in an exon skipping event, there should be two
High-scoring Segment Pair (HSP) in the alignment of two transcripts.
In the shorter transcript, the base pair coordinates representing the
end of HSP1 and the start of HSP2 should be sequentially continu-
ous, and in another transcript, the base pair coordinates between the
end of HSP1 and the start of HSP2 should be the skipped exon
(recorded here as ‘AS Gap’). Twenty AS events were randomly se-
lected to be validated by RT-PCR. For each transcript pair contain-
ing putative AS events, primer pairs were designed in the flanking
region of ‘AS Gap’. First-stand cDNA was synthesized using M-
MLV Reverse Transcriptase (TaKaRa, Japan) with oligo (dT) primer
following the manufacturer’s protocol. PCR products were checked
using 2.0% agarose gel stained with ethidium bromide.

2.8 Quantification and validation of gene expression

levels

The Illumina shorts reads of each RNA-seq library were aligned to
the FL reference transcriptome to obtain unique mapped reads by us-
ing bowtie2 software43 (parameters: –end-to-end –no-mixed –no-dis-
cordant –gbar 1000 -k 200). The expression level of each transcript
for each tissue was calculated and normalized into FPKM (fragments
per kilobase of transcript per million fragments mapped) values by
RSEM software.44 A cut-off value of 1 FPKM was used as the detec-
tion limit.45 The expression level of each transcript in each tissue was

classified into five categories including very low, low, moderate, high
and very high with the FPKM values of 1–3, 3–10, 10–50, 50–100
and >100, respectively. The tissue-specific transcripts are represented
by 50-fold higher FPKM level in one tissue compared with all other
tissues. Twenty transcripts including 16 tissue-specific transcripts
were randomly selected to assess the reliability of our quantification
analysis, by quantitative real-time PCR (qRT-PCR).

2.9 Identification of orthologs and evolution analysis

The transcriptome of G. selincuoensis was compared with other
three cyprinid fishes, including Danio rerio, Ctenopharyngodon idel-
lus and C. carpio which all have reference genomes and annotations.
The protein-coding sequences of D. rerio (GRCz11), C. idellus and
C. carpio were downloaded from the websites NCBI, http://www.
ncgr.ac.cn/grasscarp and http://www.carpbase.org, respectively. The
orthologous groups among the four species were identified by suing
OrthoFinder software (version 2.3.1)46 with default parameters.
Sequences of each one-to-one orthologous gene were aligned using
ParaAT 1.0.47 The non-synonymous substitution rates (Ka), synony-
mous substitution rates (Ks) and Ka/Ks ratio for each alignment
were calculated by KaKs_calculator 2.048 using the YN algorithm.

2.10 Detection of microsatellite markers

Microsatellite markers (also known as simple sequence repeats,
SSRs) were identified from the FL reference transcriptome using
MISA (http://pgrc.ipk-gatersleben.de/misa/misa.html), with parame-
ters as default. The minimum repeat time for core repeat motifs was
set as following: 10 for mononucleotide, 6 for dinucleotides and 5
for trinucleotides, tetranucleotides, pentanucleotides and hexanu-
cleotides. Based on the structural organization of the repeat motifs,
SSRs were classified into perfect and complicated (compound or
interrupted) SSRs.

3. Results

3.1 FL reference transcriptome

A total of 5,819,071 subreads were generated from PacBio Iso-Seq
with a mean length of 2,833 bp, which yielded 337,042 CCS reads.
CCS reads comprised 273,664 FLNC reads and 62,427 NFL reads.
After isoform-level clustering (ICE algorithm) and polishing (Arrow
algorithm), a total of 134,126 FL polished consensus isoforms were
generated from FLNC reads, with a total of 446.23 Mb nucleotide
bases. By error correction with Illumina RNA-seq clean data, all con-
sensus isoforms were retained with 3.08 Mb nucleotide bases col-
lected. Finally, the FL reference transcriptome containing 75,435 FL
transcripts were obtained after clustering with CD-HIT-EST, with a
total of 264.73 Mb nucleotide bases. The average length of all tran-
scripts was 3,509 bp, and the N50 value was 3,870 (Table 1).

3.2 De novo assembly from short reads

The Illumina RNA-seq generated 489.64 million raw reads for all tis-
sue samples. After trimming and filtering, a total of 443.48 million
clean reads were obtained for further analysis, with the number of
reads for each tissue sample ranging from 60.03 to 68.41 million.
Based on these clean reads, Trinity software de novo assembled
680,616 transcripts from 397,627 ‘genes’. After clustering by CD-
HIT-EST, a total of 532,241 transcripts were generated with a total
of 433.65 Mb nucleotide bases. The average length and N50 length
were 815 and 1,479 bp (Table 1).
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3.3 Comparison between FL and de novo transcripts

The average length and N50 length of FL transcripts were both
larger than that of de novo transcripts (Table 1). Most FL transcripts
had the length ranging from 1,500 to 5,000 bp, accounting for
85.03% of the total number (Fig. 1). However, 87.67% of de novo
transcripts had the length <1,500 bp. The results of comparison by
Blastn showed that 314,567 (59.10%) de novo transcripts exhibited
similarity to 94.5% of the FL transcripts, and 28.00% of them
were annotated in Nr database. Of the de novo transcripts with no
Blastn hit, 71.95% had the length <500 bp, and only 11.13% were
assigned to Nr database.

3.4 Functional annotation of FL transcripts

Through comparison with public databases, a total of 74,279
(98.47%), 69,693 (92.39%), 64,206 (85.11%), 50,019 (66.31%),
67,889 (90.0%), 47,614 (63.12%) and 47,614 (63.12%) FL tran-
scripts had significant hits against Nt, Nr, Swissprot, KOG, KEGG,

GO and Pfam databases, respectively (Fig. 2). Of all transcripts,
99.44% (75,016) were successfully annotated in at least one data-
base, and 50.38% (38,007) were annotated in all of the databases.
For Nt and Nr annotation, 99.23% and 93.80% of homologous hits
were assigned to five fish species, respectively, including
Sinocyclocheilus rhinocerous, Sinocyclocheilus angustiporus,
Sinocyclocheilus grahami, C. carpio and Danio rerio (Supplementary
Fig. S1). GO annotations generated 54 Level 2 GO terms
(Supplementary Fig. S2). Among them, the three most abundant
terms under the biological process category were ‘cellular process’
(20.44%), ‘metabolic process’ (17.57%) and ‘single-organism pro-
cess’ (13.84%). Within the cellular component category, ‘cell part’
(18.16%) and ‘cell’ (18.16%) were the most abundant terms. Of
the 11 terms in the molecular function category, ‘binding’ (52.60%)
and ‘catalytic activity’ (29.26%) had the highest number of tran-
scripts. For KEGG annotation, transcripts were mainly assigned to
more than 370 signalling pathways in 44 Level 2 KEGG groups
(Supplementary Fig. S3). Among these Level 2 pathways, the
signal transduction pathway had the largest number of transcripts
(19,108), followed by endocrine system (8,259), immune system
(8,171) and cancers: overview (6,825). The COG-annotated tran-
scripts were classed into 26 categories, with the most number of
transcripts in signal transduction mechanisms (10,735), followed by
general function prediction only (10,169), post-translational modifi-
cation, protein turnover, chaperones (5,511) and transcription
(3,693) (Supplementary Fig. S4). A total of 75,729 coding sequences
were predicted from 73,790 transcripts by ANGLE programme,
with the average length of 1,380.56 nucleotides (Supplementary Fig.
S5). Among them, 64,710 (87.69%) transcripts were recognized as
complete ORFs based on the presence of start and stop codons.

3.5 lncRNAs prediction

The numbers of lncRNAs predicted from FL transcripts by PLEK,
CNCI, CPC, and Pfam were 9,241, 15,519, 7,680 and 22,470,
respectively (Supplementary Table S1). The intersection of these four
results yielded 2,811 lncRNA transcripts (Fig. 3). The average length
of lncRNA transcripts was 2,586.4 bp. The length of lncRNA
transcripts was mainly ranged from 1,700 to 3,000 bp, accounting
for 58.9% of the total number.

Table 1. Summary for the transcriptome of G. selincuoensis using

PacBio Iso-Seq and Illumina RNA-seq

Parameters PacBio Iso-Seq Illumina RNA-seq

Sequencing data
Number of subreads or raw reads 5,819,071 489,641,866
Number of CCS or clean reads 273,664 443,484,534

Full-length or assembled transcriptome
Number of transcripts 75,435 532,241
Number of nucleotide bases (Mb) 264.73 433.65
GC content (%) 44.74 41.41
Mean length (bp) 3,509 815
Smallest length (bp) 201 183
Largest length (bp) 14,751 56,378
N50 length (bp) 3,870 1,479

Length range of transcripts (bp)
<500 107 325,013
500–1,000 371 108,697
1,000–2,000 7,035 50,754
2,000–3,000 24,434 20,884
>3,000 43,488 26,893
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Figure 1. The length distribution of transcripts obtained by Iso-Seq and RNA-seq.
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3.6 De novo detection and validation of AS events

A total of 2,069 pairs of FL transcripts that might represent AS events
were detected based on the all- vs.-all BLAST with high identity set-
tings (e-value of 1e�20, pairwise identity of 95%) (Supplementary
Table S2). The average length of ‘AS Gap’ in AS events was 586.3 bp.
Among the 20 AS events selected for RT-PCR (Supplementary Table
S3), 16 (80%) were validated by agarose gel electrophoresis which
generated obvious separated gel bands for each AS event (Fig. 4). The
gel banding pattern and the size of the fragments were consistent with
the AS isoforms generated from Iso-Seq. For the remaining four AS
events, RT-PCR products all generated a single gel band. The single
band represents the higher expressed isoform in AS3, AS5 and AS13,
and the lower expressed isoform in AS19. The detection of AS events
was also performed based on Illumina RNA-Seq data. A total of 3,797
pairs of de novo assembled transcripts that might represent AS events
were identified by using the same method used for FL transcripts.
Among them, 996 (26.23%) AS events were validated by results of FL
transcript analysis.

3.7 Tissue gene expression atlas

With a cut-off of 1 FPKM, the number of detected FL transcripts
ranged from 37,397 (49.58%) in brain to 19,914 (26.40%) in mus-
cle (Fig. 5A). A total of 10,488 transcripts were expressed in all

tissues (Fig. 5B). Of the detected transcripts, the largest fraction
showed very low expression (1–3 FPKM) followed by low expression
(3–100 FPKM) in each tissue, however, only 1.91% and 1.96% on
average showed high (50–100 FPKM) and very high (>100 FPKM)
expression, respectively. There were 55 and 80 transcripts that
showed very low and very high expression in all tissues, respectively.
The results of tissue-by-tissue comparison showed that ovary (1,628)
and brain (1,494) had the largest number of tissue-specific tran-
scripts, followed by liver (652) and gill (221), with the lowest num-
ber in kidney (127), heart (152) and muscle (134) (Fig. 5C). Based
on the global expression profiles (Supplementary Table S4), the high-
est correlation coefficient was observed between gill and kidney
(R2 = 0.655), followed by pairs of heart-muscle (R2 = 0.608), heart-
gill (R2 = 0.562) and heart- kidney (R2 = 0.554) (Fig. 5D). The
expressions of the selected 20 transcripts were all validated by qRT-
PCR (Supplementary Table S5, Fig. 6). The Spearman correlation
coefficient between FPKM values and relative expression levels
obtained by qRT-PCR was 0.95.

3.8 Identification of genes under positive selection

Orthofinder analysis revealed that the numbers of one-to-one orthol-
ogous genes between G. selincuoensis and D. rerio, C. idellus and
C. carpio were 4,862, 9,011 and 5,635, respectively. Among them,

Figure 2. The number of full-length transcripts annotated with Nt, Nr, Swissprot, KOG, KEGG, GO and Pfam databases.
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1,565 one-to-one orthologous genes (single copy genes) present in
the four species. The Ka/Ks peak between G. selincuoensis and C.
carpio was higher than that observed between G. selincuoensis and
other two fishes (Fig. 7A). Only two, one and four orthologous genes

with strong positive selection (Ka/Ks > 1.0) were detected between
G. selincuoensis and D. rerio, C. idellus and C. carpio, respectively,
and none of them present in all three pairs. A total of 77 orthologous
genes with Ka/Ks >0.3 were observed between G. selincuoensis and
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Figure 4. RT-PCR validation of 20 alternative splicing events identified by Iso-Seq.
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Figure 5. Analysis of gene expression in seven tissues of G. selincuoensis. (A) The number of transcripts with different expression abundances in various tissues
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other three species (Supplementary Table S6, Fig. 7B). Of them, 45
were assigned to GO terms, such as ‘binding’, ‘catalytic activity’,
‘metabolic process’ and ‘reproduction’ (Supplementary Fig. S6).

3.9 Detection of microsatellite markers

Using software MISA, a total of 56,696 perfect and 12,257 compli-
cated SSRs were identified from 40,609 FL transcripts. The perfect
SSRs include 31,960 mononucleotide SSRs, 17,566 dinucleotide
SSRs, 6,411 trinucleotide SSRs, 638 tetranucleotide SSRs, 94

pentanucleotide SSRs and 27 hexanucleotide SSRs (Fig. 8A). The
number of SSRs gradually decreased along with increasing repeat
times of the SSR motifs. Among the dinucleotide SSRs, the most
abundant motif was AC/GT (8,874, 50.52%), followed by AT
(5,167, 29.41%) and AG/TC (3,465, 19.73%) (Fig. 8B). For trinu-
cleotide, tetranucleotide, pentanucleotide and hexanucleotide SSRs,
the most abundant motifs were AAT/ATT (1,443, 22.51%), AGAT/
ATCT (131, 20.53%), ATTTG/AAACT (10, 10.64%) and
AGCATC (4, 14.81%), respectively.
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4. Discussion

Long-read sequencing technology can capture FL transcripts without
the need for further assembly, making it more popular in transcrip-
tome analysis.25 In this study, by using RNA-seq and PacBio Iso-Seq,
the transcriptome of G. selincuoensis were firstly reported and

compared. The average length and N50 length of the FL transcripts
(3,509 and 3,870 bp) were much longer than that of the de novo as-
sembled transcripts of the same fish species (815 and 1,479 bp) as
well as other fish species.49–52 The de novo assembled transcripts
had the larger number than the FL transcripts, however, the length
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were mainly <1,500 bp in the former and ranged from 1,500 to
5,000 bp in the latter. The percentage of FL transcripts containing
complete ORF region in G. selincuoensis (87.7%) was much higher
than that observed in other fishes with RNA-seq, such as
Oncorhynchus mykiss (57.1%),49 Oreochromis mossambicus
(13.6%),53 Leuciscus waleckii (18.0%)54 and C. carpio (26.2%).55

The public databases such as GO, KEGG, Swissprot and Pfam
have been widely used for functional annotation of transcriptome
sequences. Nt and Nr consist of non-redundant nucleotide and pro-
tein sequences deposited in GenBank and other DNA databases, rep-
resenting the largest nucleotide and protein databases. In this study,
98.47% and 92.39% of FL transcripts were annotated in Nt and Nr,
respectively, indicating that the transcripts contain few non-coding
sequences, such as lncRNAs and intergenic sequences. For other
databases used for blastx annotation, the highest percentage of tran-
scripts was annotated in KEGG, accounting for 90.0% of all tran-
scripts, followed by 85.11% in Swissprot and 66.31% in KOG. The
percentage of annotated transcripts may be related to the number of
deposited sequences in the databases. KEGG contains nearly 30.00
million KEGG genes and 22,639 KEGG Orthology,56 Swissprot con-
tains �0.56 million proteins,57 and KOG is composed of �0.11 mil-
lion proteins and 4,852 clusters of orthologs.58 The percentages of
annotated transcripts in this study were higher than those reported
by short-read RNA-Seq analysis, indicating the advantage of long-
read sequencing for obtaining real transcriptome transcripts.

PacBio long-read transcriptome sequencing is advantageous over
the short-read RNA-Seq in the identification of AS events.59,60

Recently, a pipeline based on all- vs.-all BLAST was proposed by Liu
et al.28 to identify AS events from long-read sequences without using a
reference sequence. In this study, by using the same pipeline, 2,069 AS
events were detected from 75,435 the FL transcripts, with a higher
proportion than that detected in Amborella trichopoda.28 Based on
RT-PCR, the percentage of confirmed AS events was 80% (16/20)
which was similar to that in A. trichopoda (82.9%). Interestingly,
among three of the four AS events validated unsuccessfully, the clear
band on the agarose gel all represents the higher expressed isoform,
and the missing band represents the lower expressed isoform with
FPKM values <1 in all tissues. The extremely low expression of one
isoform may lead to the failure of RT-PCR validation of AS events.
The amplified fragment of the isoform with very low expression is dif-
ficult to be detected by agarose gel electrophoresis.

In this study, the gene expression level of each tissue was quanti-
fied by mapping Illumina shorts reads to the PacBio FL transcripts.
The percentage of housekeeping transcripts (with a minimum of 1
FPKM value in each tissue) (13.9%) was lower than that detected in
O. mykiss (17.0%), and higher than O. kisutch.49,61 The difference
may be due to variations in sequencing technologies and number of
studied tissues. Using various sequencing technologies, a wide range
of percentages of housekeeping genes were reported in mouse and
human.45,62–64 Different numbers of expressed transcripts were
detected among various tissues with the largest number in brain fol-
lowed by kidney and gill, and the lowest number in liver and muscle,
which was similar to that observed in O. mykiss,49 O. kisutch,62

mouse63 and human.45 The distribution of the number of tissue-
specific transcripts among tissues was also similar to that observed
in O. mykiss, O. kisutch, with the largest number in ovary and
brain and the lowest number in muscle. Significant correlations in
expression were observed between any pairs of heart, gill and kidney,
owing to that they all belong to the blood and immune system. The
gene expression atlas in this study would provide basic information
for researches of genetics and genomics in G. selincuoensis.

Comparative genomic analysis has been widely used to study the
genetic bases of adaptation evolution.65 When the reference genome
sequence is not available, transcriptome sequence especially obtained
by long-read sequencing is a valuable and effective resource for
comparative genomic analyses in non-model organisms. In this
study, based on one-to-one orthologous genes, G. selincuoensis had
a closest evolutionary relationship with C. carpio when compared
to D. rerio and C. idellus. However, the mean and peak of Ka/Ks
values between G. selincuoensis and C. carpio were both higher
than that between G. selincuoensis and other two fishes, indicating
that accelerated evolution occurred in G. selincuoensis after split
from C. carpio. The accelerated evolution may be associated with
the uplift of the QTP. Among the orthologous genes with potential
positive selection in G. selincuoensis, Zp3 (zona pellucida sperm-
binding protein 3) and Nanog (homeobox transcription factor
Nanog) were associated with reproduction and may be involved in
adaption to the strong ultraviolet (UV) radiation on the QTP. In G.
selincuoensis, fertilization is external, and eggs and sperms are
exposed to the strong UV radiation after the shedding from the
mature gonads.

Each FL transcript contains 0.75 (56.696/75,435) perfect
SSR on average in G. selincuoensis. This SSR frequency was
higher than that detected by RNA-Seq in previous studied fishes,
such as C. carpio (0.36),66 Ctenopharyngodon idella (0.05),15

H. molitrix (0.16)67 and G. przewalskii (0.15).68 The difference
was mainly due to variation in sequencing technology, de no as-
sembled transcripts had a higher proportion of transcripts with
short length, leading to fewer detected rate of SSRs. The most
abundant motifs of mononucleotide, dinucleotide and trinucleo-
tide SSRs were A/T, AC/GT and AAT/ATT, respectively, which
has already been reported in other fish species.15,66,68 SSRs
obtained in this study were closely related to expressed functional
genes, and would be useful for future genetic and genomic analyses
in G. selincuoensis.

5. Conclusion

In summary, we present here the first transcriptome of G. selincuoen-
sis by using PacBio Iso-Seq and RNA-seq. The FL reference tran-
scriptome comprised 75,435 transcripts with the N50 value of
3,870. Among these FL transcripts, 99.44% were annotated to Nt,
Nr, Swissprot, KOG, KEGG, GO and Pfam databases. A number of
AS events were detected and validated from the FL transcripts. An at-
las of gene expression was obtained by mapping RNA-seq shorts
reads to the FL transcripts. Seventy-seven orthologous genes with po-
tential positive selection were identified by comparative genomic
analysis. Furthermore, a large number of gene-associated SSRs were
identified. Our results would provide an important and valuable
foundation for further studies on adaptive evolution, population
genetics, conservation and phylogeny in G. selincuoensis and other
congeneric fishes.
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