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Abstract

Background: The class Ill peroxidase (PRX) gene family is a plant-specific member of the PRX superfamily that is
closely related to various physiological processes, such as cell wall loosening, lignification, and abiotic and biotic
stress responses. However, its classification, evolutionary history and gene expression patterns are unclear in wheat
and Aegilops tauschii.

Results: Here, we identified 374, 159 and 169 PRXs in Triticum aestivum, Triticum urartu and Ae. tauschii, respectively.
Together with PRXs detected from eight other plants, they were classified into 18 subfamilies. Among subfamilies V
to XVIII, a conserved exon-intron structure within the “001” exon phases was detected in the PRX domain. Based on
the analysis, we proposed a phylogenetic model to infer the evolutionary history of the exon-intron structures of
PRX subfamilies. A comparative genomics analysis showed that subfamily VII could be the ancient subfamily that
originated from green algae (Chlamydomonas reinhardtii). Further integrated analysis of chromosome locations and
collinearity events of PRX genes suggested that both whole genome duplication (WGD) and tandem duplication
(TD) events contributed to the expansion of T. aestivum PRXs (TaePRXs) during wheat evolution. To validate
functions of these genes in the regulation of various physiological processes, the expression patterns of PRXs in
different tissues and under various stresses were studied using public microarray datasets. The results suggested
that there were distinct expression patterns among different tissues and PRXs could be involved in biotic and
abiotic responses in wheat. gRT-PCR was performed on samples exposed to drought, phytohormone treatments
and Fusarium graminearum infection to validate the microarray predictions. The predicted subcellular localizations
of some TaePRXs were consistent with the confocal microscopy results. We predicted that some TaePRXs had
hormone-responsive cis-elements in their promoter regions and validated these predicted cis-acting elements by
sequencing promoters.
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Conclusion: In this study, identification, classification, evolution, and expression patterns of PRXs in wheat and
relative plants were performed. Our results will provide information for further studies on the evolution and

molecular mechanisms of wheat PRXs.

Keywords: Wheat class lll peroxidase gene family, Conserved exon-intron structures, Collinearity events, Expression pattern

Background

Peroxidases (PRXs) are enzymes that catalyse the oxida-
tion of many substrates by reducing hydrogen peroxide
to water. They can be classified into two major groups:
heme PRXs and non-heme PRXs. Heme PRXs can be
further classified into two families: animal PRXs and
non-animal PRXs. The non-animal PRXs contain three
classes of PRXs, namely, class I, II and III PRXs [1].
Class I PRXs, such as microbial cytochrome ¢ PRX, bac-
terial catalase-PRX and ascorbate PRX, are intracellular
enzymes in plants, bacteria and yeast [2]. Class II PRXs
are secreted oxidoreductive enzymes originating from
fungi [3]. Class III PRXs are plant-specific secreted en-
zymes originating from plants [1].

Class III PRXs are involved in a broad range of physio-
logical processes, such as cellular growth and cell wall
loosening, lignification and suberisation, abiotic and bi-
otic stress responses, fruit growth and ripening, and
plant senescence [4]. By mediating the production of
ROS (reactive oxygen species), a member of the cotton
(Gossypium hirsutum) class III PRXs, GhPOX1, may play
an important role during fibre cell elongation [5]. Arabi-
dopsis thaliana class 111 PRX AtPRX17 is the direct tar-
get of the transcription factor AGL15 and regulates
lignified tissue formation [6]. A. thaliana class III PRX
AtPRX71 strengthens cell walls and restricts cell expan-
sion in response to cell wall damage and during normal
growth [7]. Four A. thaliana PRXs, AtPrx 4, 52, 49 and
72, were predicted to be involved in lignification [8].
Using a knock-out mutant of AtPrx4, AtPrx4 was proven
to be involved in cell wall lignification [9]. AtPrx52 was
also proven to be involved in the synthesis of interfasci-
cular fibres during the lignification process, and the sup-
pression of AtPrx52 affected fibre lignification in
Arabidopsis [10]. AtPrx72 is involved in lignin biosyn-
thesis [11]. In proanthocyanidin-deficient A. thaliana
seeds, class III PRXs are significantly activated relative to
wild-type seeds, resulting in lower levels of H,O, [12].
Overexpression of the class III PRXs AtPrx22, AtPrx39,
and AtPrx69 increased cold tolerance in BRI1-GFP
(green fluorescent protein) A. thaliana plants [13]. A pu-
tative Coffea arabica class III PRX was induced in re-
sponse to root-knot nematode infection [14]. Solanum
lycopersicum class III PRX LePrx17 was induced by JA
(jasmonic acid) and pathogen infection, and LePrx09 was
induced by ethephon, SA (salicylic acid), JA, pathogen

infection, wounding and H,O, stress [15]. Under arsenic
(As) stress conditions, overexpression of the rice (Oryza
sativa) class III PRX OsPRX38 in A. thaliana increased
PRX, SOD (superoxide dismutase) and GST (glutathi-
one-S-transferase) activity and enhanced lignification,
resulting in reduced As accumulation [16]. Overexpres-
sion of A. thaliana class III PRX AtPrx64 in tobacco in-
creased root growth and reduced the accumulation of
aluminium (Al) and ROS in the roots, thereby improving
tolerance to Al stress [17].

Only a few articles have reported the genome-wide
identification of plant class III PRXs. In 2002, Tognolli
et al. identified 73 class III PRXs in A. thaliana and ana-
lysed gene structures (intron/exon), gene duplication
events, and expression patterns in different tissues
(roots, stems, leaves and flowers) [18]. In 2004, Passardi
et al. identified 138 rice class III PRXs and classified
them into eight subfamilies (I-VIII) [19]. Despite the lack
of complete plant genomes, they also studied the origin
and expansion of class III PRXs by using EST (Expressed
Sequence Tag) sequences and found 11-14 putative
PRX sequences in Physcomitrella patens (moss) [19]. In
2014, Ren et al. identified 93 Populus trichocarpa class
III PRXs and investigated the PtPRX expression patterns
in five tissues (roots, shoots, leaves, buds, and phloem)
and under abiotic stresses (H,O,, SA, salt, and drought)
[20]. They found two large tandem-arrayed clusters of
PtPRXs and identified seven positively selected sites in
the four vacuole PtPRXs (PtPRX2, 3, 4, and 7). In 2015,
Wang et al. identified 119 maize (Zea mays) class III
PRXs and divided them into 18 groups [21]. They identi-
fied 16 related segmental duplication events and 12 tan-
dem duplication events, calculated the Ka (non-
synonymous substitution) /Ks (synonymous substitution)
values and found that most ZmPRXs underwent purify-
ing selection. Expression pattern analysis of ZmPRXs
was also performed using a public microarray dataset
and qRT-PCR (quantitative real-time PCR) under H,O,,
SA, NaCl and PEG (polyethylene glycol) stress treat-
ments. In 2016, Cao et al. identified 94 pear (Pyrus
bretschneideri) class III PRXs and performed analyses of
duplication events, conserved motifs, Ka/Ks values and
expression patterns by qRT-PCR [22].

Some articles studied the phylogeny of class III PRXs.
In 2006, a class III plant PRX database, PeroxiBase, was
published [23]. In 2015, a phylogenetic reconstruction of
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the non-animal PRX superfamily (class I-III PRXs, and
others) was performed to trace their molecular evolu-
tion, and two additional class I members were identified
[24]. In 2015, Ka/Ks values of 62 A. thaliana class 111
PRXs were calculated to examine their evolutionary di-
vergence, and the nucleotide and amino acid substitu-
tions of the duplicated genes AtPrx53-AtPrx54 and
AtPrx36-AtPrx72 (Ka/Ks > 2) were identified as positive
selection targets [25].

In this study, we performed genome-wide identifica-
tion, evolution analysis and expression pattern analysis
of class III PRXs in wheat and Aegilops tauschii. We
identified PRXs in Triticum aestivum, Triticum urartu,
Ae. tauschii, and eight other plant species and classified
them into 18 subfamilies. We found that PRX subfamily
VII first appeared in green algae (Chlamydomonas rein-
hardtii), and then VII and I appeared in moss (P.
patens). A conserved exon-intron structure within the
“001” exon phases in the PRX domain was shared in
subfamilies V-XVIII. An evolutionary model of PRX
exon-intron structures was proposed. Chromosome lo-
cations and collinearity events of PRXs were identified
in T. aestivum and related genomes to study the expan-
sion and evolution of wheat PRXs. The expression pat-
terns of tissues, abiotic stress responses and biotic stress
responses were analysed using public microarray data-
sets. To validate the microarray predictions, qRT-PCR
was performed on samples under drought conditions,
samples with four phytohormone treatments and sam-
ples with Fusarium graminearum (Fg) infection. The
confocal microscopy results validated the predicted sub-
cellular localizations of some TaePRXs. Sequencing pro-
moters of some TaePRXs validated the predicted
hormone-responsive cis-elements. Our work will help re-
searchers study the evolution and molecular mechanism
of wheat PRXs.

Results

Genome-wide identification and classification of class IlI
PRXs in wheat, Ae. tauschii and other plants

We searched the T. aestivum, T. urartu, and Ae. tauschii
proteomes by using HMMER 3.1 and Pfam 30.0 in batch
mode with the PRX domain (see Methods). The results
showed that 374, 159 and 169 typical class III PRXs were
identified in T. aestivum, T. urartu and Ae. tauschii, re-
spectively. We also identified PRXs in eight other plant
proteomes, including Brachypodium distachyon, Z.
mays, O. sativa, A. thaliana, Vitis vinifera, Selaginella
moellendorffii, P. patens and C. reinhardtii (Table 1,
Additional file 13: Table S1). Atypical PRXs of these
eleven plants, with less than 50% PRX domain align-
ment, were excluded in the following analysis (Add-
itional file 14: Table S2).
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Table 1 The numbers of class Ill peroxidase gene families in 11

plants

Species Number
Chlamydomonas reinhardtii 6
Physcomitrella patens 60
Selaginella moellendorffii 167
Vitis vinifera 85
Arabidopsis thaliana 81
Zea mays 156
Oryza sativa 125
Brachypodium distachyon 149
Aegilops tauschii 169
Triticum urartu 159
Triticum aestivum 374

The classification of PRXs was based on two methods.
First, the classification of PRXs in eleven plants was per-
formed against the HMM (The hidden Markov model)
based on the maize PRX alignments of Wang [21] (Add-
itional file 13: Table S1). The results showed that PRXs
were classified into I-XVIII subfamilies in T. aestivum,
T. urartu and Ae. tauschii. Second, to verify the HMM
classification, we constructed a neighbour-joining (NJ)
phylogenetic tree of PRXs based on T. aestivum, T.
urartu and Ae. tauschii truncated PRX domain se-
quences with the p-distance model and 1000 bootstraps
(Fig. 1, Additional file 1: Figure Sla). A large NJ tree of
PRXs was also constructed based on the truncated PRX do-
main sequences of these eleven plants (Additional file 1:
Figure S1b). Interestingly, almost all PRXs belonging to the
same clade indicated the same subfamily classification as
that identified by HMMER. Large numbers of members
were found in subfamilies I, V, VI and VII (Fig. 1). Some
species-specific PRX clusters were found in V. vinifera, S.
moellendorffii and P. patens. According to HMM and NJ
classification, all six C. reinhardtii PRXs belong to subfam-
ily VII, suggesting that PRX subfamily VII might be the an-
cient subfamily.

Class Ill PRX evolution and conserved exon- intron
structures

We summarized the evolutionary process of plant class
III PRXs by investigating the subfamily distributions in
T. aestivum, B. distachyon, S. moellendorffii, P. patens
and C. reinhardtii (Fig. 2a). The results indicated that
subfamily VII first appeared in green algae (C. reinhard-
tii). Then, subfamilies VII and I were found in primitive
plant moss (P. patens). The PRXs of fern (S. moellendorf-
fii) expanded into six subfamilies, namely, VII, I, V, VI,
IX and X. The PRXs of monocots (7. aestivum and B.
distachyon) expanded into thirteen subfamilies, namely,
VIL 1, V, VI, IX, X, XII, XIV-XVIII and IL
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Fig. 1 Classification and phylogenetic relationships of the class Ill peroxidases in wheat and Ae. tauschii. The Neighbour-Joining tree was
constructed by the amino acid sequences of the PRX domain using MEGA-CC 7.0 with the p-distance model. Major groups are labelled with
different colours. Detailed information is provided in Additional file 1: Figure S1a

I

To obtain further insights into PRX evolution, we dia-
grammed the exon-intron structures within the PRX do-
main in the eleven investigated plants (Additional file 2:
Figure S2). The results showed that some conserved
exon-intron structures were present in the same subfam-
ilies of PRXs across the investigated plants, especially in
the PRX domain. We summarized these conserved
exon-intron structures in 7. aestivum, B. distachyon, S.
moellendorffii, and P. patens (Additional file 3: Figure
S3). For instance, the PRX subfamily I sequences of T.
aestivum  (Traes_1BS_8A9C9C25B.1), B. distachyon
(BRADI2G37000.1), S. moellendorffii (EFJ22715), and P.
patens (PP1S46_76V6.1) shared the same conserved
exon-intron structure within the “01” exon phases in the
PRX domain. Based on the above analysis, we noticed

that most subfamilies V-XVIII shared the same con-
served exon-intron structure within the “001” exon
phases in the PRX domain (Fig. 2b, Additional file 3: Fig-
ure S3). These “001” exon phases could also be found in
subfamily I but not in VII. Subfamily VII contained three
types of conserved exon-intron structures, which were
within the “1012-212", “2100-1020" and “0101-0000"
exon phases in the PRX domain (Additional file 3: Figure
S3).

Chromosome locations and duplication events of T.
aestivum class Ill PRXs

We mapped T. aestivum class III PRXs to chromosome
positions (Additional file 4: Figure S4, Additional file 15:
Table S3). Two hundred and sixty-nine of 374 T.



Yan et al. BMC Genomics (2019) 20:666 Page 5 of 19
P
A
C. reinhardtii VIl
P. patens VIl 1
S. moellendorffii viI I VI X
B. distachyon Vil I VI IX X XII XIV XV XVI XVI XVII I
T. aestivum VII 1 v VI IX X XII  XIV XV XVl XVII Xvll 1I
B
viI
Ppa_PP1S277_34V6.1 t t L . L
Smo_EFJ37801 ! ! !
Bdi_BRADI3G40330.1 ! L ! !
Traes_7DS_FB4FA7C37.1 - P (' L e I

I
Ppa_PP1S306_26V6.1
Smo_EFJ16895
Bdi_BRADI5G14650.1
Traes_2AL_D9106B0A2.1

V-XVIII
Smo_EFJ33365
Bdi_BRADI3G33780.1
Traes_2BL_E83F2E30C.1

untranslated regions (UTRs); white boxes: other exon regions; lines: introns;
are scaled based on the lengths of the genes. The long introns are shorten

Fig. 2 Conserved exon-intron structures of PRXs. a The evolutionary history of the PRX subfamilies. b The diagram indicates that conserved exon-
intron structures with conserved exon phases were present in the PRX domain. Filled boxes: red represents the PRX domain; black boxes:

numbers 0, 1, and 2: exon phases. The lengths of the boxes and lines
ed by "//"

aestivum PRXs could be mapped on the chromosomes;
the others were in scaffolds. These 269 T. aestivum PRXs
were unevenly distributed among 21 chromosomes.
Chromosomes 1A, 1B, 1D, 2A, 2B, 2D and 7D contained
more PRXs than other T. aestivum chromosomes.

The allohexaploid bread wheat (7. aestivum) genome
consists of three subgenomes (A, B, and D), which are
involved in three rounds of polyploidization [26]. To de-
tect the relationship between PRX expansion and 7. aes-
tivum polyploidization, we identified 46 collinearity
events by using MCscanX (Additional file 16: Table S4).
The chromosome locations of related PRXs were distrib-
uted among chromosomes 1A, 1B, 1D, 2A, 2B, 2D, 4A,
4B, 4D, 5B, 5D, 6A, 6B, 6D and 7A (Fig. 3a). Our previ-
ous research demonstrated a peak Ks value of 0.03-0.45
for collinearity events of 7. aestivum PKs (protein kin-
ase) [27]. In this study, we also found that most Ks
values of T. aestivum PRXs were less than 0.45, hinting
that these T. aestivurn PRX collinearity events could be
attributed to T. aestivum polyploidization. Furthermore,
we detected the PRX collinearity events among all syn-
teny blocks in the T. aestivum genome (Fig. 3b).

To further infer the phylogenetic mechanism of the T.
aestivum class III PRX gene family, comparative syntenic

maps of T. aestivum associated with two Graminaceae
(B. distachyon and O. sativa) were constructed (Fig. 3c-f,
Additional file 16: Table S4). The results showed that 73
syntenic PRX gene pairs were detected between T. aesti-
vum and B. distachyon (Fig. 3c). Similarly, 63 syntenic
PRX gene pairs were detected between 7. aestivum and
O. sativa (Fig. 3e). We noticed that some syntenic PRX
gene pairs shared the same T. aestivum PRX member as-
sociated with B. distachyon and O. sativa, suggesting
that they might originate from a common ancestor be-
fore the Graminaceae split. For instance, the Bdi-Tae
gene pair (BRADI1G20010.1 and  Traes_2AS_
5DF52D5D1.1) and Osa-Tae gene pair (Traes_2AS_
5DF52D5D1.1 and OS07T0638600—-00) shared the same
T. aestivum PRX member (Traes 2AS 5DF52D5D1.1).
We also calculated the Ka/Ks values of syntenic PRX
gene pairs between the 7. aestivum A subgenome and T.
urarty (86 gene pairs) and the T. aestivum D subgenome
and Ae. tauschii (104) (Additional file 17: Table S5).

We identified 56 tandem 7. aestivumn PRX genes on
10 chromosomes, including 1B, 1D, 2A, 2B, 3B, 4A, 4D,
6A, 6D and 7D (Fig. 4, Additional file 18: Table S6). The
genes formed 18 clusters on these 10 chromosomes. The
number of members in each cluster ranged from 2 to 5,
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Fig. 3 Synteny analysis of PRX genes. This graph displays syntenic maps of T. aestivum associated with two Graminaceae (B. distachyon and O.
sativa). Red curves represent syntenic gene pairs between the PRXs, and grey curves represent other genes. a Synteny of PRXs in T. gestivum. b
Synteny of PRXs and other genes in T. gestivum. ¢ Synteny of PRXs in T. aestivum and B. distachyon. d Synteny of PRXs and other genes in T.
aestivum and B. distachyon. e Synteny of PRXs in T. aestivum and O. sativa. f Synteny of PRXs and other genes in T. aestivum and O. sativa

o ®

o .
* T. aestivum w - »

T. aestivum

whereas the largest cluster was subfamily XVI, located
on chromosome 7D.

Expression patterns of T. aestivum class Il PRXs in
different tissues

We performed a microarray-based expression pattern ana-
lysis of T. aestivum class III PRXs using 11 public datasets
from the Affymetrix microarray GPL3802 platform. The re-
sults showed that 170 of 374 T. aestivum PRXs have probes
in GPL3802. Based on the quality control of the NUSE
(Normalized unscaled standard errors) and RLE (Relative
log expression) diagrams (Additional file 5: Figure S5), we
excluded 4 CEL files in the following analysis (Add-
itional file 19: Table S7). The expression patterns of the 170
T. aestivum PRXs were investigated in different tissues, in-
cluding three tissues (coleoptile, root and embryo) in the
germinating seed stage, three tissues (root, crown and leaf)
in the seedling stage, immature inflorescence tissue, three
tissues (floral bracts, pistil and anthers) before anthesis, cary-
opsis tissue at 3—5 DAP (day after planting), embryonic tis-
sue at 22 DAP, and endosperm tissue at 22 DAP
(Additional file 6: Figure S6, Additional file 20: Table S8).

The results showed that some 7. aestivum PRXs, such as
Traes_2BL_2B45081D4.1 (VI), Traes_2AL_2224DCCI1A.1
(VI) and Traes_4DL_8CE055F15.1 (VII), showed high ex-
pression levels in all investigated tissues. Similarly, some 7.
aestivum PRXs, such as Traes_4AL_OC8DFDE2B.1 (VI) and
Traes_2AS_AB001AAB7.1 (XVII), exhibited low expression
levels in all investigated tissues. We also noticed that some
T. aestivum PRXs exhibited different expression levels in dif-
ferent tissues. For example, Traes_7DL_651CAFC08.1 (XVI)
exhibited high expression level in the root of the seedling
stage but relatively low expression levels in the other 11 tis-
sues. Approximately 13 7. aestivum PRXs, such as Traes_
7DL_6233C6F03.1 (I) and Traes 1AL 91E56EC8C.1 (V),
exhibited high expression levels in two tissues, the root in
the germinating seed stage and the root in the seedling
stage, suggesting that they might participate in the develop-
ment of the 7. aestivum root.

Subcellular localization of T. aestivum class Ill PRXs

We selected four 7. aestivum class III PRXs from different
subfamilies to investigate their subcellular localization.
The prediction websites WoLF PSORT and TargetP were
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TaedD Tae5A Tae5B Tae5D
34.2—{— Traes_4DS_0B0567898.2_XVII
46.6 ——— Traes_4DS_90B3ABBFO.1_XVII

Table 2 Predicted and experimental subcellular localization of TaePRXs

Gene ID Subfamily  Subcellular localization

(WoLF PSORT)

Subcellular localization (TargetP)

Subcellular localization
(confocal microscopy)

Traes_1AS_6C84785B3.2 |

Traes_2AL_520618712.1 VI
Traes_6DL_2A99B8CDC.1 VI
Traes_6AS_5BAD56BB6.1 XV

extr: 11, chlo: 1, mito: 1
extr: 10, vacu: 4
chlo: 13

chlo: 7, extr: 3, vacu: 2, nucl: 1

Sec

retory pathway

Secretory pathway

Chl

oroplast

Secretory pathway

cell membrane
vacuole
thylakoid, chloroplast, cell membrane

vacuole, cell membrane, nucleus, cytoplasm
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used to predict their subcellular localization (Table 2). To
test the predicted subcellular localization of TaePRXs, N-
terminal GFP-fused TaePRX proteins were expressed in
tobacco leaves (Fig. 5). Interestingly, most of the predicted
subcellular localizations were consistent with the confocal
microscopy results (Table 2). For instance, Traes_6DL_
2A99B8CDC.1 (VII) was predicted to be expressed in the
chloroplast by WoLF PSORT and TargetP. Indeed, Traes_
6DL_2A99B8CDC.1 (VII) was expressed in the chloroplast
according to confocal microscopy.

Expression patterns of T. aestivum class Il PRXs under
abiotic stress

The expression patterns of 170 T. aestivum class III
PRXs were determined under various abiotic stress treat-
ments (Additional file 7: Figure S7, Additional file 8:
Figure S8, Additional file 21: Table S9). To search for
the differentially expressed genes under abiotic stress, 7.
aestivum PRXs with |FC| > 1.5 (fold change) and p < 0.05
were selected (Additional file 22: Table S10). (1) Cold:
under cold treatment, most 7. aestivurm PRXs exhibited
the same expression trend in the two wheat genotypes
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(Freeze Resistance “SD16029” and Freeze Susceptible
“SD16169”). For instance, Traes 2AL_2224DCC1A.1
(VI) and Traes_2BL_2B45081D4.1 (VI) showed upregula-
tion in “SD16029” and “SD16169” under cold stress, hint-
ing that these T. aestivum PRXs might regulate the cold
stress response. Similarly, more PRXs, such as Traes_
1DS_3D2F70A22.1 (I) and Traes 1AS_6C84785B3.2 (I),
exhibited downregulation in “SD16029” and “SD16169”
under cold stress. (2) Heat: under heat stress, most 7. aes-
tivum PRXs exhibited slight upregulation or downregula-
tion. However, we also noticed that two PRXs, Traes_
4DL_A6041E3DC.1 (V) and Traes_2AS_2B95E681C.1
(VII), exhibited dramatic upregulation under heat stress.
(3) Drought: some PRXs exhibited slight upregulation or
downregulation in both wheat genotypes (drought-suscep-
tible “WL711” and drought-tolerant “C306”) under
drought stress. A few PRXs also showed reverse expres-
sion trends in “WL711” and “C306”. For example, under
drought stress, Traes_1DS_578ADDF80.1 (XII) exhibited
upregulation in “WL711” but downregulation in “C306”.
(4) Nutrient deficiency: under the five nutrient-deficient
stress treatments, most PRXs showed slight upregulation

field
N E

Bright
.2 ¥

35S: GFP

35S: GFP:
Traes_1AS 6C84785B3.2 |
(TaePRX DD

35S: GFP:
Traes_2AL_520618712.1
(TaePRX VD)

35S: GFP:
Traes_6DL_2A99BSCDC.1
(TaePRX VI

35S: GFP:
Traes_6AS_SBAD56BB6.1|
(TaePRX XVI) 2

Autofluorescence

Fig. 5 The subcellular localization of TaePRX proteins in tobacco leaves. Localization of GFP signals from TaePRX proteins fused with GFP. Bright
field, epifluorescence, chloroplast autofluorescence and merged images of tobacco leaves transfected with constructs expressing different fusion
proteins. Bars = 32 um
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or downregulation. However, we also noticed that a few
PRXs, such as Traes_2AS 3161D54F8.1 (XVII), Traes_
7DL_D99ED7064.1 (XII) and Traes_7AL_80967149B.1
(XII), exhibited dramatic downregulation with only the
no-phosphate fertilization treatment. Two PRXs, Traes_
7DL_602B9D252.1 (XVI) and Traes_3AL_78711D4EB.1
(XII), showed dramatic upregulation with the no-sulphate
fertilization treatment. (5) Seven phytohormones: most
PRXs showed slight upregulation or downregulation
under the seven phytohormones. For instance, Traes_3B_
8732922B8.1 (VI) showed slight upregulation under all
seven phytohormones (SA 0.19, MeJA (methyljasmonic
acid) 0.08, GA (gibberellic acid) 0.33, ABA (abscisic acid)
048, CK (trans-zeatin,one kind of cytokinins) 0.18, ET
(ethylene) 0.55, and IAA (indole-3-acetic acid) 0.47). How-
ever, we also noticed that some T. aestivum PRXs, such as
Traes_2AS_3161D54F8.1 (XVII), Traes_2DS_708F03DA3.1
(XVII) and Traes_2BS_B6EBC0962.1 (XVII), exhibited dra-
matic upregulation with only MeJA treatment. Similarly,
some PRXs, such as Traes 2AL_2224DCC1A.1 (VI),
Traes 5BL_3ED1B0234.2 (XVII) and  Traes 1DL_
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607C1A6E6.1 (V), exhibited dramatic downregulation with
ABA treatment.

To further confirm the expression pattern analysis of
the GEO (Gene Expression Omnibus) microarray, we se-
lected eight T. aestivum PRXs to examine their expres-
sion in the cultivar “Sumai-3” under PEG (drought)
treatment using qRT-PCR (Fig. 6). Some of the eight
PRXs exhibited similar microarray and qRT-PCR results.
(1) Traes_2DS_708F03DA3.1 (XVII): the log2 values of
“WL711” (drought-susceptible) and “C306” (drought-tol-
erant) under drought conditions were 0.55 and 2.87, while
our qRT-PCR results showed upregulation at 6-72h (h)
after PEG treatment. (2) Traes_6AS_5BAD56BB6.1 (XVI):
the microarray prediction of “C306” was consistent with
our qRT-PCR results. The log2 value of “C306” was 2.05,
while our qRT-PCR results exhibited upregulation at 6—
72 h. (3) Traes_2AS_AB001AAB7.1 (XVII): the log2 values
of “WL711” and “C306” were 0.18 and 0.22, respectively,
while our qRT-PCR results showed upregulation at 6 h.
(4) Traes_2AL_A45F6AEBE.1 (VI): the log2 values of
“WL711” and “C306” were 0.42 and 0.38, respectively,
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while our qRT-PCR results showed upregulation at 6 and
72 h. (5) Traes_4AL_D25430175.1 (XVII): the log2 values
of “WL711” and “C306” were 0.59 and 0.51, respectively,
while our qRT-PCR results showed upregulation at 6 h.
(6) Traes_2DS_D76AB139C.1 (XVII): the log2 values of
“WL711” and “C306” were 0.52 and 0.44, respectively,
while our qRT-PCR results showed upregulation at 6 h.
To confirm the phytohormone microarray predictions,
we also selected eight PRXs and examined their expres-
sion under four phytohormone (SA, JA, IAA and ABA)
treatments using qRT-PCR (Fig. 7). Some of the eight
PRXs exhibited similar microarray and qRT-PCR results.
(1) Traes_4AL_D25430175.1 (XVII): the log2 values
under SA, JA, IAA and ABA treatments were 0.14, 0.02,
0.11 and 0.02, respectively, while our qRT-PCR results
remained at the same expression level at 6 and 12h
(compared with 0h) under IAA and ABA treatments.
Under JA treatment, this TaePRX exhibited upregulation
at 1-48h and reached peak expression at 24h. (2)
Traes_2DS_D76AB139C.1 (XVII): the log2 values under
SA, JA, TAA and ABA treatments were — 0.30, 0.80, 0.76
and 0.11, respectively, while our qRT-PCR results
showed dramatic upregulation at 1 and 6 h under IAA
treatment. Under ABA treatment, this 7aePRX exhibited
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slight upregulation at 1, 3, 6, 24 and 48 h. With JA treat-
ment, this TaePRX exhibited upregulation at 6-24-h and
reached an approximately 20-fold peak in expression at
24h. (3) Traes_2DS_2CCCA54C1.1 (XVII): the log2
values under SA, JA, IAA and ABA treatments were — 0.03,
0.22, 0.19 and 0.20, respectively, while our qRT-PCR re-
sults showed upregulation at 3—-48 h under JA treatment.
(4) Traes_5BL_3ED1B0234.2 (XVII): the log2 values under
SA, JA, TAA and ABA treatments were — 0.12, 0.44, — 0.19
and - 2.57, respectively, while our qRT-PCR results showed
downregulation at 6 h under SA and IAA treatments.
Under ABA treatment, this 7aePRX exhibited downregula-
tion at 12—-48 h. Under JA treatment, this 7zePRX exhib-
ited upregulation at 1h. (5) Traes_2BS_40C683B47.1
(XVII): the log2 values under SA, JA, IAA and ABA treat-
ments were —0.32, 0.15, —0.28 and - 0.50, respectively,
while our qRT-PCR results showed upregulation at 3—-24 h
under JA treatment. (6) Traes 6AS_5BAD56BB6.1 (XVI):
the log2 values under SA, JA, IAA and ABA treatments
were — 0.60, 1.97, — 0.81 and - 1.88, respectively, while our
qRT-PCR results showed downregulation at 1 h under SA
and IAA treatments. Under JA treatment, this TaePRX ex-
hibited upregulation at 1-24h. (7) Traes_2BS_
B6EBC0962.1 (XVII): the log2 values under SA, JA, IAA
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and ABA treatments were — 0.15, 1.47, 0.46 and - 0.42, re-
spectively, while our qRT-PCR results showed that this
TaePRX reached an expression peak at 1 h and still exhib-
ited slight upregulation at 6-12h under IAA treatment.
Under ABA treatment, this 7aePRX exhibited slight down-
regulation at 1-3 h. Under JA treatment, this TaePRX ex-
hibited upregulation at 3-24h and reached an
approximately 12-fold expression peak at 12 h. (8) Traes_
1AS_6C84785B3.2 (I): the log2 values under SA, JA, IAA
and ABA treatments were — 0.87, 2.72, 0.82 and - 0.88, re-
spectively, while our qRT-PCR results showed that this
TaePRX exhibited downregulation and slowly declined at
1-48 h under SA treatment. Under ABA treatment, this
TaePRX exhibited downregulation at 3 and 12-48h.
Under JA treatment, this 7aePRX exhibited upregulation
at 1 h.

To study the mechanism of TaePRX expression in-
duced by phytohormones, we predicted cis-acting ele-
ments in the upstream promoters of TaePRXs by using
PlantCARE42 (Additional file 9: Figure S9 and Add-
itional file 23: Table S11). The results showed that al-
most all investigated TaePRXs promoters contained the
putative cis-acting elements responding to MeJA and
ABA (Table 3). Some of these predicted results were
consistent with the qRT-PCR and microarray results.
For instance, the log2 value of Traes_2DS_
D76AB139C.1 (XVII) by microarray under ABA treat-
ment was 0.11, and the qRT-PCR results showed that
this TaePRX exhibited slight upregulation at 1, 3, 6, 24
and 48 h under ABA treatment (Fig. 7). Indeed, the pro-
moter of this TaePRX contained cis-acting elements
responding to ABA.

To test these predicted cis-acting elements, sequen-
cing validation of these upstream promoter sequences
was performed (Additional file 10: Figure S10). The
results showed that almost all predicted cis-acting ele-
ments were present in sequencing promoters. How-
ever, we found a cis-acting element within SNP
(single nucleotide polymorphism) in Traes_6AS_
5BAD56BB6.1 (XVI). This cis-acting element (GTGC
AC) was responsive to ABA. SNP could also be found
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in other regions of the promoter of Traes_6AS_
5BAD56BB6.1 (XVI).

We also compared four 7. aestivum PRXs and their hom-
ologous maize PRXs [21] using qRT-PCR (Additional file 11:
Figure S11). The results showed that three 7. aestivum
PRXs had similar expression trends as those of homologous
maize PRXs under SA treatment. (1) Traes 4DS_
90B3A8BF0.1 (XVII): both Traes_4DS_90B3A8BF0.1 and its
homologous maize PRX (ZmPRX71 GRMZM2G171078_
T02) exhibited downregulation at 3 h under SA treatment.
The expression of both genes recovered by one-fold at 6 h.
(2) Traes_2AS_E509AB03B.1 (XVII): the homologous maize
PRX (ZmPRX26, GRMZM2G133475_T01) showed a 2.5-
fold upregulation at 12h under SA treatment, while our
qRT-PCR results showed that Traes_2AS_E509AB03B.1 ex-
hibited an approximately 1.5-fold upregulation at 12 h under
SA treatment. (3) Traes 2AS_6AB3D73F7.1 (XVII): both
Traes_2AS_6AB3D73F7.1 and its homologous maize PRX
(ZmPRX75, GRMZM2G025441_T01) exhibited approxi-
mately 2-fold upregulation at 6 h under SA treatment.

Expression patterns of T. aestivum class 1l PRXs under
biotic stress

We studied the expression patterns of 170 T. aestivum
class III PRXs under biotic stress treatments (Add-
itional file 12: Figure S12, Additional file 24: Table S12).
The differentially expressed genes of T. aestivum PRXs
(|[EC| > 1.5 and p < 0.05) under biotic stress were also de-
termined (Additional file 25: Table S13). (1) Fusarium
head blight (FHB): we noticed that a few T. aestivum
PRXs, such as Traes_1BS BA046E212.1 (XII), Traes_
2BL_E8A65526C.1 (VI), Traes_7DL_602B9D252.1 (XVI)
and Traes_2DS_D76AB139C.1 (XVII), exhibited pro-
gressive upregulation at 1-4 days (d) after Fg infection,
suggesting that they might participate in the pathway
responding to Fg infection. For instance, the log2 values
of Traes_1BS_BA046E212.1 (XII) at 1, 2 and 4 d after Fg
infection were 0.26, 1.23 and 2.71, respectively. (2) Pow-
dery mildew: most T. aestivum PRXs exhibited the same
expression trend but different log2 values with the two
types of treatments. For example, the log2 values of

Table 3 Predicted and experimental cis-acting elements related to stress or hormone response

Gene ID Subfamily Predicted cis-acting elements related Experimental verification of cis-acting
to stress or hormone response elements using sequencing
Traes_2DS_D76AB139C.1 XVII MeJA, GA, ABA, IAA MelJA, GA, ABA, IAA
Traes_2DS_2CCCA54C1.1 XVII MeJA, SA, ABA, Low temperature, Drought inducibility MeJA, ABA, Low temperature
Traes_5BL_3ED1B0234.2 XVII MelJA, SA, GA, ABA, Anaerobic induction, Drought inducibility no sequencing
Traes_2BS_40C683B47.1 XVII MelJA, ABA, SA, Anaerobic_induction MeJA, ABA, SA, Anaerobic_induction
Traes_6AS_5BAD56BB6.1 XVI SA, GA, ABA, Anaerobic induction, Drought inducibility SA, GA, ABA, Anaerobic induction
Traes_2BS_B6EBC0962.1 XVII MeJA, IAA, Anaerobic induction, SA, ABA MeJA, IAA, Anaerobic induction, SA

Traes_1AS_6C84785B3.2 I

MeJA, ABA, Low temperature, Drought inducibility, SA

MeJA, ABA, Low temperature,
Drought inducibility, SA
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Traes_2AL_2224DCC1A.1 (VI) under Si(+) (supply of
soluble silicon) Bgt(+) (infection of Blumeria graminis f.
sp. tritici, Bgt) and Si(-) Bgt(+) treatments were both upregu-
lated at 1.53 and 0.57, respectively. However, a few 7. aesti-
vum PRXs, such as Traes 4AL_OC8DFDE2B.1 (VI) and
Traes_2AS_647C2FAA9.1 (I), exhibited opposite expression
trends in the Si(+) Bgt(+) and Si(-) Bgt(+) treatments. (3)
Blast disease: some T. aestiviurm PRXs, such as Traes 2BL_
B36482127.1 (VI), Traes_4AS 9EEABCE1C.1 (VII), Traes_
4DL_8CEO055F15.1 (VII) and Traes_1BL_4831B07DA.1 (I),
were upregulated when infected with the three types of Mag-
naporthe pathogens. Similarly, three T. aestivumn PRXs,
Traes_6DL_2A99B8CDC.1 (VII), Traes_2AL_7EABACS855.1
(VII) and Traes_2AL_0A0101B75.1 (IX), showed downregu-
lation under these three Magnaporthe pathogen infections.
(4) Fly larval attack: we noticed that a few T. aestivum PRXs,
such as TRAES3BF008800130CFD_t1 (unclear_classifica-
tion), Traes_7DL_CE37E2AF1.1 V), Traes 1DS_
A23800206.1 (II) and Traes 1AS _C70D49E2E.4 (VI), exhib-
ited progressive upregulation at 6, 12 and 24 d after fly larval
attack. For instance, the log2 values of Traes 1DS_
A23800206.1 (II) at 6, 12 and 24 d were 0.84, 0.97 and 1.14,
respectively. Similar to FHB, these PRXs might also regulate
the pathway of the fly larval attack response. (5) Earthworm:
most 7. aestivum PRXs exhibited the same expression trend
but different log2 values under both treatments. For instance,
the log2 values of Traes_6DL_2A99B8CDC.1 (VII) were 0.04
and 0.77 in the earthworm(+) Ggt(+) (infection by the soil-
borne fungus Gaeumannomyces graminis var. tritici, Ggt)
and earthworm(+) Ggt(-) treatments, respectively. We also
noticed that some PRXs, such as Traes_7DS_F64FA7C37.1
(VII) and Traes_2AS_647C2FAA9.1 (I), exhibited opposite
expression trends under earthworm(+) Ggt(+) and earth-
worm(+) Ggt(-) treatments.

To confirm the FHB expression pattern of the GEO
microarray, we examined eight T. aestivum PRXs using
qRT-PCR (Fig. 8). The log2 values of these eight T. aesti-
vum PRXs were all upregulated at 1, 2 and 4 d after Fg in-
fection. This result was consistent with our qRT-PCR
results that all exhibited upregulation at 48-96 h after Fg
infection. Interestingly, four 7. aestivum PRXs, Traes 2AL
A45F6AEBE.1 (VI), Traes_5DL_011018E3C.1 (IX), Traes_
1BS_871E20CF0.1 (I) and Traes_2AS_ABOO1AAB7.1
(XVII), showed more than 100-fold upregulation at 48—96
h after Fg infection, hinting that they might be important
for the signalling pathways of the Fg infection response.

Discussion

Evolution and duplication events of the class lll PRX gene
family in wheat and Ae. tauschii

In this study, we determined the identification, evolution
and expression of the class III PRX gene family in wheat
and Ae. tauschii. The numbers of PRX gene families in
T. urartu (159) and Ae. tauschii (169) are similar to
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those in three investigated monocots (B. distachyon, 149,
O. sativa, 125, and Z. mays, 156) but higher than that in
two eudicots (V. vinifera, 85, and A. thaliana, 81). This
is consistent with a report that maize PRXs (119) are
higher in number than Arabidopsis (73) and poplar (93)
[21]. The number of PRXs in T. aestivum (374) is ap-
proximately three-fold higher than that in 7. wrartu
(159) and Ae. tauschii (169). This “three-fold” relation-
ship is consistent with our previous article on the PK
gene family in which the number of PKs in T. aestivum
(3269) is approximately three-fold greater than that in T.
urartu (1213) and Ae. tauschii (1448) [27]. This is be-
cause the origin of allohexaploid bread wheat (7. aesti-
vum) was involved in three polyploidizations [26]. The
examples of the “three-fold” relationship are presented
in greater detail in Additional file 1: Figure S1. For in-
stance, five sequences (Traes_7AS_81327ECAO0.1,
TRIUR3_11069-P1, Traes_7BS_3878BF050.1, EMT10887
and Traes_7DS_F0152FC36.1) formed a clan with a
bootstrap value of 100.

To infer the evolutionary history of the PRX gene fam-
ily, we also identified PRXs in eight other plants, includ-
ing primitive green algae (6, C. reinhardtii), moss (60, P.
patens) and fern (167, S moellendorffii). Our results
showed that the PRX subfamily VII first appeared in C.
reinhardtii. In 2004, Passardi et al. [19] found 11-14 pu-
tative PRXs in P. patens using the EST database but
none in C. reinhardtii, Thalassiosira pseudonana or Phy-
tophthora sojae. The absence of C. reinhardtii PRX in
the Passardi report may be because of the incomplete C.
reinhardtii genome at that time or due to use of the
TBLASTN search method. The conserved exon-intron
structure with exon phase “001” in the PRX domain
could be found in most of the subfamilies V-XVIII, from
S. moellendorffii to T. aestivum, hinting that this exon-
intron structure might be important for the function of
PRXs. This “001” exon-intron structure could also be
found in P. patens (PP1S306_26V6.1), but not in C. rein-
hardtii, suggesting that the ancestral sequence of sub-
families V-XVIII might have appeared in moss-
resembling ancestors. We did not found PRX subfamily
II in two investigated eudicots (V. vinifera and A. thali-
ana) but found it in all investigated monocots, and its
“001” exon-intron structure had changed into a “0” two-
exon structure, suggesting that a monocot-specific exon
fusion event occurred in the PRX subfamily II after the
monocot-eudicot split.

Based on the analysis of PRXs across C. reinhardtii to
T. aestivum, we proposed a model to infer the evolution
of the PRX gene family (Fig. 9). First, the PRX subfamily
VII might have appeared in an algae-resembling ances-
tor, but their exon-intron structures were algae-specific.
Indeed, we cannot find the four types of exon-intron
structures of the C. reinhardtii subfamily VII PRXs in
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other investigated plants. Second, PRX subfamilies VII
and I might appear in a moss-resembling ancestor. Two
types of conserved exon-intron structures (“1012-212”
and “2100-1020") appeared in moss PRX subfamily
VII, and they were conserved from P. patens to T.
aestivum. The conserved exon-intron structure within
exon phase “0101-0000" appeared in S. moellendorffii
PRX subfamily VII, and it was conserved from .
moellendorffii to T. aestivum. In contrast to the abun-
dant exon-intron structures of subfamily VII, PRX
subfamily I contained four sample conserved exon-in-
tron structures (“001”, “01”, “0” and “00”). Third, ex-
cept for subfamilies VII and I, the new PRX
subfamilies V, VI, IX and X appeared in S. moellen-
dorffii, but their exon-intron structures were all “001”.
Therefore, we inferred that PRX subfamilies V, VI, IX
and X might originate in subfamily I. Interestingly,
subfamilies XII, XIV-XVIII and II appeared in eudi-
cots and monocots, but most of their exon-intron
structures were still “001”. In summary, most PRX

subfamilies contained conserved exon-intron structure
“001”, which might originate in subfamily I

It was reported that both segmental and tandem dupli-
cation contributed to the expansion of maize PRXs [21],
while segmental duplication mainly contributed to the
expansion of Chinese pear PRXs [22]. In this study, we
determined 46 T. aestivum PRX collinearity events con-
tributed by segmental duplication (Additional file 16:
Table S4), and there were 56 tandem T. aestivum PRXs
(Additional file 18: Table S6), suggesting that both
segmental and tandem duplication contributed to the
expansion of T. aestivum PRXs. The number of ortholo-
gous genes (73) between T. aestivum and B. distachyon
is more than that (63) between T. aestivum and rice
(Additional file 16: Table S4), suggesting that the split
between T. aestivum and B. distachyon progenitors oc-
curred after rice diverged from the common ancestor of
T. aestivum and B. distachyon. Indeed, it was reported
that Triticeae and Brachypodieae are sister clades and
that Oryza is located on the root of the cluster
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containing six sister clades (Diarrheneae, Brachypodieae,
Poeae, Aveneae, Bromeae and Triticeae) [28].

Biological functions and expression patterns of the class
Ill PRX gene family in wheat and Ae. tauschii

Aside from the catalytic function of reducing hydrogen
peroxide to water, class III PRXs are involved in various
other biological functions, including lignification, de-
fence, development and germination [29]. Cosio et al.
summarized the research methods (microarrays, trans-
genic plants, proteomics, and so on), expressed organs,
and studied mechanisms (low oxygen response, alumin-
ium stress, cold-inducible tolerance, etc.) of almost all
73 published A. thaliana PRXs [30]. In our results, we
examined the expression patterns of 7. aestivum PRXs
under drought conditions and phytohormone treatments
using public microarray datasets and qRT-PCR.

Some papers reported that a few PRXs were involved in
root and stresses. Three plasma membrane-bound class
III PRXs, namely, pmPOX1, pmPOX2b and pmPOX3,
were purified in maize root and then identified by ESI-
MS/MS and MALDI-TOF MS [31]. The protein levels of
four maize root PRXs, pmPOX1, pmPOX2a, pmPOX2b,
and pmPOX3, changed in response to various stresses, in-
cluding H,O,, SA, wounding, MeJA, Fg infection, Fusar-
ium culmorum infection, chitosan and cantharidin [32]. In
our study, we also analysed the T. aestivum PRX expres-
sion patterns in root tissue (Additional file 6: Figure S6,
Additional file 20: Table S8). We noticed that some 7. aes-
tivum PRXs, such as Traes_7DL_6233C6F03.1 (I), Traes_
1AL_38F9A30EA.1 (I) and Traes_1AL_91E56EC8C.1 (V),

exhibited relatively higher expression levels in two root
tissues (root in the germinating seed stage and root in the
seedling stage) than in other tissues, suggesting that they
might play roles in root development or metabolic
processes.

Some published articles about the abiotic stress
responses of PRXs are consistent with our microarray
and qRT-PCR results. (1) Drought: the transcript levels
of selected T. aestivumm PRXs were determined under
PEG6000 in two wheat cultivars (“Plainsman V”,
drought-tolerant; and “Cappelle Desprez”, drought
sensitive) [33]. The results showed that the TaPrx04
transcript was enhanced in the root apex of “Plainsman
V” but decreased in “Cappelle Desprez”. In our
drought microarray results, we also found similar T.
aestivum PRXs (Traes_1DS_578ADDF80.1, Traes_2AS_
3161D54F8.1, etc.) with reverse expression trends in two
wheat cultivars (drought-susceptible “WL711” and
drought-tolerant “C306”). The results showed that
TaPrx01, TaPrx03, TaPrx19, TaPrx68, TaPrx107
and TaPrx109-C decreased in both cultivars. In our
drought microarray results, we also found similar T ges-
tivum PRXs (Traes_2AS _647C2FAA9.1, Traes_2BL_
E8A65526C.1, etc) with downregulation in both
“WL711” and “C306”. (2) Hormones: we compared the
four published maize PRXs [21] to our homologous T.
aestivum PRXs by using qRT-PCR under SA treatment
(Additional file 11: Figure S11). The results showed that
these four homologous gene pairs exhibited similar ex-
pression trends, but their peaks of upregulation did not
occur at the same time after SA treatment.
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Pathogen attack in plants leads to three defence mecha-
nisms (cell wall lignification, production of antimicrobial
metabolites, and production of ROS and RNS (reactive ni-
trogen species), which involve PRXs [34]. In this study, we
also checked expression patterns under Fg infection using
public microarray datasets and qRT-PCR. All eight investi-
gated T. aestivum PRXs were upregulated in qRT-PCR and
microarray results, suggesting that they might participate in
the response to Fg infection. Additionally, our qRT-PCR re-
sults showed that four T. aestivurn PRXs (Traes_2AL_
A45F6AEBE.1, Traes_5DL_011018E3C.1, Traes_1BS_
871E20CF0.1 and Traes_2AS_AB001AAB?7.1) were strongly
upregulated (more than 100-fold) after Fg infection, sug-
gesting that they play a central role in the FHB stress regu-
latory network. How do plant PRXs function in pathogen
defence? A novel Marsdenia megalantha PRX was purified
and shown to inhibit the phytopathogenic fungi Fusarium
oxysporum and Fusarium solani through a cell membrane
permeabilization mechanism [35].

In 2018, Liithje et al. summarized the physiological
functions (such as senescence, floral organ development,
lignification of vessels, drought, cold and pathogen) of
membrane-bound class III PRXs in Arabidopsis, barrel
medic, rice and maize [36]. In this article, we selected
eleven maize PRXs involved in drought or pathogen stress
response and compared them with our predicted micro-
array results in 7. aestivumm PRXs by BLAST. Among
them, only six maize PRXs had homologous probes in our
microarray. However, five maize PRXs had the same
physiological function as the homologous T. aestivum
PRX (Additional file 21: Table S9). (1) Drought: T. aesti-
vum PRXs (Traes_2BS 990895438.1 and Traes_6AS_
ADF96853B.1), which are homologous to ZmaPrx70 and
ZmaPrx122 (A5H452 and AOA1D6H652), showed slight
upregulation in “C306” (drought-tolerant) under drought
conditions. (2) Pathogen: T. aestivum PRXs (Traes_2BS_
430425C78.1 and Traes 2AL_C4CDAAO081.1), which are
homologous to ZmaPrx56 and ZmaPrx85 (AOA1D6IMZ0
and AOA1DG6E530), showed progressive upregulation at
1-4 d after Fg infection. (3) Drought and pathogen: T. aes-
tivum PRX (Traes_2DS_D76AB139C.1), which is homolo-
gous to ZmaPrx114 (COPPB6), showed upregulation
under drought and Fg stresses. Our qRT-PCR results also
showed that Traes_2DS_D76AB139C.1 exhibited upregu-
lation in “Sumai-3” at 6 h after PEG treatment (Fig. 6).

Conclusions

In this study, we performed genome-wide identification
and classification of class III PRXs in wheat, Ae. tauschii
and eight other representative plants. To infer PRX evo-
lution, the exon-intron structures of PRXs were dia-
grammed in these eleven plants. Some conserved exon-
intron structures with conserved exon phases in the
PRX domain were found across species from P. patens

Page 15 of 19

to T. aestivum. Based on our analysis, an evolutionary
model of exon-intron structures of PRX genes was pro-
posed in which subfamily VII could be the ancient sub-
family, and most subfamily V-XVIII PRXs contained the
conserved exon-intron structure “001”, which might origin
in subfamily I. WGD, TD and syntenic analysis were per-
formed with T. aestivum, B. distachyon and O. sativa
PRXs. The results showed that both WGD and TD con-
tributed to the expansion of T. aestivum PRXs. Global ex-
pression pattern analysis using public microarray datasets
revealed that some PRXs could be involved in biotic and
abiotic responses in wheat. qRT-PCR of selected T. aesti-
vum PRXs under PEG, phytohormone and Fg treatments
validated the microarray predictions. The confocal micros-
copy results indicating the subcellular localization of
TaePRXs from different subfamilies were consistent with
the website predictions. Sequencing promoters validated
the predicted hormone responsive cis-elements. Our re-
sults will provide clues for researchers regarding the evo-
lution and biological functions of PRXs.

Methods

Identification and classification of class 1ll PRXs in wheat,
Ae. tauschii and other plants

The genomes and proteomes of T. aestivum were down-
loaded from Ensembl Plants, release-31 (http://plants.
ensembl.org/). The genomes and proteomes of ten other
plants, including T. urartu, Ae. tauschii, B. distachyon, Z.
mays, O. sativa, A. thaliana, V. vinifera, S. moellendorffii, P.
patens and C. reinhardtii, were downloaded from Ensembl
Plants, release-33. To identify the PRXs, the proteomes of
all eleven plants were scanned by our local server
HMMER3.1 (Pfam profile PF00141.21, peroxidase.hmm,
PRX domain) and the website Pfam 30.0 (http://pfam.xfam.
org/) in batch mode with an E value of 0.01. Atypical PRXs
with a PRX domain covering less than 50% alignment were
excluded in the following analysis. The PRX alignment of
T. aestivum, T. urartu and Ae. tauschii truncated sequences
in the PRX domain was performed by ClustalW v2.0 [37].
The NJ phylogenetic tree was constructed by MEGA-CC
7.0 [38] with a p-distance model and 1000 bootstrap repeti-
tions in our local server. Similarly, the large NJ phylogenetic
tree of these eleven plants was also constructed by Clus-
talW v2.0 and MEGA-CC 7.0. The classification of PRX
subfamilies was performed by HMMER3.1, and models
were generated based on the maize PRX alignments [21].

Domain and exon-intron structure diagram of PRXs

The domain and exon-intron structures of PRXs in these
eleven plants were generated by our Perl and R scripts
based on the corresponding GFF file information from
Ensembl Plants (http://plants.ensembl.org/). The domain
information was batched from Pfam 30.0 (http://pfam.
xfam.org/).
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Chromosome locations, duplication events and synthetic
analysis of wheat PRXs

Based on the extracted information in GFF files from
Ensembl Plants (http://plants.ensembl.org/), the chromo-
some locations of T. aestivum PRXs were diagrammed
using Mapchart v2.3 (https://www.wur.nl/en/show/map-
charthtm). BLASTP was performed against PRXs of T. aes-
tivum, B. distachyon and O. sativa with an E value of e-100.
Based on the GFF and BLAST results, tandem duplication
and segmental duplication were searched using MCScanX
[39]. The Ka and Ks values were calculated by “add_ka_
and_ks_to_collinearity.pl” in MCScanX. To search for the
synthetic relations between the T. aestivum A subgenome
and T. urartu, between the T. aestivum D subgenome and
Ae. tauschii, BLAST was performed with an E value of e-
100. Then, the Ka and Ks values were calculated by KaKs_
Calculator2.0 [40] with the y-YN method.

Microarray expression data analysis

Public wheat microarray expression data was down-
loaded from the GEO database of NCBI. Microarray
datasets of tissues and stress treatments were selected
from the Affymetrix Wheat Genome Array platform
GPL3802. (1) Tissues: GSE12508, thirteen tissues at de-
fined developmental stages for wild-type wheat (cultivar
Chinese Spring) [41]. (2) Abiotic stresses: cold:
GSE14697, two wheat lines, freeze resistant and freeze
susceptible, were compared with and without 4 °C treat-
ment [42]; heat: GSE60351, flag leaves of the wheat cul-
tivar “TAM 107" were sampled after 1 h of heat stress
(40 °C) treatment; drought: GSE87325, leaf tissues of two
wheat genotypes (drought-susceptible variety “WL711”
and drought-tolerant variety “C306”) were collected for
Affymetrix microarrays under drought stress; nutrient
deficiency: GSE61679, the root tissues of wheat cultivar
“Hereward” under five nutrient-deficient conditions;
phytohormones: GSE103430, wheat spike tissues ex-
posed to seven phytohormones, including IAA, GA
(GA3), ABA, ET, CK (trans-zeatin), SA and MeJA. (3)
biotic stresses: Fusarium head blight: GSE36283, wheat
spikelets from the very susceptible spring wheat cultivar
“Roblin” at 1, 2 and 4 d after Fg infection [43]; powdery
mildew: GSE12936, wheat cultivar “AC Drummond”
under soluble silicon (Si) and pathogen stress (B. grami-
nis f.sp. tritici, Bgt) [44]; blast fungus: GSE31760, wheat
cultivar “Renan” infected by three Magnaporthe patho-
gen isolates (non-adapted BR29, adapted BR32 and
BR37) [45]; Hessian fly larvae: GSE34445, two wheat
lines, “Molly” (containing R gene H13, resistance) and
“Newton” (susceptible), were collected at 6, 12 and 24 h
after Hessian fly egg hatching [46]; earthworms:
GSE47479, wheat was inoculated with the soil-borne
fungus G. graminis var. tritici (Ggt) and earthworms.
Quality control and normalization of raw data were
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performed by RMAexpress v1.2.0 (http://www.rmaex-
press.bmbolstad.com/). The mean expression levels of
tissues were calculated using our Perl script. The expres-
sion levels (log2 value of fold change, treatment vs. con-
trol) of T. aestivum PRXs under stress treatments were
calculated by R software and the R package limma. Heat
maps of T. aestivum PRX expression levels were gener-
ated by Mev4.9 [47].

Plant material and stress treatments

Wheat (T. aestivum L.) cultivar “Sumai-3” seeds were
germinated on damp filter paper at room temperature
for approximately 24 h. The mesocotyls grew to approxi-
mately 2-3 mm in length, and then the seedlings were
transferred into pots for growth in a greenhouse at 20—
25 °C with a photoperiod of 16 h/8 h. The seedlings with
two leaves were used in all experiments unless stated
otherwise. Then, the seedlings were subjected to drought
stress (20% (m/V) PEG-6000) for 0, 6, 12, 24, 48 and 72
h. The seedlings were also treated with four phytohor-
mones, 1.5mM SA, 100 uM MeJA, 100 uM IAA and
100 uM ABA, for 0, 1, 3, 6, 12, 24 and 48 h. The spike-
lets of “Sumai-3” in the flowering stage were inoculated
with Fg for 0, 12, 24, 48, 72 and 96 h, respectively. Leaves
(drought and phytohormones) and spikelets (Fg) were
separately collected and immediately frozen in liquid ni-
trogen and then stored at — 80 °C for qRT-PCR. At least
30 samples of each experimental replicate were analysed
with different treatments.

RNA extraction and gRT-PCR

Total RNA was isolated using the TRIzol kit (TransGen
Biotech Co., Ltd., Beijing, China). The first-strand cDNA
was synthesized with oligo-dT primers using TransScript
First-Strand ¢cDNA Synthesis Supermix (TransGen Bio-
tech Co., Ltd., Beijing, China). qRT-PCR was performed
in a 20-ul reaction volume using a Roche LightCycler®
480 (Roche Diagnostics GmbH, Mannheim, Germany)
for three biological replicates. Wheat B-Actin was used
as an internal reference. Relative mRNA levels were cal-
culated using the 2 22T method. The qRT-PCR
primers for PEG, four phytohormones and FHB are sup-
plied in Additional file 26: Table S14.

Subcellular localization of TaePRXs

The coding region of TaePRXs was amplified and fused
to the N-terminus of eGFP, which was driven by the
CaMV 35S promoter to generate pBIN35S-TaePRX-
eGFP. At the same time, we used a 35S:eGFP fusion
construct as a control. The constructs were used for
subcellular localization analysis. The positive clones were
transformed into Agrobacteriumm EHA105. The resulting
Agrobacterium culture was resuspended in an infiltration
medium [10mM  4-morpholineethanesulfonic  acid
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hydrate (MES) (pH5.6), 10mM MgCl,, and 200 mM
acetosyringone) and then injected into four-week-old to-
bacco (Nicotiana benthamiana) leaves at an OD600 of
0.6. Transformed tobacco leaves were imaged using a
confocal microscope (PERKINEIMER UITRAVIEW
VOX Confocal Microscope). The TaePRXs cloning ex-
periment was performed in leaves of the wheat cultivar
“Sumai-3”. Subcellular localization of the primers for
TaePRXs are supplied in Additional file 27: Table S15.
Predicted subcellular localization of TaePRXs was per-
formed in WoLF PSORT (https://www.genscript.com/
wolf-psort.html?src=leftbar) and TargetP (http://www.
cbs.dtu.dk/services/TargetP/).

Predicted cis-acting elements and sequencing validation
For promoter analysis, 2kb upstream region from the
translation start codon ATG of each TaePRX was trun-
cated by our Perl scripts, and then predicted cis-acting
elements in the (+) strand and (-) strand of each pro-
moter of TaePRXs were found using the PlantCARE42
database  (http://bioinformatics.psb.ugent.be/webtools/
plantcare/html/). To validate these predicted cis-acting
elements, total DNA was isolated, and then PCR was
performed to amply 2-kb upstream promoter sequences.
Gel extraction and sequencing validation were performed.
The TaePRX promoter cloning experiment was per-
formed in leaves of the wheat cultivar “Sumai-3”. Primers
used to clone the promoters related to predicted cis-ele-
ments are supplied in Additional file 28: Table S16.

Additional files

Additional file 1: Figure S1. Expanded phylogenetic classification of
class Il peroxidases using the neighbour-joining method. (a) T. aestivum,
T. urartu and Ae. tauschii; (b) All investigated plants. (PDF 376 kb)

Additional file 2: Figure S2. Exon—intron and domain diagrams of class
Il peroxidases in T. aestivum, T. urartu, Ae. tauschii, B. distachyon, Z. mays,
O. sativa, A. thaliana, V. vinifera, S. moellendorffii, P. patens and C.
reinhardtii. The descriptions of the domain and exon phases are the same
as those in Fig. 2. The lengths of the boxes and lines are scaled based on
the lengths of the genes. (PDF 487 kb)

Additional file 3: Figure S3. Conserved exon—intron and domain
diagrams of class Ill peroxidases in T. aestivum, B. distachyon, S.
moellendorffii and P. patens. The descriptions of the domain and exon
phases are the same as those in Fig. 2. The lengths of the boxes and
lines are scaled based on the lengths of the genes. (PDF 30 kb)

Additional file 4: Figure S4. Chromosome locations of class Il
peroxidases in T. aestivum. (PDF 49 kb)

Additional file 5: Figure S5. Quality control of GEO microarray datasets.
RLE (Relative log expression) and NUSE (Normalized unscaled standard
errors) values of each GEO microarray dataset. (PDF 2638 kb)

Additional file 6: Figure S6. Heatmap of the expression patterns of T.
aestivum class Ill peroxidase genes in different tissues. The expression
patterns of 170 class Ill peroxidase genes in different tissues: coleoptile,
root and embryo of germinating seed; root, crown and leaf of seedling;
immature inflorescence; floral bracts, pistil and anthers before anthesis; 3-
5 DAP (day after planting) caryopsis; 22 DAP embryos. The heatmap was
generated using MeV (Multiple Experiment Viewer) software, version 4.9.
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Red and green correspond to upregulation and downregulation,
respectively. Normalized gene expression values and p values are
provided in Additional file 20: Table S8. (PDF 1350 kb)

Additional file 7: Figure S7. Heatmap of the expression patterns of T.
aestivum class Il peroxidase genes under abiotic stress treatments. The
expression patterns of 170 class Ill peroxidase genes under abiotic stress
treatments (cold, heat, drought and nutrient deficiency) are presented.
Normalized gene expression values are provided in Additional file 21:
Table S9. (PDF 1333 kb)

Additional file 8: Figure S8. Heatmap of the expression patterns of
T. aestivum class lll peroxidase genes under seven phytohormone
treatments. The expression patterns of 170 class Ill peroxidase
genes under seven phytohormone treatments, including I1AA, GA
(GA3), ABA, ET, CK (trans-zeatin), SA and MeJA, are presented.
Normalized gene expression values are provided in Additional file
21: Table S9. (PDF 1226 kb)

Additional file 9: Figure S9. Upstream sequences and predicted cis-
acting elements related to stress and hormone responses in TaePRXs.
Various predicted cis-acting elements are circled by different colours. The
corresponding information is provided in Additional file 23: Table S11.
(PDF 6070 kb)

Additional file 10: Figure S10. Sequencing data of the predicted c is-
elements in upstream. Pair alignments were performed between
upstream sequences and sequencing data. Matched cis-acting elements
between them are circled by red boxes. Cis-acting elements with tiny
differences are circled by green boxes. (PDF 1069 kb)

Additional file 11: Figure S11. gRT-PCR of four T. aestivum PRXs
under four phytohormone treatments and homologous maize PRXs
under SA treatment. (A) gRT-PCR of T. aestivum PRXs under SA, JA,
IAA and ABA treatments. (B) Homologous maize PRXs under SA
treatment. (PDF 912 kb)

Additional file 12: Figure S12. Heatmap of the expression patterns of
T. aestivum class lll peroxidase genes under biotic stress treatments. The
expression patterns of 170 class Ill peroxidase genes under biotic stress
treatments (Fusarium head blight, powdery mildew, blast fungus, Hessian
fly larvae and earthworms) are presented. Normalized gene expression
values are provided in Additional file 24: Table S12. (PDF 1418 kb)

Additional file 13: Table S1. Subfamily classification of class Il
peroxidases in the investigated plant genomes. (XLS 168 kb)

Additional file 14: Table S2. List of atypical class Ill peroxidases in the
investigated plant genomes. (XLS 87 kb)

Additional file 15: Table S3. Chromosome locations of T. aestivum
class Il peroxidases. (XLS 64 kb)

Additional file 16: Table S4. Collinearity events and Ka/Ks values of
class lll peroxidases among T. aestivum, B. distachyon and O. sativa. Sheet
1 was Ka/Ks values of collinearity events in T. aestivum class Il
peroxidases; sheet 2 was Ka/Ks values of collinearity events in all T.
aestivum genes. Similarly, sheets 3-4 showed T. gestivum and B.
distachyon. Sheets 5-6 showed T. aestivum and O. sativa. (XLS 5739 kb)

Additional file 17: Table S5. Collinearity events and Ka/Ks values of
class Ill peroxidases in T. aestivum subgenomes, Ae. tauschii and T. urartu.
Sheet 1 was Ka/Ks values of class Ill peroxidase collinearity events in the
T. aestivum A-subgenome and T. urartu. Similarly, sheet 2 showed the T.
aestivum D-subgenome and Ae. tauschii. (XLS 58 kb)

Additional file 18: Table S6. Chromosome locations of tandemly
arrayed T. aestivum class Ill peroxidases. (XLS 34 kb)

Additional file 19: Table S7. Public wheat expression data. (XLS 48 kb)

Additional file 20: Table S8. Normalized gene expression values of 170
T. aestivum class Il peroxidase genes in different tissues. (XLS 72 kb)

Additional file 21: Table S9. Normalized gene expression values of
170 T. aestivum class Ill peroxidase genes under abiotic stress
treatments. (XLS 138 kb)

Additional file 22: Table S10. Differentially expressed (p<0.01 and
|[FC|>1.5) T. gestivum class Il peroxidase genes under abiotic stress
treatments. (XLS 47 kb)
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