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Population Response to Natural Images in the Primary
Visual Cortex Encodes Local Stimulus Attributes and
Perceptual Processing

Inbal Ayzenshtat, Ariel Gilad, Guy Zurawel, and Hamutal Slovin
The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University 52900, Ramat Gan, Israel

The primary visual cortex (V1) is extensively studied with a large repertoire of stimuli, yet little is known about its encoding of natural
images. Using voltage-sensitive dye imaging in behaving monkeys, we measured neural population response evoked in V1 by natural
images presented during a face/scramble discrimination task. The population response showed two distinct phases of activity: an early
phase that was spread over most of the imaged area, and a late phase that was spatially confined. To study the detailed relation between
the stimulus and the population response, we used a simple encoding model to compute a continuous map of the expected neural
response based on local attributes of the stimulus (luminance and contrast), followed by an analytical retinotopic transformation. Then,
we computed the spatial correlation between the maps of the expected and observed response. We found that the early response was
highly correlated with the local luminance of the stimulus and was sufficient to effectively discriminate between stimuli at the single trial
level. The late response, on the other hand, showed a much lower correlation to the local luminance, was confined to central parts of the
face images, and was highly correlated with the animal’s perceptual report. Our study reveals a continuous spatial encoding of low- and
high-level features of natural images in V1. The low level is directly linked to the stimulus basic local attributes and the high level is
correlated with the perceptual outcome of the stimulus processing.

Introduction

Neurons in the striate cortex have been extensively studied using
simplified synthetic stimuli with isolated low-level features, as
well as more complex stimuli such as natural images. However,
the neural encoding of natural images in the striate cortex is still
unclear. Despite the complexity and unique statistical structure
of natural images (Tolhurst et al., 1992; Field, 1994; Ruderman
and Bialek, 1994; Sigman et al., 2001; Mante et al., 2005; Frazor
and Geisler, 2006), they can be decomposed into simple local
attributes (e.g., luminance, contrast, orientations, etc.). Indeed,
neural population activity in V1 can effectively encode simple
local structures of natural images (Weliky et al., 2003). However,
other studies have suggested that neurons along the visual path-
way encode complex properties of natural scenes (Simoncelli and
Olshausen, 2001; Felsen et al., 2005b). Additional studies showed
that natural stimuli elicit complex neural modulations (either
facilitation or suppression) originating from within the classical
receptive field or its surroundings (David et al., 2004; Felsen et al.,
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2005a). To better understand the neural encoding of natural
stimuli we simultaneously recorded neural populations’ response
from thousands of points spread over V1. This enabled us to
conduct a detailed spatial and temporal investigation of the rela-
tionship between the local and more global attributes of the stim-
ulus and the evoked neural activity.

Previous neurophysiological studies of natural images in V1
were carried out mainly in anesthetized animals (Ringach et al.,
2002; Smyth et al., 2003; Weliky et al., 2003; Felsen et al., 2005b;
Onat et al., 2011) or during passive fixation tasks (David et al.,
2004; MacEvoy et al., 2008). Therefore, the neurophysiological
correlates of the perceptual processing of natural images re-
mained largely unexplored. To address this issue, we trained the
monkeys on a demanding perceptual task, where they had to
discriminate between face and scramble images while we mea-
sured the population responses in V1. Using a discrimination
task enabled us to explore two aspects of natural image process-
ing. First, the low-level coding of the stimulus, which is highly
dependent on the properties of the neurons’ receptive field (RF)
and, second, the neural modulation resulting from the perceptual
processing of the stimulus, i.e., how the high-level content of the
stimulus is expressed in V1 (Lamme, 1995; Zipser et al., 1996;
Super et al., 2001b) and correlates with the animal’s behavior.

We used voltage-sensitive dye imaging (VSDI) (Grinvald et
al., 1999; Slovin et al., 2002; Ayzenshtat et al., 2010; Meirovithz
et al., 2010) to record neural population activity from cell
assemblies distributed throughout a continuous cortical sur-
face corresponding to a few square degrees of the visual field.
To investigate the stimulus-response relationship, we com-
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puted a 2D analytical transformation of the visual stimulus
into cortical coordinates and then studied the spatial correla-
tion between features of the transformed stimulus and the
evoked neural activity. Our results demonstrate an early neu-
ral response that encodes the low-level attributes of the stim-
ulus, specifically the local luminance, and a second late phase,
which shows specific spatial relation to the stimulus global
percept and correlates with the animal’s behavior.

Materials and Methods

Behavioral task and visual stimuli

Two adult male Macaca fascicularis (9 and 11 kg) were trained on a
face/scramble discrimination task. In each trial a small white fixation
point appeared on a gray screen for a random interval (3000—4000 ms).
Then, a single visual stimulus, either a face or a scrambled image of that
face, was presented for 80300 ms (varied between recording sessions).
The monkey was required to maintain fixation within *1° around the
fixation point until given the GO signal, which was the turning off of both
fixation point and stimulus. Subsequently, the monkey was required to
report whether the image was a coherent or scrambled face by making a
saccadic eye movement toward one of two identical lateral targets, 0.1° X
0.1° white squares, presented simultaneously—a rightward saccade for
the coherent face or a leftward saccade for the detection of a scrambled
face. The monkey was rewarded with a drop of juice for each correct trial.
Stimulus trials were interleaved with blank trials, in which the monkey
fixated but no visual stimulus appeared. In these trials, the monkey was
rewarded if he continued fixating within = 1° during the entire trial.

The visual stimuli were color-natural images of monkey faces and scram-
bled versions of the same images (Fig. 1A). We employed two scrambling
methods to create images with no coherent percept: phase perturbation,
which generated images with 10% phase coherence, and segment scrambling
(Ayzenshtat et al., 2010). Phase perturbation preserved the orientations and
spatial frequencies of the images but reduced the luminance content (both
mean and variance). Segment scrambling preserved the total luminance
content of the images but altered the spatial frequencies, orientations, and
contrast of the images. During the training period of the animals we used a
set of several dozen images (face and nonface), which included the subset of
images we used during recordings.

Visual stimuli were presented on a 21 inch Mitsubishi monitor at a
refresh rate of 85 Hz. The monitor was located 100 cm from the monkey’s
eyes. Images were 126 X 126 pixels in size and occupied 3.6 X 3.6° of
visual angle. The image was centered at 1—3.7° below the horizontal
meridian and 0.5—2.2° from the vertical meridian (VM; varied across
imaging sessions and across monkeys). This covered a large portion of
the retinotopic input to the exposed cortex and kept the most informa-
tive face features (eyes, nose, etc.) within the imaged area. Two linked
personal computers managed visual stimulation, data acquisition, and
controlled the monkey’s behavior. We used a combination of imaging
software (Micam Ultima) and the NIMH-CORTEX software package.
The behavior PC was equipped with a PCI-DAS 1602/12 card to control
the behavioral task and data acquisition. The protocol of data acquisition
in VSDI has been described elsewhere (Slovin et al., 2002). To remove the
heartbeat artifact, we triggered the VSDI data acquisition on the animal’s
heartbeat signal (Slovin et al., 2002; Ayzenshtat et al., 2010).

VSDI imaging

The surgical procedure has been reported in detail elsewhere (Arieli et
al., 2002; Slovin et al., 2002). All experimental procedures were ap-
proved by the Animal Care and Use Guidelines Committee of Bar-
Ilan University, supervised by the Israeli authorities for animal
experiments and conformed to the National Institutes of Health
guidelines. Briefly, the monkeys were anesthetized, ventilated, and an
intravenous catheter was inserted. A head holder and two cranial
windows (25 mm ID) were bilaterally placed over the primary visual
cortices and cemented to the cranium with dental acrylic cement.
After craniotomy, the dura mater was removed, exposing the visual
cortex. A thin, transparent artificial dura of silicone was implanted
over the visual cortex. Appropriate analgesics and antibiotics were
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given during surgery and postoperatively. The anterior border of the
exposed area was 3—6 mm anterior to the lunate sulcus. The size of
the exposed imaged area covered ~ 3—4 X 4-5° of the visual field, at
the reported eccentricities. Oxonol VSD RH-1691 or RH-1838 (Op-
tical Imaging) were used to stain the cortical surface. For imaging we
used the Micam Ultima system based on a sensitive, fast camera pro-
viding a resolution of 10* pixels at up to a 10 kHz sampling rate. The
actual pixel size was 170 X 170 wm?, every pixel summing the neural
activity mostly from the upper 400 wm of cortical surface. This
yielded an optical signal representing the population activity of ~500
neurons (0.17 X 0.17 X 0.4 X 40,000 cells/mm>). Sampling rate was
100 Hz (10 ms/frame). The exposed cortex was illuminated by an
epi-illumination stage with appropriate excitation filter ( peak trans-
mission 630 nm, width at half-height 10 nm) and a dichroic mirror
(DRLP 650), both from Omega Optical. To collect the fluorescence
and reject stray excitation light, a barrier postfilter was placed above
the dichroic mirror (RG 665; Schott). Long-term VSDI can be per-
formed repeatedly from the same area over many months without
disrupting cortical function (Slovin et al., 2002). In addition and as
previously reported (Slovin et al., 2002), we did not observe during
the imaging period a significant change in the VSDI response evoked
by the same visual stimulus.

Data analysis

VSDI. All the analyses and statistics were done on data recorded from two
hemispheres of two adult monkeys. Data for the discrimination task
analysis were obtained from 26 imaging sessions (18 sessions from mon-
key C and 8 sessions from monkey L): 14 sessions with stimulus pair type
1 (Fig. 1 Ai) and 12 sessions with stimulus pair type 2 (Fig. 1 Aii). Each
session included different face and scramble images, meaning we had a
total of 52 different images. Only correct trials with fixation within a
window of *1° were chosen for further analysis, trials from each behav-
ioral condition were analyzed separately. Each image was presented once
in every single trial. Typically we analyzed ~30 trials for each behavioral
condition (face or nonface stimulus) in an imaging session (varied be-
tween 26 and 32 trials per session). Each recording day included between
two and six imaging sessions. On each session we used a different set of
stimuli. From monkey C, we recorded during 3 d, within a total period
of ~1.5 month. From monkey L we recorded during 3 d within a period
of 1 month. In addition, we obtained data from a third monkey during
passive fixation task (see Fig. 6 A). This animal was not trained on the
face/nonface discrimination task and was presented with face/nonface
images during passive fixation only. Finally, we used additional 10 imag-
ing sessions for the retinotopic mapping (see below).

MATLAB software (Ver. 2008b, The MathWorks) was used for statis-
tical analyses and calculations. The basic VSDI analysis consisted of (1)
defining region-of-interest (only pixels with fluorescence level = 15% of
maximal fluorescence were analyzed, (2) normalizing to background
fluorescence, and (3) average blank subtraction (see more details and
schematic illustration of the basic VSDI analysis in Ayzenshtat et al.,
2010). For each recording session the VSDI signal was averaged over all
the correct trials and the averaged signal used for further analysis (except
for single-trial decoding and for error-trials analysis, see below).

Eye movements

Eye positions were monitored by a monocular infrared eye tracker (Dr.
Bouis Devices), sampled at 1 kHzand recorded at 250 Hz. Only trials with
tight fixation during stimulus presentation were chosen for further anal-
ysis. Typically, due to the brief stimulus presentation and to microscac-
cdic inhibition induced by the onset of stimulus presentation (Engbert,
2006; Rolfs et al., 2008; Meirovithz et al., 2012), we found almost no
microsaccades during the first 200 ms poststimulus onset (the neuronal
data analysis performed in this study was restricted to this time period).
Therefore, the differences in the neural responses evoked by different
stimuli cannot be explained by microsaccades.

Retinotopic mapping

Retinotopic mapping was obtained using optical imaging of intrinsic
signals and VSDI. The retinotopic mapping of V1 using intrinsic
signals has been described elsewhere (Shmuel et al., 2005). Briefly, to
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obtain retinotopic maps we conducted optical imaging of intrinsic
signals (Fig. 2D) when the monkey was fixating and presented with
high-contrast bars, horizontal (6 X 0.25°) and vertical (0.25 X 6°). As
the imaging area lay near the V1/V2 border, horizontal bars in the
visual field were mapped into bands in V1 that were approximately
orthogonal to the V1/V2 border and vertical bars in the visual field
mapped into bands approximately parallel to that border (Fig. 2 D, E).
The border between V1 and V2 was experimentally detected using
ocular dominance maps. Complementary retinotopic mapping was
obtained using VSDI when presenting small stimuli at variable eccen-
tricities (single Gabors or individual face features, e.g., an eye) during
a fixation paradigm.

2D analytical mapping of visual stimuli

To analytically map the visual stimulus into cortical coordinates we im-
plemented the model proposed by Schira et al. (2007, 2010). The model
suggests that the map of the visual space in V1, symbolized by the func-
tion w, is defined by the following:

w(E,P) = k * log(E = & + a), (1)

where E is eccentricity, P is polar angle, k is a scaling constant, and a is a
structural parameter. The input polar angle P is defined by the following:

P(0) =a=*0, (2)

where 6 is the original polar angle, and « is a compression parameter
reflecting the angular compression along the iso-eccentricity curves. f, is
a shear function defined by the following:

fa(E>P) = SeCh(P)sed’{l“g(E/“)*O'm)*o-1821. (3)

We examined both the monopole and the dipole versions of the model
(Schira et al., 2007, 2010), and found the monopole version yielded a
better fit to our experimental data than the dipole model. This was ex-
pected due to the close proximity of the exposed cortex to the fovea. This
model includes three free parameters (k, a, @), requiring us to determine
their optimal values in our imaged visual cortex. To do so, we first ap-
plied the spatial transformation using an initial set of parameters. Next,
we used eight reference points for which both retinal and cortical coor-
dinates were formerly and independently determined by optical imaging
of intrinsic signals and VSDI (see above, Retinotopic mapping), to per-
form the following: (1) the transformed stimulus was registered (a linear
transformation including only translation, rotation, and scaling) on the
exposed cortical surface using two of the reference points as anchors and
(b) we measured the root-mean-square deviation (RMSD) between the
analytical coordinates and the empirical coordinates of the other six
reference points. An optimal fit of the model was obtained by iterating
through the parameter space (1 < k < 20), (0.2 <a<4),and (0.3 <a <
1) to minimize the RMSD (Fig. 2E). The optimal representation of the
source image on our monkeys’ primary visual cortex was achieved with
a=0.57,k=7.7,and a = 0.52 for monkey C, and a = 0.46, k = 4.87, and
a = 0.51 for monkey L. Two of the model’s free parameters (a, k) con-
verged to optimal values similar to those previously reported in monkeys
and humans (Schira et al., 2007, 2010). However, the global shear param-
eter () converged to ~0.5 (previously reported a = 1), which may
reflect the variability among animal species and/or unpredicted anatom-
ical variations (see Discussion).

For further validation of the model’s fit, we also applied the spatial
transformation on a simpler stimulus (e.g., a Gabor array) and examined
the correspondence between the neural response and the response ex-
pected from the analytical transformation (data not shown).

Computing the expected response for local attributes

RGB values of the stimulus were first converted into luminance values
using a conversion function measured from our CRT monitor (using
ColorCAL colorimeter; Cambridge Research Systems), which fitted an
exponentiation with a power of 2.2 for the different RGB components.
The luminance values were the sum of the three RGB components (Fig.
3A,B). Then, for each pixel in the image, the local luminance and local
contrast were computed (Fig. 3C) according to Mante et al. (2005).
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Briefly, we used circular patches with diameter of 0.3° in which the local
luminance of a patch was defined as follows:

N
L= ZW,L,-, (4)

where N is the total number of pixels in the patch, L; is the luminance of
the ith pixel, and w; is the weight from a windowing function.
The local RMS-contrast of a patch was defined as follows:

c= 3w i 5)

The window weighting function was a circularly symmetric raised cosine
as follows:

2
a;= (7 o =27+ (i - mZ) +1, (6)

where d is the patch diameter; (x;, y;) is the location of the ith pixel in the
patch; and (x,, y,) is the location of the center of the patch. The weights
were normalized to sum to 1 as follows:

N
w;, = ai/Eaj. (7)
=

To calculate the local luminance and local contrast of pixels close to the
edges of the image, we used the luminance value of the gray screen (37
cd X m ~?) whenever parts of the patch fell outside the boundaries of the
image.

The local luminance and local contrast were then operated on by the
hyperbolic function (Naka—Rushton) as follows:

Luminance response = L1/(L? + L))
Contrast response = C1/(C? + C%)), (8)

with g = 3 and Ly, = 0.1 (Sit et al., 2009; Meirovithz et al., 2010), to
account for the nonlinearity response of V1 neurons to contrast and
luminance (Fig. 3D). Next, we applied population RF. We averaged the
local responses on circular weighted patches (again we used raised cosine
weights). Since we recorded population response of neurons from eccen-
tricities of 1-5° whose RF size varied with eccentricity (Angelucci et al.,
2002), we used patches with a diameter that varied linearly between 0.35
and 1.25° as a function of eccentricity (Fig. 3E). The last step (Fig. 3F) was
to apply the spatial retinotopic transformation we described previously
and in Figure 2. The resulted outcome of these steps was maps of the
expected neural response for local luminance and contrast (Fig. 3F).
Finally, we also tried to implement our model without applying Naka—
Rushton function; however, in this case the fitting of the VSDI data to the
model decreased significantly.

Spatial correlations

We calculated the Pearson correlation coefficient (r) between the ex-
pected response (x), either luminance or contrast (see above) and the
neural response ( y) for individual images according to the following:

(xp - 9_6)(}’;; - }_/)

Ty N
\/ (5 = %)* 2y, = 7’
p=1 p=1

where p is every pixel in V1. r was calculated on each time frame sepa-
rately using N pixels (N varied between 2034 and 2515). r was calculated
separately for faces and scrambled images ( phase perturbation and seg-
ment scrambling; Fig. 4 E, F, right).

Partial correlation was calculated according to the following:

) 9)

S e

_ Ty — (rxz X ryz)
RN TR by

which measures the correlation between x and y, controlling for z.

(10)
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We computed the partial correlation between (1) the expected lumi-
nance response and the measured neural response, controlling for the
effect of the expected contrast response, and (2) the expected contrast
response and the measured neural response, controlling for the effect of
the expected luminance response.

Local luminance and contrast correlation in the stimulus

Local luminance and local RMS contrast were calculated for every
pixel in the image as described above (Eqs. 4-7) using a circular patch
with a diameter of 0.3°. Pearson correlation coefficient (r) was calcu-
lated according to Equation 9 between the local luminance and the
local contrast of each image in the dataset, using all the pixels com-
posing the image.

Single-trial decoding

Classification algorithm. The data were randomly divided into a training
set comprising 70% of trials (both face and scramble) and a test set that
included the remaining 30%. We used a support vector machine (SVM)
classifier with a linear kernel. Other statistical classifiers such as k-nearest
neighbors (with k = 5 and Euclidean distance) performed similarly using
the same features. For classification control, we trained the classifier with
a randomized trial category.

Feature selection. Single pixel amplitude at single time frames provided
the input to the classifier. Since our data included ~2000 pixels over V1,
we needed to reduce the feature space dimensionality. To do so, we first
rank ordered the pixels according to the mutual information (MI) be-
tween the neuronal signal and the stimulus category in the set of training
trials (Ayzenshtat et al., 2010). We then selected pixels, starting with
those exhibiting the highest MI and adding pixels with gradually decreas-
ing MI.

Analysis of error trials

A discrimination error trial is defined as a trial in which the monkey was
presented with a face stimulus, but reported scrambled or vice versa.
Apart from the error, the behavioral parameters in these trials were sim-
ilar to those in correct trials (e.g., fixation time until stimulus onset or eye
movements until the GO signal).

We compared the cortical activity in correct and discrimination error
trials where the animal was presented with the same stimulus. As the
monkeys performed correctly in 80—85% of the trials, our sample of
correct trials was much larger than that of error trials. Therefore, to
equalize the amount of noise between the groups, we randomly chose the
same number of correct trials as error trials and calculated the neural
response (A in Egs. 11 and 12), averaged over this group of correct trials
(the typical number of error trials per session was 47 trials). A total of 10
imaging sessions from both monkeys were used for the discrimination
error analysis (in each session we had at least four error trials in every
condition, face or nonface).

We then calculated the Pearson correlation coefficient (r) between the
activity of a single trial (A;) and the averaged “correct” activity (A). This
was done for each correct trial and each error trial for every pixel in V1
(p) and every time window (W). We used a sliding window of 80 ms,
starting at 150 ms before stimulus onset and continuing until 250 ms
after stimulus onset. r values were averaged separately over all the correct
trials and over all the error trials. To avoid bias, we used exclusive subsets
of correct trials— one for calculating the average correct signal, and the
other for calculating the single trial correlations.

n
r( Atriul (correct)> Acnrrect)

w __ trial (correct)=1
<rcmrect P n > (1 1)

n

r(Alrial (error)> Acnrre[t)

trial (, )=1
<r£Y‘TDT>I‘JA/ = Heener n . (12)

The distance between the histograms of the correct and the error trials’
correlations, was measured in d’ for every time window, separately as
follows:
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_ mean(rmrrect) - mean(rz’rmr)

= std(r o)

(13)

Results

Two monkeys, trained on a face/scramble discrimination task,
were presented in each trial with either a color-natural image of a
monkey’s face or a scrambled version of the same image (Fig. 1 A;
see Materials and Methods). Using VSDI, we measured popula-
tion responses evoked in the striate cortex (V1) by the presenta-
tion of these images. The dye signal measures the sum of
membrane potential changes of all neuronal elements in the im-
aged area (Grinvald et al., 1999). Data were obtained from 26
imaging sessions in two hemispheres of two adult monkeys. On
each session a different pair of images was presented for a fixed
time interval (varying between 80 and 100 ms across sessions).

Population response evoked by natural images
Using VSDI we directly measured the spatiotemporal activation
pattern evoked by a brief presentation of natural images. The
temporal activation profile showed two distinct phases. The first
phase was an early and rapid increase, starting ~40 ms after the
stimulus onset, reflecting an increase in neural population activ-
ity. This was followed by a second late phase, starting ~160 ms
after the stimulus onset (Figs. 1, 4A, B). As shown in Figure 1C,
the two temporal phases showed different spatial patterns of ac-
tivation. The first appeared over most of the imaged area, gener-
ating a heterogeneous activation profile, whereas the second was
spatially confined. We therefore set out to characterize the two
phases and study their stimulus—response relationship in detail.
To do so, we first generated a map of the expected population
response by (1) computing a continuous retinotopic representa-
tion of the stimulus on the cortex, using a 2D analytical transfor-
mation of visual space into cortical space and (2) computing the
population encoding of local attributes of the stimulus, which
was followed by the retinotopic transformation in (1). After ob-
taining the expected response, we could spatially correlate be-
tween the maps of the observed neural response and the expected
one, for each time point along the time course of the VSDI signal
(see below).

2D analytical mapping of visual stimuli

To analytically transform the visual stimuli into cortical coordi-
nates we used a retinotopic model suggested by Schira et al.
(2007, 2010). Analytical transformation of the stimulus was fol-
lowed by image registration and an iterative optimization pro-
cess, yielding an optimal representation of the source image on
the primary visual cortex (Fig. 2; see Materials and Methods and
Egs. 1-3). Briefly, we applied a spatial transformation to each
point of the stimulus in the visual field in a polar coordinate
system (i.e., as a function of its polar angle and eccentricity; Fig.
2B,C). Next, we registered the transformed stimulus over the
cortical surface using a set of retinotopic points (Fig. 2 D-F). The
cortical coordinates of these points were obtained in a separate set
of imaging experiments using a small set of stimuli composed of
bars and point stimuli (Fig. 2D, E; see Materials and Methods).
Finally, we used a separate set of points to optimize the model’s
free parameters by aiming to minimize the RMSD between their
measured cortical coordinates and their analytical cortical coor-
dinates (see Materials and Methods). Since on each VSDI session
the stimulus was positioned differently in the visual field, we
could check the optimal fit of the model on each recording ses-
sion and obtain a set of model parameters independent of stim-
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Stimulus on ]

Figure 1.

e

0 AF/F 25)(103

Spatiotemporal activation pattern of the VSDI signal. 4, Example of a stimulus pair (monkey's face and its scrambled versions). Ai, scambling using phase perturbations; Aii, segment

scrambling (see Materials and Methods). B, Image of the blood vessel patterns of the exposed cortex. Dashed red lines mark the borders between V1and V2 and the lunate sulcus. €, VSDI activation
map evoked over V1 by 100 ms presentation of visual stimulus. G, if, Show a sequence of frames evoked by the presentation of a coherent face stimulus and a scramble face stimulus (segment
scrambling), respectively. Maps are averaged over 28 trials. Numbers correspond to milliseconds after stimulus onset. A, anterior; P, posterior; M, medial; L, lateral.

uluslocation. The optimal fit yielded RMSD values 0of 0.35 = 0.06
mm and 0.42 * 0.10 mm for monkey C and monkey L, respec-
tively (mean = SD here and throughout). This means that the 2D
accuracy of our mapping is up to *2 pixels. A set of control
experiments using a stimulus composed of an array of Gabor
elements further validated the model’s fit, showing a good fit
between the measured neural activity and the 2D mapping of the
Gabor array stimulus (data not shown).

Computing the map of the expected neural response based on

local attributes

The main input of V1 is known to encode basic stimulus attributes
(including local contrast and luminance). To compute the map of
the expected neural response for local luminance and contrast in our
stimuli we performed the following five steps (Fig. 3; see Materials
and Methods). (1) Each pixel in the stimulus image was converted
from RGB values to luminance values (Fig. 3A,B). (2) Next, we
computed the local luminance and local RMS-contrast for each pixel
in the image using a small circular patch that reflects the RF size of
neurons in early visual stages (Fig. 3C; Eqs. 4—7) (Mante et al., 2005;
Frazor and Geisler, 2006). (3) The resulting images were then oper-
ated on by a nonlinearity function (Naka—Rushton; Eq. 8), reflecting
the nonlinear responses of neurons in V1 to luminance and contrast
(Fig. 3D) (Albrecht and Hamilton, 1982; Shapley and Enroth-
Cugell, 1984; Bonds, 1991; Heeger, 1992; Shapley and Lam, 1993;

Carandini and Heeger, 1994; Geisler and Albrecht, 1997; Geisler et
al., 2007). (4) Our next step was to apply the populations RF to take
into account that the VSDI signal of each pixel in V1 reflects the
membrane potential of neuronal populations (rather than single
neurons), emphasizing subthreshold synaptic potentials (Grinvald
and Hildesheim, 2004). Since the RF size depends on eccentricity, we
used a patch size which varied linearly as a function of eccentricity
(Angelucci et al., 2002, their “Summation Field”). As a result of these
RF characteristics, the outcome images are somewhat blurred. Step 5
(Fig. 3F) was to apply the spatial retinotopic transformation as de-
scribed in the previous section and in Figure 2. In summary, the
outputs of our model are maps of the expected neural response
based on the local contrast and local luminance of the stimulus (Fig.
3F).

Our simplified model is designed to estimate the expected
neural response based on stimulus conversion to either local lu-
minance or local contrast, followed by analytical retinotopic
mapping. To validate the steps in our model, we used a stimulus
composed of a Gabor element presented over a gray background.
Indeed, Figure 3 (bottom) confirms that the model implementa-
tion reflects the local luminance and contrast of the original stim-
ulus while subsequent steps show the expected neural response.
We then calculated the spatial correlation between the map of the
neural response and the map of the expected response and found
that the neural response evoked by a Gabor stimulus was posi-
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Analytical 2D mapping of the visual stimuli onto cortical space. A, An example of a stimulus as seen in the visual field, shown here against a polar grid. B, Enlargement of the stimulus

zone in A. (, The stimulus zone in B after applying the analytical spatial transformation. D, Top, A series of intrinsic imaging activation patterns evoked by a vertical bar (0.25 X 6°) separately
presented at different locations parallel to the LVM: LVM —0.5°, LVM —1.5°, VM —2.5° (—, to the left of LVM in the contralateral hemifield). Bottom, A series of activation patterns evoked by a
horizontal bar (6 X 0.25°) separately presented parallel to the HM: HM —2.5°, HM —3.5° (—, below HM). Insets, Stimulus positions relative to the fixation point (red dot). £, Image of the blood
vessel patternin V1 taken on one VSDI experiment. The solid red lines mark the retinotopic mapping of the Cartesian lines shown in D. Dashed red lines, the borders between V1 and V2 and the LUS;
black asterisks, two anchor points used for image registration; black dots, six points for optimizing the model’s fit (see Materials and Methods; note, the intrinsic imaging recording and the VSDI
recording were done on separate imaging days, therefore due to the relative angle between the camera and the cortical surface the blood vessels may seem slightly shifted between Dand E). F, The
spatially transformed stimulus (from C) after image registration on the exposed cortical surface. LUS, lunate sulcus; UVM, upper vertical meridian; LVM, lower vertical meridian; HM, horizontal

meridian, A, anterior; P, posterior; M, medial; L, lateral.

tively correlated with both the luminance and the contrast, where
the contrast exhibits higher correlation (r = 0.58 and 0.83 for
local luminance and local contrast, respectively).

Our model did not take into account other stimulus attributes
known to be represented in V1, such as orientation, spatial fre-
quency, or color. We were interested in imaging a large field of view,
and therefore used a relatively large pixel size of 170 X 170 um?,
which is approximately the size of an orientation, spatial frequency,
or a color column in V1. Therefore, it is reasonable to assume that
the response in each pixel is influenced by several orientations, color,
and spatial frequency domains, which make it difficult to resolve
their effects at the spatial domain, i.e., at the pixel level.

All of the above steps generated the expected neural response
(to local attributes) that was spatially mapped onto the primary
visual cortex in eccentricities of ~1-5°. This enabled us to com-
pute the spatial correlation with the measured population re-
sponse evoked in thousands of points spread over V1.

Spatial correlation between the maps of the expected response
and the early measured response

We calculated the spatial correlation (Pearson correlation coeffi-
cient, 7; Eq. 9) between the map of the expected response (Fig. 3F)

and the map of the measured response, using all the pixels in V1
(Fig. 1C), on each time frame separately (Fig. 4C, inset). As we
have shown above (Fig. 1), the VSDI signal clearly exhibits two
temporally distinct phases of activity (Fig. 4A, B). Here, we will
first focus on the early phase.

Local luminance

The expected luminance response showed a significant, high pos-
itive correlation with the neural response (Fig. 4C). This correla-
tion started at ~40 ms, (when the VSDI signal started to rise
above baseline; Fig. 4 B) and reached a maximal value of 0.69 =
0.08 at 60 ms after stimulus onset (n = 52 images, data from
both monkeys; Fig. 4E). This maximal value was sustained
until 100 ms after stimulus onset without significant further
modulation, declining shortly after the visual stimulus was
turned off. Considering the sample size used to compute this
spatial correlation (1800-2500 pixelsin V1), a value of ~0.7 is
very high, meaning that almost 50% of the neural response
variance during a single time frame could be explained solely
by the local luminance of the stimulus (Fig. 4E). The remain-
ing variance may be explained by other local attributes, which
our model did not consider (orientation, spatial frequency, or
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luminance of the screen = 75 cd X m ~2). €, The local luminance (above) and local RMS-contrast (below) obtained by the weighted sum of a circular patch with a radius 0f 0.15°. D, The
stimulus luminance and RMS-contrast shown in C, operated on by a nonlinear function (Naka—Rushton). £, The expected luminance response (above) and the expected contrast response
(below) obtained by the weighted sum of a circular population RF (with size that varied linearly as a function of eccentricity). F, The expected luminance and contrast response after
spatial transformation to cortical coordinates of V1 (Fig. 2; see Materials and Methods). Bottom, Model validation. Computing the expected neural response of a single Gabor stimulus.
A, A Gabor element presented over a gray background. The red dot represents the fixation point of the monkey. B, The expected luminance and contrast response of a single Gabor, after
spatial transformation to cortical coordinates (calculated as described above). €, The neural population response evoked in V1 by the presentation of a single Gabor, averaged over two
time frames at 60 —70 ms poststimulus onset (shown after 2D Gaussian filter with o = 1.5 pixels). The spatial correlation values between the expected and the observed response are

0.58, 0.83 for the local luminance and local contrast, respectively, calculated over 452 pixels.

color). There was no significant difference between the spatial cor-
relations of face and scramble trials (0.69 * 0.08 and 0.68 = 0.07 at
60 ms after stimulus onset, respectively), further suggesting that dur-
ing this early time, the information conveyed is mainly of the local
luminance rather than perceptual effects. After the stimulus was
turned off and the correlation declined to baseline, a second small
rise in the correlation was shown during later times (along with the
second modulation of the signal; Fig. 4 B, C); however, further anal-
ysis revealed this correlation is not significant across sessions (see
below, The relation between the stimulus content and the late neural
response).

Local contrast

The spatial correlation of the expected RMS-contrast response
showed a significant negative correlation to the measured neural
response (—0.27 % 0.13, face trials; —0.25 = 0.13, scramble trials;
Fig. 4D, F) during the early response phase, followed by a base-
line value during the late phase.

However, the definition of contrast in a complex image is not
straightforward (Peli, 1990). Basically, it is the local luminance
modulation divided by the local mean luminance at each point of
the image. The local RMS-contrast is unsigned and normalized
by the mean local luminance (Fig. 3C; see Materials and Meth-
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Spatial correlation between the maps of the population response and the expected response. 4, Neural response time course along the imaged cortical space evoked by a face stimulus.

Each plot corresponds to the mean signal averaged over 1 X 1mm? (6 X 6 pixels). Dashed red lines schematically mark borders between cortical regions. B, Enlargement of the signals averaged
over the region of interest (ROI) in the blue and green boxes in B. Trace width denotes =1 SEM over 28 trials; the black bar represents the stimulus presentation time. C, D, Typical example of spatial
correlation between the neural response (spread over 2034 pixels in V1) and cortical mapping of the expected luminance response (€) and the expected contrast response (D) as a function of time
(see Materials and Methods). Black and red lines correspond to a coherent face stimulus (shown in A and B) and a scramble stimulus, respectively. Gray curve, correlation between the measured
neural activity and the expected activity computed on a randomly shuffled set of stimuli (mean == SD, n = 50). Dashed gray lines, the first time point exhibiting significant correlation and the time
point with maximal correlation. Black bar denotes stimulus presentation. E, Left, Shows an example of a scatter plot of the expected luminance response of one face stimulus versus the neural
response of all the pixels in V1 during one frame (¢ = 60 ms after stimulus onset, marked with an arrow in D, r = 0.69). Right, Shows the histogram of the spatial correlation values of all the images
presented to both monkeys (n¢,c. = 26, N rmpie = 26, scrambled images include both types of scrambling) at t = 60 ms after stimulus onset. No significant difference was found between the face

and scramble. F, Same as in E, only for the correlation between the expected contrast response and

ods). As a result, a local patch with low mean luminance (i.e.,
consists of mostly dark pixels) and very few bright pixels, will
yield high contrast whereas a local patch with high mean lumi-
nance (i.e., consists of mostly bright pixels) and very few dark
pixels, will yield low contrast.

To independently test the correlation of the neural response to
the local luminance and the local contrast of the stimuli, we
needed to examine the contrast-luminance relationship of our
stimuli. As shown in previous study (Lindgren et al., 2008), we
also found a spatial dependency between the local luminance and
contrast of our stimuli, specifically a significant negative correla-

the neural response (r = —0.39).

tion (—0.45 = 0.13; averaged over 52 images with no significant
difference between the face and the scramble images) (Fig. 3; see
Materials and Methods). We therefore computed the partial cor-
relation (i.e., the correlation between two variables after exclud-
ing the external effect of a third; Eq. 10) between the expected
luminance response and the measured neural response, control-
ling for the effect of the expected contrast response and vice versa
(see Materials and Methods). The partial correlation values to the
expected luminance response were almost unchanged (0.71 *
0.14), whereas the partial correlation to the expected contrast
response were closer to zero (—0.11 % 0.18, averaged over the
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was not surprising, considering the differ-

ences among the low-level features of the

face versus scramble stimuli that are ex-
¢ pected to be encoded in the early input of
V1. However, the significant performance
of the classifier during the late phase sug-
gests that V1 still holds some information
about the stimulus category, even when
the stimulus is no longer present in the
visual field and after the early response has
returned to baseline. Thus, we further
asked what information is conveyed in the

20 =160 ms post stimulus onset
=== Randomized data
50 I
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Figure 5.

face and the scramble trials with no significant difference between
them). That means that the neural signal carries information
mainly about the local luminance of the stimulus independent
of the local contrast, whereas the contrast information is
largely dependent on the luminance.

Finally, we also computed an alternative model that accounts
for local luminance adaptation in the retina. This was imple-
mented by applying the nonlinearity (Naka—Rushton function)
using a variable L, that was computed separately for each pixel.
The local L, for each pixel was defined as the mean local lumi-
nance in a circular patch of 0.5° (i.e., the luminance gain for each
pixel varied locally). The resulting expected neural response re-
flects the local signed contrast (data not shown). We note that in
this model the expected neural response is very similar to the
expected luminance response (Fig. 3F), therefore we obtained a
significant positive correlation as in the model we have shown in
Figure 3, yet their values were smaller (r = 0.52 £ 0.13).

In summary, we found that the early response phase en-
codes information about the low-level, local attributes of nat-
ural stimuli.

Single-trial discrimination

To study how much information the neural activity conveys
about the stimulus category at different times, we tested whether
we could use the neural activity to discriminate between face and
scramble stimulus categories on a single-trial level. A binary clas-
sifier (see Materials and Methods) was trained to decide whether
a trial was a face or a scramble trial. A random subset with 70% of
the trials was used for training and the remaining 30% for testing.
The classifier performance at each time frame was assessed as a
function of the number of pixels (Fig. 5A4). Using, for example,
93.2 £ 42.2 pixels gave a classification performance level of
94.4 = 3.8% in the early time frame (50 ms after stimulus onset,
averaged across imaging sessions from both monkeys, chance =
50%). In the late time frame (160 after stimulus onset) maximal
classification reached a lower value of 81.6 & 4.7% using 120.2 *
41.1 pixels.

To summarize, maximal performance of the classifier demon-
strated two phases of information processing, corresponding to
the two response phases. The first was during the early processing of
the stimulus yielding high-classification performance (Fig. 5B). This

Time (ms)

Single-trial readout performance. A, Performance of an SYM classifier (see Materials and Methods) at the single trial
level as a function of the number of pixels used (example of one imaging session, n = 56 trials, 28 face trials, 28 segment
scrambling nonface trials). Blue and red traces, Classification performance using neural activity at t = 50 msand t = 160 ms after
stimulus onset, respectively (mean == SEM, n = 50 iterations, face vs phase perturbation nonface). Gray trace, Performance of the
classifier trained with the randomized trial category (control). B, Maximal performance of the classifier over time (using 125 pixels),
showing two phases of information processing. Blue and red arrows mark the time frames plotted in A.

100 150 200 250  [ate phase and how it differs from the early

stimulus-locked activity.

The relation between the stimulus
content and the late neural response

As shown in Figure 4B, the second re-
sponse phase consisted of an increase in
activation starting ~ 160 ms after stimulus
onset. Unlike the first phase, the spatial
correlation between the response in this
late phase and the local attributes of the stimulus was found to be
not significant (both with the luminance and with the contrast,
r=0.10 = 0.13, 0.07 = 0.16, respectively, averaged over all the
face and scramble stimuli, calculated as described above).

To further investigate the activity in the late response, we
asked whether it is mainly an off-response, reflecting the stimulus
offset. Hence, we presented our stimulus to a naive monkey dur-
ing a passive fixation task (i.e., a third monkey that was not
trained on a face/nonface discrimination task). The monkey was
not required to report the content of the image, but only to main-
tain fixation. We found that when the monkey was not required
to attend and report the image category, the late phase did not
occur (Fig. 6 A). Furthermore, to study whether the late modula-
tion persisted during stimulus presentation (in a discrimination
task), we used a longer presentation of the stimulus and extended
the stimulus duration to 300 ms. We found a significant late
modulation occurring at times similar to those observed with the
briefer stimuli, while the stimulus remained present in the visual
field for 300 ms (Fig. 6 B). We note that the late modulation was
much smaller for the long stimulus duration compared with the
brief stimulation. However, this might be expected, as during the
long stimulus presentation, the retinal input keeps on streaming
into V1 and thus “diluting” the modulation of the late phase.
Altogether, these findings suggest that the late response does not
reflect merely an off-response. In fact, the late response was pre-
viously reported to occur at similar or partially overlapping time
windows (Lamme, 1995; Zipser et al., 1996; Super et al., 2001a,b),
and has been linked to higher visual functions such as pop-out,
grouping, figure-ground segregation, working memory, and
spotlight of attention. Here we further show that this late phase
occurred during natural images processing. Since we measured
the neural activity from a large cortical area, we could study the
late response in both time and space with respect to higher as-
pects of visual processing.

When we examined the characteristics of the late phase, we
noticed it was less time locked to the stimulus presentation com-
pared with the early response, and more localized in the spatial
domain. an increase in the spatial variance across the responses of
V1 pixels. We therefore computed the spatial variance, i.e., the
variance of the response amplitude across all the pixels in V1 (Fig.
7B; see Materials and Methods), for each time frame. This en-
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Figure 6.  An off-response cannot explain the late neuronal modulation. A, Time course of

responses evoked by a scramble stimulus with variable duration in a fixation task (i.e., a naive
monkey was required to fixate without the report about the stimulus category), averaged over
227 pixels in the center of the chamber. Colors denote the stimulus duration time: blue, green,
red, gray, and yellow correspond to 25,40, 60, 80, and 100 ms, respectively. Line width denotes
==1SEMover 15 trials. B, Time course of responses evoked by a 300 ms stimulus presentation in
a face/scramble discrimination task, averaged over 172 and 181 pixels in two separate regions
of interests (ROls). Line width denotes =1 SEM over five trials (carefully checked for eye move-
ments); black bar, stimulus presentation. The blue ROI exhibits significant modulation (Wil-
coxon rank-sum test between t = 100 and t = 170 ms poststimulus onset, p < 0.005 and
between t = 170 and t = 200 ms poststimulus onset, p << 0.005).

abled us to identify the time frame potentially conveying essential
information during the late phase (the time frame with the max-
imal spatial variance). The example in Figure 7A, B shows a late
increase in the response variance peaking at ~170 ms after stim-
ulus onset which was not accompanied by a notable increase in
the mean response amplitude (as opposed to the increase in the
mean response seen in the early phase; Fig. 7A). This variance
modulation indicated a potential increase in the information
conveyed by the signal. We therefore calculated the distribution
of the response amplitude at this time point of local maximum in
the spatial variance. We found a bimodal distribution (Fig. 7C)
that was consistent across all the imaging sessions. The bimodal
distribution demonstrated a group of pixels that underwent an
increase in amplitude, meaning a second neural modulation, and
a larger group of pixels that remained approximately at baseline

Ayzenshtat et al. e Population Response in the Primary Visual Cortex

level of activity. This bimodality was not present during the early
response, when activity was spread over most of the imaged area
(Fig. 7A). To spatially characterize these groups, we mapped all
the pixels in V1, assigning black and red color to each pixel based
on its group (using a threshold set at the local minimum of the
bimodal distribution). We observed a clear spatial separation be-
tween pixels belonging to the high-amplitude group and to the
low-amplitude group (Fig. 7D). Although this threshold-
crossing mapping resulted in some information reduction, it
simplified the data and revealed an important spatial relation to
the stimuli, as shown below.

Next we examined how this spatial distribution was related to the
original stimulus and found that in face trials, pixels with high am-
plitude (Fig. 8, red) corresponded mainly to the center of the face
whereas pixels with low amplitude (Fig. 8, black) corresponded to
other parts of the stimulus (e.g., fur, image background). When the
location of the face’s center was shifted along the cortical space, the
pixels exhibiting high amplitude were shifted along with it (Fig.
8i,iii). In scramble trials the same mapping (using the threshold de-
fined in the face trials) produced sparser and more distributed activ-
ity over the cortical area (for both types of scrambling). To quantify
the difference between the spatial activity patterns in the face and the
scramble trials, we first calculated the centroids of the low- and the
high-amplitude groups, defined as the mean spatial location of each
group. We then calculated the distribution of the distances from the
centroid of each pixel in the two groups. Computing the distance
between these distributions (d') allowed a quantitative comparison
between them (Fig. 7E). The face trials showed a highly significant
difference between groups (d’ = 1.55 % 0.38; averaged over 18 im-
aging sessions from both monkeys), indicating that the late neural
response was efficiently clustered in space. The spatial difference
between the groups was significantly lower in the scramble images
(d' = 0.52 = 0.17; both types of scrambling), implying that although
there were two groups exhibiting significant amplitude difference,
these groups were less localized in space. One explanation for this
effect can be the spatial scrambling of image segments in the scram-
bled stimuli, which may lead to a less localized spatial activity. How-
ever, the low correlation of the late phase to the local stimulus
attributes does not support this hypothesis.

The 2D mapping of the stimulus onto the cortex can further
demonstrate that the late phase is not directly related to the local
luminance of the stimulus. As shown in Figure 8, we examined dis-
tinct regions with high and low local luminance along the
mapping of the stimulus on the cortex, and compared them to
the spatial pattern of the late neural response. In all the coher-
ent face stimuli, there are regions of high luminance (which
exhibit high amplitude during the early response) that did not
exhibit a late neural response (Fig. 8, region #1), while other
regions of high luminance did exhibit a late neural response
(Fig. 8, region #3). Therefore, these results further support the
notion that the late modulation was not merely a late reflec-
tion of the luminance.

Altogether, these findings suggest that the late response does
not have a strong relation to the stimulus local attributes, and a
possible explanation for the less localized activity in the scramble
stimuli during the late phase may be the lack of a well defined
context and/or coherent percept (see Discussion). In fact, a rea-
sonable hypothesis would be that the late phase includes aspects
of higher visual processes, such as perceptual processing of the
stimulus. The analyses we present below strongly substantiate
this suggestion.
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was very close to zero, 0.005 * 0.020, when

i averaged over 10 imaging sessions from
I both monkeys. However, during the late re-
sponse phase the difference between the

P correct and error distributions was much
larger and significant (Fig. 9C). The d’ value

reached a maximum during the late phase in

both face trials and scramble trials (Fig.

250 9D, F). When averaged over 10 imaging ses-
sions from both monkeys, the d’ in the late
phase reached a value of 0.998 * 0.134.
There was no significant difference between
the d’ of face and scramble trials (neither in
their values nor in their dynamics). Alto-
gether, these results show that the response
dynamics of error trials was similar to those

250 of correct trials during the early phase (not
surprising considering that both correct and
error trials share the same visual stimulus)
but deviated significantly from the “correct
activity” during the late phase, before the
animal reported on the perceived stimulus.

Having discovered when this effect oc-
curs, we next examined where it occurs. A
threshold was set on the above correlation
value (the 75% percentile of the distribution
of correct trials; Fig. 9C). Using this thresh-
old we created two maps for face trials,
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Figure7.  Spatial mapping of the late response. 4, Example of VSDI amplitude distribution across /1 pixels as a function of time

(one face stimulus imaging session, averaged over 30 trials, n = 2510 pixels, bin width = 10 ms). Color bar denotes normalized
distribution; black bar denotes stimulus presentation time. B, The variance of the VSDI response across all V1 pixels, i.e., the spatial
variance, as a function of time. (, Bimodal distribution in VSDl amplitude at time marked with arrow in B (t = 170 ms after stimulus
onset). Dashed gray line marks the amplitude threshold for the mapping in . Inset shows a unimodal amplitude distribution att =
60 msafter stimulus onset. D, Neural activity mapin V1 att = 170 ms after stimulus onset. Black and red pixels are those below and
above amplitude threshold, respectively. E, Distributions of distance-to-centroid of the black and red pixel groups in D.

Neural correlates of behavior

To test whether the late neural response carried information on
the global percept of the visual stimulus, we correlated the neural
response with the animal’s behavior. To do so, we examined the
animal task performance using analysis of discrimination error
trials.

We performed our analysis on correct trials versus discrimi-
nation error trials, i.e., trials in which the animal was presented
with a face stimulus, but reported scramble and vice versa: trials
in which the animal was presented with a scramble stimulus, but
reported face. This means, that in both correct and error trials the
animal was seeing exactly the same stimulus; however, its behav-
ioral report was different. Comparing correct and discrimination
error trials could reveal whether the behavioral difference was
reflected in the imaged V1 activity (Fig. 9, an example from one
recording session). To do so, for every pixel in V1, we calculated
the temporal correlation coefficient (1) between its activity in a
single trial and its average “correct” activity (see Materials and
Methods). This was done separately for correct and error trials
using a sliding time window (Eqs. 11 and 12). Figure 9A—C shows
the r value distribution of the correct and error trials, for all the
pixels in V1 before the onset of the stimulus, during the early
response and during the late response. We then computed the
distance (d') between the correct and the error trial distributions
as a function of time (Eq. 13). The d’ of the early response phase

where V1 pixels with r value above the
threshold were marked with gray and V1
pixels with r value below the threshold were
marked with black. One map was generated
for the correct trials and another map was
generated for the error trials. The map of the
correct trial correlations showed a compact
cluster of pixels, while the map of the error
trial correlations was much sparser (Fig.
9E). For the scramble stimulus trials, the op-
posite occurred: the map of the correct trial correlations showed a
wide spatial distribution, whereas the map for the error trials (i.e., the
monkey saw a scrambled image but reported face) correlations
showed a clustered and more spatially compact set of pixels (Fig. 9G;
see quantification below). Serendipitously, we found that the cluster
of pixels reflecting the high correlations of correct face trials corre-
sponds well with pixels located at the center of the face (Fig. 9E,
contour line, left).

These results suggest that on trials where the monkey reported
seeing a face (whether these were error or correct trials), pixels
that were highly correlated with the correct activity appeared in a
clustered area (see analysis in the next paragraph). In the correct
trials, this cluster corresponded to the central parts of the mapped
face. Similar results were obtained from five recording sessions in
which both monkeys made a significant number of discrimina-
tion errors for both the face and the scramble condition.

To quantify the difference in spatial activity between correct
and error trials, we calculated the centroid of the group of pixels
above threshold and the mean distance of each pixel from the
centroid. In face trials this distance exhibits significant difference
and was 2.14 * 0.46 and 3.82 = 0.95 mm in correct and error
trials, respectively (Wilcoxon rank-sum test, p < 0.005). In
scramble trials (both types of scrambling), it was also significantly
different and was 3.61 = 0.7 and 2.39 * 0.43 mm in correct and
error trials, respectively (Wilcoxon rank-sum test, p < 0.005).
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Linking the late neural response with stimulus features. Four stimuli superimposed over the map of V1 activity. 4, Stimuli. B, Stimuli after spatial transformation. €, Contour line of the

stimuli after spatial transformation (defined using a standard algorithm for edge detection for presentation purpose only). D, Contour line of the stimuli superimposed on the late response mapping
after threshold crossing (as shown in Fig. 7; on each row the neural activity was averaged over 30 trials). 1, Area with maximal luminance of the image but located outside the face region. 2, Area
with low luminance. 3, Area with high luminance inside the face region. Stimuli (i) and (ii) were positioned at x = 1.9°, y = 3.7° from the fovea (center of image), stimuli (i) and (iv) atx = 1.8°,

y = 3.7°from the fovea.

Thus, the neural response in V1 is correlated with the animal’s per-
ceptual report, suggesting that V1 may receive late neural input re-
lated to the perceived content of the stimulus. Finally, we validated
that the above correlation patterns were not due to differences in
response amplitude between correct and error trials. We further
elaborate on the relation between the spatial correlation patterns and
the animal’s perceptual report (see Discussion).

Another behavioral aspect we studied was the animal’s reac-
tion times (RT). However, we did not find a significant correla-
tion between the neural activity and RT (data not shown).

Finally, we note that due to the brief stimulus duration as
well as microscaccdic inhibition induced by the onset of stim-

ulus presentation (Engbert, 2006; Rolfs et al., 2008; Meiro-
vithz et al., 2012) we found almost no microsaccades during
the first 200 ms poststimulus onset (the neuronal data analysis
performed in this study was restricted to this time period).
Therefore, the differences in the neural responses evoked by
different stimuli cannot be explained by microsaccades (see
Materials and Methods).

Discussion

Population activity was measured simultaneously from thou-
sands of points in V1 using VSDI, while the monkey performed a
visual discrimination task. Analytical 2D mapping of the stimulus
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(1) the difference between the intracranial
pressure and the fluid pressure above the
artificial dura, (2) the position of the arti-
ficial dura, and (3) the angle between the
camera lens and the cortical surface.

To calculate the expected neural re-
sponse we applied the nonlinear Naka—
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Rushton function, previously used to de-
scribe the luminance-response function of
retinal neurons (Naka and Rushton, 1966;
Baylor and Fuortes, 1970; Boynton and
Whitten, 1970) and the contrast-response
function of V1 neurons (Albrecht and

Error-trials

\\ o Hamilton, 1982; Li and Creutzfeldt, 1984;
g  Sclaretal., 1990; Geisler and Albrecht, 1997;
' ] @ Tolhurst and Heeger, 1997). To obtain an
3 expected neural response, we used the Na-
% ka—Rushton function with a fixed set of pa-
% rameters across the entire visual stimulus
T and the entire image set (except in the case
: of the local luminance adaptation model).
T (=) Despite thi timal estimati till
pite this nonoptimal estimation we s
F % obtained highly significant positive correla-
1 @ tions with the stimulus luminance (Fig. 4E).
: 3
&, €  Neural correlates of local luminance

: o andlocal contrast and the relation

0 5 between luminance and contrast in our
00 0 100 200 % set of images

Time (ms) ®  The VSDI signal showed a strong positive
correlation to the expected local lumi-
2mm nance response, mainly in the first re-
Figure 9.  Error trals analysis. A—C, Distribution of the temporal correlation coefficent, r, (see Materials and Methods) inface ~ SPOTs€ phase. The high correlation value,

stimulus trials, averaged over the correct trials (blue, n = 7) and the error trials (red, n = 7) in one recording session. For adequate
comparison, we matched the number of correct and error trials. The distributions are shown before stimulus onset (4), during the
early response (B), and during the late response (). Temporal correlations were calculated in a window of 80 ms. D, Distance
between the correct and the error histograms (d') as a function of time. Note the time scale denotes the center of the time window
used to calculate the temporal correlations. Arrows, Time points corresponding to the distributions in A—C. E, Map of all the pixels
inV1 with rvalue above (gray pixels) and below threshold (black pixels). Threshold is marked by the dashed gray line in . Left and
right show the correct and the error trials, respectively. F, G, As in D and E, only for scramble stimulus trials (segment scrambling;
n =7 correct trials and 7 error trials). The data here were obtained from a single recording session.

into cortical coordinates enabled us to demonstrate a robust re-
lation of the early neural response to local stimulus attributes and
a later response correlating with the animal’s perceptual report.

Analytical mapping of the visual stimulus into cortical space
and computation of the expected neural response

Few models have been proposed to account for the mapping of
the visual space onto V1 (Schwartz, 1977; Polimeni et al., 2006;
Schira et al., 2007, 2010). We used a recent model suggested by
Schira et al. (2007, 2010) and found a good fit to our data as
evident from the small RMSD values and a good fit to a Gabor
array stimulus (data not shown). We also found that the « pa-
rameter (the angular compression along the iso-eccentricity
curves) converged here to a smaller value than previously re-
ported, suggesting a greater elongation of the V1 cortical surface
in one dimension, parallel to the VM. This means that we found
agreater anisotropy in the visuotopic map of V1 in M. fascicularis.
Distortions of the V1 visuotopic map (Das and Gilbert, 1997) or
curvatures of the cortical surface during imaging may also affect
the fit to the analytical model. For example, the cortical surface
can appear more concave or convex in our dataset depending on

~0.7, suggests that the local luminance of
natural images accounts for ~50% of the
neuronal variance in V1 shortly after
stimulus presentation (~60 ms post-
stimulus onset). This finding is in agree-
ment with recent studies showing that
there are surface-responsive neurons that
convey information about luminance. For
example, Roe et al. (2005) found that
around 50% of the sampled V1 neurons were significantly mod-
ulated by local-luminance changes. Geisler et al. (2007) also
showed that most of the neurons in the primary visual cortex
carry substantial local luminance information, although we note
that our local luminance changes are much smaller than the ones
reported in this study. Vladusich et al. (2006) also concluded that
luminance processing predominates over contrast integration in
the vast majority of surface-responsive neurons in V1, and
Tucker and Fitzpatrick (2006) showed that layer 2/3 neurons of
tree shrews’ primary visual cortex, are sensitive to large-scale
changes in luminance.

The local RMS contrast was negatively correlated with the
population response evoked by our set of natural images (unlike
the case of the Gabor stimulus) (Fig. 3, bottom; Meirovithz et al.,
2010). However, this can be linked to the fact that in our set of
natural images we found a significant negative spatial correlation
between the local luminance and contrast. Indeed, a recent work
(Lindgren et al., 2008) has shown that there are spatial dependen-
cies between the local luminance and contrast of natural images.
This is different from earlier studies that have shown that natural
images exhibit a weak negative correlation between local lumi-
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nance and local contrast, implying the two are nearly statistically
independent (Mante et al., 2005; Frazor and Geisler, 2006). This
discrepancy may result from our unique stimulus set (coherent
and scrambled faces), which comprises of only two stimulus cat-
egories with a maximal luminance of 75 ¢cd X m 2 while previ-
ous studies used a large set of scenery images exhibiting a wide
range of luminance values (~50-5000 cd X m ~2).

To correct for the local luminance—contrast relation we com-
puted a partial correlation and found no significant correlation
between the local RMS contrast and the population response.
This is surprising, mainly due to many previous studies demon-
strating contrast coding in V1 (Albrecht et al., 2004), including
when dealing with natural images (Weliky et al., 2003). A possible
explanation could be related to the way we correlated the ob-
served response with the expected one. Here, we investigated the
population responses measured from a continuous space in V1
that corresponds to a continuous space in the visual field. We
then computed a spatial correlation between two maps com-
posed of thousands of points at single time frames. We did not
integrate the neural response over time, nor did we subsample the
cortical space. Hence we were able to see the neural correlates to
the whole image, and not only to few isolated patches within the
image, as was done in previous studies.

Another possible explanation might be related to the contrast
distribution within the stimuli that is much more diverse and
widespread in natural images than in simple artificial stimuli
(Fig. 3). The presence of contrast outside the classical RF has been
shown to have a suppressive effect, which is contrast dependent
(Levitt and Lund, 1997; Jones et al., 2001; MacEvoy et al., 2008).
It is possible therefore, that a diverse contrast distribution will
induce widespread suppression on the neuronal activity, which
would result in a lower overall contrast response.

Population activity in the late neural response phase and
behavioral correlates

The late neural modulation in V1 response (~100-300 ms after
stimulus onset) showed nonsignificant correlation to both local
luminance and contrast. It occurred during longer stimulus pre-
sentations (300 ms), and was absent from the activity of a naive
fixating animal that was not required to discriminate. These two
findings suggest that the late phase cannot be explained by an
off-response effect. Previous studies have suggested that the late
modulation reflects aspects of higher level visual processing, such
as figure-ground segregation (Lamme, 1995; Zipser et al., 1996;
Super et al., 2001b), working memory (Super et al., 2001a), and
attention (Pooresmaeili et al., 2010). The short stimulus presen-
tation enabled us to study this response after stimulus offset, i.e.,
in the absence of direct retinal input. The occurrence of the late
response after stimulus offset further supports the hypothesis
that it may result from top-down processing (Lamme et al., 1998;
Roland et al., 2006).

It can be argued that the late phase of activity is directly related
to the motor planning and execution of the reporting saccade
(which was absent during the fixation task). However, Super et al.
(2001b) have shown that late activity in macaque V1 preceding a
reporting saccade is not directly associated with the subsequent
motor response. Furthermore, Supér and Lamme (2007) have
found no relation between the amplitude of the late V1 activity
and the reaction time of visually guided saccades (as opposed to
memory-guided saccades) in a figure-ground detection task. This
is in accordance with our results, where we found no correlation
between the late phase characteristics and the animal reaction
time of the reporting saccade. Finally, even for memory-guided
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saccades, Super and Lamme (2007) report that V1 activity asso-
ciated with a subsequent saccade is spatially specific and found
uniquely at the area corresponding to the target location of the
saccade. The visually guided saccades in our paradigm were di-
rected to targets located at peripheral eccentricities (>7°), which
is outside our imaging area.

Our single trial analysis unexpectedly revealed that during this
late phase there was still substantial information on stimulus cat-
egory—responses to face or scramble were significantly distin-
guishable. Analysis of discrimination error trials demonstrated
that the late phase correlated with the animal’s behavior (whereas
the early phase did not carry any information on the discrimina-
tion errors) and revealed regions relevant to the animal’s discrim-
ination performance. We note that although the late phase
correlates with the animal discrimination errors, this does not
necessarily mean that it should hold more information regarding
the stimulus category than the early phase (as demonstrated by
the higher classification performance during the early phase). In
fact a reasonable assumption is that the first phase will carry
maximal information on the stimulus content (local features of
the coherent face or local features of the nonface), which is di-
rectly related also to the stimulus category (face or nonface). We
suggest that based on the information carried in the first phase,
the monkey performs a perceptual decision that is reflected in the
second phase and therefore correlates with the animal’s behavior.

Late neural activity may convey higher aspects of

stimulus processing

The late neural activity appeared in regions corresponding to the
center of the face (Figs. 7-9). What might be a possible interpre-
tation for this? The face/scramble discrimination task required
the monkey to make a perceptual analysis of the stimulus. We
neither instructed nor provided any information regarding
figure-ground segregation nor did we control the animal’s spatial
attention. The monkey could use any strategy in segmenting and
categorizing the image and was free in his attentional focus. We
assumed that, when the monkey was presented with a coherent
face stimulus, the center of the face (which is highly informative
for these social animals) would automatically attract visual atten-
tion, while the scrambled images contained no consistent salient
spatial feature drawing the attentional spotlight (Fig. 8). The ap-
pearance of the late response in trials with scrambled images
lacking a coherent percept may therefore reflect spatial wander-
ing/anchoring of the animal’s attention to various points of in-
terest in the nonsense images. As would be expected in this case,
the response in scramble trials showed a more distributed spatial
organization and increased spatial variability over trials without
significant change in amplitude. It is also less likely that the late
response resulted from figure-ground segmentation, as there is
no well defined figure or ground in the scrambled images.

The error trials analysis also supports the spatial attention of
the animal. As seen in the correlations spatial patterns,trials in
which the animals reported perceiving a face (i.e., correct face
trials or error scrambled trials) showed a more spatially compact
pattern suggesting that the animal may extract the information
from a relatively compact part of the stimulus: either the central
part of the face that is comprised of a few informative features or
from a small segment such as part of the eye/nose in the scram-
bled image. This may generate a compact neuronal representa-
tion in space, leading to a compact pattern of correlation.
However, trials in which the animal reported perceiving a scram-
bled image (i.e., correct scramble trials or error face trials)
showed a more spatially distributed pattern, suggesting that the



Ayzenshtat et al. e Population Response in the Primary Visual Cortex

animal had to use a wider examination of the image space. The
animal may need to confirm that the scrambled segments are not
linked in a manner that can generate a coherent face. This entails
a wider wandering of the animal’s attention to spatially distrib-
uted parts of the images and may lead to a wider neuronal repre-
sentation in space, leading to a more distributed pattern of
correlation.

These results support our previous analysis of the perceptual
information conveyed during the late neural response in V1, in
which we found that a coherent image is more compactly repre-
sented and hence efficiently characterized by fewer spatiotempo-
ral patterns than a scrambled image (Ayzenshtat et al., 2010).
Reduced activity in response to coherent stimuli in V1 has been
found previously in humans (Murray et al., 2002) and is sup-
ported by theoretical models of predictive coding (Mumford,
1992; Rao and Ballard, 1999). The latter suggest that higher areas
carry predictions of the bottom-up, stimulus-evoked neural ac-
tivity based on previous knowledge while lower areas carry back
the residuals, i.e., the error between the prediction and the actual
activity. Such processing would lead to reduced activity when a
“match” between the sensory information and the prediction is
good and could consequently facilitate higher sensitivity to novel
elements or stimuli.

Since the results of this study are based mainly on two behav-
ing monkeys, future investigations are required to further estab-
lish the suggested function and characteristics of the early and late
neural modulations existing within V1.

Notes

Supplemental Figures 1-9 for this article are available at http://neuro
imag.ls.biu.ac.il/supplementary.html. This material has not been peer
reviewed.
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