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Information processing in behaving animals has been the target of many studies in the striatum; however, its dynamics and complexity
remain to a large extent unknown. Here, we chronically recorded neuronal populations in dorsal striatum as mice were exposed to a novel
environment, a paradigm which enables the dissociation of locomotion and environmental recognition. The findings indicate that
non-overlapping populations of striatal projection neurons—the medium spiny neurons—reliably encode locomotion and environ-
mental identity, whereas two subpopulations of short-spike interneurons encode distinct information: the fast spiking interneurons
preferentially encode locomotion whereas the second type of interneurons preferentially encodes environmental identity. The three
neuronal subgroups used cell-type specific coding schemes. This study provides evidence for the existence of parallel processing circuits
within the sensorimotor region of the striatum.

Introduction
Exposing animals to a novel environment generates exploratory
behavior enabling a fast and efficient familiarization process.
Two processes are essential for successful familiarization: (1)
context identification to signal an unfamiliar environment to the
animal and (2) exploratory locomotor activity during the famil-
iarization process. These components are behaviorally disso-
ciable because internally generated locomotion undergoes
habituation as the animal familiarizes itself with the environ-
ment, whereas environment identity signaling remains un-
changed as long as the animal stays in a given environment.
Previous studies have shown that higher dopamine levels in do-
pamine transporter knock-out mice lengthen the half-time of the
habituation process compared with wild-type mice (Giros et al.,
1996), suggesting involvement of the basal ganglia in the process.
Another study in the same mouse model revealed alterations of
activity of dorsolateral striatal neurons in relation to the animal’s
dopamine-induced states of hyperkinesia and akinesia (Costa et
al., 2006). However, to the best of our knowledge neuronal activ-
ity directly linked to locomotion and the encoding of environ-
ment identity has never been addressed.

Many studies have implicated the involvement of the striatum
in motor-related and cognitive functions including motor skill
learning, action selection, and the formation of cue-action asso-

ciations (Mink, 1996; Miyachi et al., 1997; Jog et al., 1999; Yin et
al., 2004; Kimchi and Laubach, 2009; Humphries and Prescott,
2010). In particular, a few studies have directly linked striatum to
locomotion (Mary Christopher and Butter, 1968; Giros et al.,
1996; Chang et al., 2006). Striatal neurons provide a suitable
substrate for these functions by responding during multiple
events including voluntary movement and task-relevant sensory
contextual cues (Aldridge et al., 1980; Rolls et al., 1983; Hikosaka
et al., 1989; Kimura et al., 1990; Apicella et al., 1992; Romo and
Schultz, 1992; Schultz et al., 1992; Hollerman et al., 1998;
Gdowski et al., 2001; O’Doherty et al., 2004; Baufreton et al.,
2009; Hori et al., 2009).

The rodent striatum consists of 95% projection neurons, the
medium spiny neurons (MSNs), and a few types of interneurons
(Kawaguchi, 1993; Kawaguchi et al., 1995). The MSNs, which
form a weakly connected GABAergic network (Jaeger et al., 1994;
Tunstall et al., 2002; Koos et al., 2004), are thought to be modu-
lated by these relatively rare (�5%) interneurons (Koós and Tep-
per, 1999; Tepper and Bolam, 2004).

The parvalbumin-containing fast spiking interneurons (FSIs)
were studied extensively (Berke, 2011), whereas other GABAergic
interneurons have been described in the literature but have never
been studied in behaving animals.

Here, we used chronic electrophysiological recordings in the
mouse striatum to investigate striatal information processing
during exposure to a novel environment. We show that multiple
neuronal types could be differentiated, which enabled us to probe
the contributions of the MSNs, the FSIs, and another type of
short spike interneurons (referred to as UINs) to locomotion and
environmental identification. The results show that the MSNs
reliably encode both paradigm attributes as expected from pro-
jection neurons; however, the MSNs encoding locomotion and
the MSNs encoding environmental identification are distinct and
do not overlap. In contrast, the FSIs preferentially encode loco-
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motion whereas the UINs preferentially encode environmental
identification.

Materials and Methods
Animals
All procedures were approved by the Bar-Ilan University Animal Care
and Use Committee and performed in accordance with the National
Institutes of Health (NIH) guidelines. We used 10 B6C3F1 (3–7 months
old) resulting from the cross between c57B6/J female and C3H male
(Jackson Laboratories). All animals were maintained on a 12/12 h light/
dark cycle and had ad libitum access to food and water. Experiments were
performed during the light phase.

Behavior and locomotion
Each mouse was individually housed in a clean cage with a small amount
of bedding for 24 h to familiarize the animal with its cage and induce the
sensation of a home cage (HC). The cage cover was opened, and the
mouse was connected to the head stage, and was kept this way for at least
30 min before the start of the experiment to enable habituation to the
recording wires and the experimenter’s presence. Each experimental ses-
sion included 5 min in the HC, and 10 min in the novel environment that
was a clean cage identical to the home cage in size and amount of bedding
but lacking familiar odors, after which the animal was transferred back to
its HC for an additional 5 min. The home cage and novel environment
cage were switched in place such that all identity cues in the room re-
mained unchanged. The short transition periods between the environ-
ments were removed from the analysis. Sessions were repeated once a
week for 5 consecutive weeks. A gridline measuring 8.5 � 7 cm 2 placed
underneath the cage (17 � 29 � 14 cm 3, for width, length, and height,
respectively) divided the cage into eight squares a little larger than the
animal’s body size. Locomotion was estimated by counting the number
of gridline crossings made by the animal. In seven of the animals, gridline
crossings were counted in time windows of 2.5 min, and in three of the
animals the experimenter pressed a counter that was automatically time
stamped by the recording system enabling a more accurate evaluation of
locomotion.

Surgery
The surgical procedure has been described in detail previously (Costa et
al., 2004). In brief, an �2 � 1 mm 2 craniotomy was made 2–3 mm
laterally for dorsolateral striatum (DLS); custom made microwire arrays
(4 � 4 or 4 � 8 arrays of S-isonel-coated tungsten microwires of 35 or 50
�m in diameter) were lowered from the surface of the brain 2–2.2 mm
(Hof et al., 2000) while recording neural activity. The electrodes were
aimed at the dorsolateral striatum which is the sensorimotor region of
the striatum. Final placement of the electrodes was decided based on the
coordinates and quality of neural activity and confirmed histologically
after electrolytic marking lesions, perfusion with 10% formalin, and
brain fixation with 20% sucrose and formalin, followed by cryostat sec-
tioning of 60 �m thick slices.

Data collection
We chronically recorded neural activity from the DLS using microwire
arrays. Neural activity was amplified, bandpass filtered at 150 – 8000 Hz,
and sampled at 40 kHz using a multichannel acquisition processor sys-
tem (MAP system; Plexon). The activity was initially sorted online; how-
ever, all waveforms exceeding a selected threshold were saved for offline
sorting (OfflineSorter V2.8.8; Plexon). Only confirmed single units with
a signal-to-noise ratio above 3:1 were further analyzed using custom-
written MATLAB software (R2010b, MathWorks). During the sorting
procedure we made sure that a single neuron is not included in the
analysis twice. Overall, we recorded 233 single neurons in 10 mice with an
average of �6 neurons per session.

Data analysis
Paradigm-related neurons. The experimental session was divided into
time bins of 2.5 min, thus creating two baseline (BL) epochs: BL1 and
BL2, four novel environment (NE) epochs: NE1 to NE4, and two home
cage epochs: HC1 and HC2. For each neuron, firing rate distributions
were calculated per time epoch by measuring the number of spikes oc-

curring in 5 s bins, resulting in 30 samples of firing rate in each time
epoch. To test whether a neuron significantly changed firing rate in rela-
tion to the paradigm, the six firing rate distributions (NE1 to HC2) were
compared with the BL-firing distribution (BL1 and BL2 taken together)
using a multiple-comparison ANOVA with p � 0.01.

Neuronal classification. To search for parameters that best differenti-
ated the different cell types, we ran principal component analysis (Pear-
son, 1901) over a wide range of parameters and selected the three
parameters explaining the largest variance. The tested parameters were as
follows: (1) the mean firing rate at baseline calculated as the number of
spikes that occurred during BL divided by baseline duration; (2) the
coefficient of variation (cv) defined as the SD of the ISI distribution
divided by its mean; (3) the CV2 defined as the difference between two
consecutive ISIs divided by their mean; (4) the skewness of the ISI distri-
bution; (5) the Fano Factor defined as the variance of the spike count
distribution calculated in non-overlapping time windows, divided by its
mean (window duration equals the median ISI of each neuron); (6) the
ratio between the spike peak amplitude and the valley to peak amplitude;
(7) spike width at half minimum (�s); (8) spike width at half maximum
(�s); (9) spike duration, i.e., the duration in �s between the spike valley
to the following peak; (10) number of bursts per second (Jin and Costa,
2010); (11) percentage of spikes within a burst (Jin and Costa, 2010); (12)
postspike suppression, which was defined as the earliest latency at which
the rate equaled the average firing rate in the autocorrelation described
below (Schmitzer-Torbert and Redish, 2008); (13) the absolute differ-
ence between the mean and median of the ISI distribution; and (14)
PROPISI � 2 s defined below (Schmitzer-Torbert and Redish, 2008). The
parameters explaining the largest variance turned out to be firing rate and
waveform duration [as in the study by Berke et al. (2004)], and PROPISI � 2 s [as
in the study by Schmitzer-Torbert and Redish (2008)].

Autocorrelation function. Postspike suppression was measured for each
cell by calculating the cell’s autocorrelation function in a 1 s window
using 1 ms time bins, smoothing it using a 25 ms Hamming window, and
counting the number of bins from spike occurrence until regaining av-
erage firing rate. This measure reflects the refractory period of a neuron.

PROPISI � 2 s. To differentiate phasic and tonically firing neurons, the
proportion of time associated with long interspike-intervals (ISIs � 2 s)
was calculated as in the studies by Schmitzer-Torbert and Redish (2008)
and Gage et al. (2010) by summing ISIs longer than 2 s and dividing the
sum by the total recording time.

Poisson-like surrogate data. Pseudo-neurons with spike trains drawn
from a Poisson distribution were calculated using the following equation:
t(i�1) � t(i) � (1/r)log(u) u � U(0,1), where t(i�1) is the time of the
i th�1 spike, t(i � 0) � 0, r is the average firing rate of the neuron, and
u is a randomly selected parameter from the uniform distribution
U(0,1). The number of generated pseudo-neurons equaled the num-
ber of neurons in each of the subgroups and matched their individual
firing rates.

Root means square error. The root means square error (RMSE) was
used to measure the distance between all the neurons in a group and their
average neuron. The RMSE was calculated by taking the square root of
the sum of squares of the difference between the firing rates of each
neuron and the average neuron using 100 ms bins. The RMSE of each
neuronal class was normalized by the average firing rate of its average
neuron to enable the comparison of neuronal types having different
firing rates. To statistically compare the normalized RMSE between the
sampled cells and the pseudo-neurons, a two-way ANOVA was used
(three neuronal classes and two conditions of sampled vs pseudo neu-
rons), with post hoc comparison using a Bonferroni adjustment.

Approximation of locomotion. The linear regression model equation
was as follows: behavior � a0 � a1FRMSN � a2FRFSI � a3FRUIN, where
FRMSN, FRFSI, and FRUIN are 8-point vectors comprising the normalized
firing rates in 2.5 min time bins of the MSNs, FSIs, and UINs, respec-
tively. The behavior was the average number of gridline crossings in these
time bins, and a0 –3 are the estimated regression coefficients. The coeffi-
cients were chosen by the constraint of minimizing the least square error
of the model, thus providing the best approximation. To avoid imbalance
in the contribution of each cell type, the vectors of the average neurons
and the behavior were normalized.
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We found that the locomotor activity was best approximated by the
following equation: behavior � �1.24 � 5.26FRMSN � 0.68FRFSI �
0.25FRUIN.
The linear regression of locomotor activity by the firing rate of the aver-
age neuron was calculated using the regress function in MATLAB soft-
ware (R2010b, MathWorks ).

Locomotion-correlated MSNs. A Pearson correlation coefficient was
calculated between the firing rate of each neuron and the animal’s grid-
line crossings in 2.5 min bins, and tested for significance using a t test
with the null hypothesis of lack of correlation [corrcoef function in
MATLAB software (R2010b, MathWorks)].

Support vector machine algorithm. The support vector machine (SVM)
algorithm (Boser et al., 1992) was used to evaluate whether contextual
information enabling the animal to distinguish between its home cage
and the novel environment could be extracted based on the firing profile
of individual neurons. For each neuronal subpopulation, a matrix of
firing rates in 5 s bins of all neurons was generated. The matrix size was
240 (20 min/5 s) values of firing rates versus the number of selected
neurons. Based on the firing properties, the SVM algorithm classified the
animals’ surroundings as the home cage (� 0) or as the novel environ-
ment (� 1). In each calculation, 75% of the bins (i.e., 180 vectors each
containing the firing rates of all selected neurons in the same time bin)
were used as a training set whereas the remaining bins were used as a test
set. The algorithm libsvm was taken from the study by Chang et al. (2011)
(software available at http://www.csie.ntu.edu.tw/�cjlin/libsvm). We
used a linear kernel and a penalty term in case of error of C � 10 (C � 1
and C � 100 were also tested and showed no influence on classifier
performance). We quantified the output of the algorithm by using the
accuracy value defined as the number of bins out of the test set (60 bins)
that identified the context correctly. SVM algorithms are highly sensitive
to the number of variables (neurons) used; therefore, we balanced the
number of degrees of freedom as determined by the number of recorded
UINs (21) by selecting 21 neurons from the MSNs and FSIs. Overall, for
each random sample of 21 neurons, we repeated the algorithm 50 times
with different training sets and test sets, and the resulting accuracy values
were averaged. An accuracy distribution histogram was built for the
MSNs and FSIs using 3000 repetitions of this procedure each time with a
different set of randomly selected 21 neurons. The algorithm was calcu-
lated for the UINs using 1000 repetitions of the same group of 21 neurons
using different training and test sets.

The average likelihood of a neuron to appear in any permutation was
calculated by summing the number of permutations in which the neuron
appeared and dividing it by the total number of permutations. Averaging
the likelihood over all the neurons yielded the expected value assuming
randomness in sampling the different neurons.

Context-dependent MSNs. Chance level for MSN accuracy values was
calculated by repeating the SVM algorithm 100 times using the Poisson-
distributed pseudo-neurons with firing rates matching the MSNs.
Chance level was taken to be the average of the calculated accuracy dis-
tribution (50.2%), and the significance value was 2 SDs above chance
level (61.5%). MSN accuracy values exceeding significance value were
considered context-dependent neurons.

Calculating the distribution to have an overlap of i � 1,2,. . . ,19 when
randomly selecting two groups of 22 and 19 neurons from a total of 110
neurons was done by a Matlab simulation randomly selecting 10,000
permutations of 22 and 19 out of 110 neurons and comparing the overlap
between each random selection and all other selections.

MSN firing rates during locomotion in the NE and HC. In three of the
animals, the gridline crossings were recorded with higher accuracy, en-
abling the calculation of neuronal firing rates during graded values of
locomotion. In each session, the gridline crossing values were divided
into two halves with the maximum determined per session by the highest
value of gridline crossings occurring in both environments. The average
firing rate during the upper half of the gridline crossing values was cal-
culated for each neuron in each environment independently. Data pre-
sented in Figure 6C include all recorded neurons with at least three
samples of high gridline crossings in each environment. Similarly, firing
rates during bins in which gridline crossings were not recorded were
calculated separately for the HC and the NE.

Results
Behavior
In the present study, 10 mice (B6C3F1, 3–7 months old) were
exposed to a novel environment, a behavioral paradigm inducing
exploratory behavior that degrades with time as the animal famil-
iarizes itself with the environment (Costa et al., 2006; Kalueff et
al., 2006; Berke et al., 2008). Each session comprised 5 min in the
home cage (BL) after which the animal was transferred to the NE,
a cage identical to the home cage but lacking familiar odors or
objects (Fig. 1A). After spending 10 min in the NE the animal was
transferred back to its HC for an additional 5 min to assess
whether after exposure the animal perceived its home cage differ-
ently. Sessions were repeated once a week for five consecutive
weeks per animal. Each time epoch within a session was charac-
terized by typical behaviors exhibited by all animals: during BL
animals mostly stayed in a preferred corner and sporadically ex-
plored the cage; when transferred into the NE, mice excessively
explored the unfamiliar cage reaching all ends of the cage and
then gradually ceased exploration (Fig. 1B,C); when transferred
back into the HC, mice initially explored the environment reach-
ing short distances from their preferred corner for a relatively
short time and then repeated BL performance. Because the time
scale of the paradigm was determined by the experimenter, the
behavioral events in all animals could be aligned and averaged
over all experiments. Throughout the sessions animals occasion-
ally sniffed and groomed; however, the irregularity in these inci-
dents resulted in their elimination from the analysis while leaving

Figure 1. Behavioral characteristics during novel environment exposure. A, Experimental
timeline of each session. B, Weekly average of the number of gridline crossings per 2.5 min bins.
C, Average over all sessions and animals of the number of gridline crossings in 2.5 min bins. Error
bars are confidence intervals of the mean (2*SEM).
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the repetitive active exploration component intact. The animal’s
active exploration was assessed by counting the number of grid-
line crossings in 2.5 min bins, a measure reflecting the animal’s
average horizontal propagation (locomotion) per time epoch
(see Materials and Methods). The time course of the animals’
locomotion rate showed that on average during BL epoch the
animals hardly moved in the cage; during NE epoch mice initially
moved fast in the unfamiliar cage and then gradually ceased; and
during HC epoch, the mice initially moved in the cage but slower
than in the NE epoch and then stopped (Fig. 1B,C). Statistics
show a main effect for time and animal but not for experiment [a
three-way ANOVA (time, animal and experiment); p � 0.01],
suggesting that in this paradigm animals do not exhibit
experience-dependent adaptation (Fig. 1B) and the results were
averaged over weeks (Fig. 1C). Post hoc examination revealed that
the number of gridline crossings in the first quarter of the NE
(NE1) was significantly higher compared with all other time ep-
ochs and the number of crossings during BL was significantly
lower than other time epochs excluding NE4 (multiple compar-
isons with Tukey–Kramer adjustment; p � 0.01).

Cell classification
Throughout the sessions we chronically recorded using mi-
crowire arrays the activity of 233 single units in 10 mice (47.2 �
13.3 per weekly sessions). The electrodes were implanted in the
dorsolateral region of the striatum extending 2 mm rostrocau-
dally and 1 mm mediolaterally (AP � �0.7–1.3; ML � 2–3). The
location of the electrode tips was verified histologically (see

example in Fig. 2 A; see Materials and Methods). The wave-
form duration, firing rate, and percentage of time spent in
long ISIs (see Materials and Methods) of each recorded neu-
ron were measured and presented in a three-dimensional plot
that revealed four distinct clusters each representing a differ-
ent cell type (Fig. 2 B).

Three of the clusters (marked in red, blue, and green; Fig. 2B)
were readily identified as MSNs, FSIs, and TANs, respectively,
based on their properties reported previously (Wilson et al., 1990;
Aosaki et al., 1995; Bennett and Wilson, 1999; Berke et al., 2004;
Lin et al., 2006; Miller et al., 2008; Schmitzer-Torbert and Redish,
2008; Sharott et al., 2009; Yarom and Cohen, 2011). The MSN
cluster comprised 110 neurons (47% of the recorded cells) and
exhibited phasic firing (PROPISI � 2 s � 37%), long waveforms
(504.54 � 23.26 �s), and low firing rates. The FSI cluster com-
prised 94 neurons (40% of recorded cells) and exhibited contin-
uous firing with a few short intermissions (propISI � 2 s � 20%),
short symmetric waveform (191.03 � 71.34 �s), and high firing
rate (10.83 � 7.06 spikes/s). The TAN cluster exhibited tonic
firing with an average firing rate of 8.0 � 2.9 spikes/s, long dura-
tion spikes (518.7 � 43.8 �s), and PROPISI � 2 s � 12%. However,
this group contained only eight neurons and therefore was ex-
cluded from further analysis. The fourth cluster (marked in cyan;
Fig. 2B) comprised 21 neurons (9% of recorded cells) and had
firing attributes similar to MSNs; i.e., phasic firing (PROPISI � 2 s

� 37%) with low firing rate (1.98 � 0.97 spikes/s), yet their spike
waveform was similar to that of the FSIs (197.61 � 92.5 �s; Fig.
2C). Although the fourth cluster was clearly distinct from the

Figure 2. Striatal neurons exhibit unique characteristics enabling their classification into distinct cell types. A, Electrode arrays were positioned in the mouse dorsolateral striatum. An example
of electrode placement marked with an electrolytic lesion in a 60 �m coronal slice. B, 3D scatter plot of waveform parameters and firing characteristics of sorted single neurons (n � 233) showing
4 distinct clusters, each corresponding to a different striatal cell type. MSNs (n � 110) were marked in red, FSIs (n � 94) were marked in blue, TANs (n � 8) were marked in green, and UINs (n �
21) were marked in cyan. The parameters used for the classification of each cell type appear in Table 1. C, The average waveform of the MSNs (top), FSIs (middle), and UINs (bottom) showing the
similarity in waveform parameters between the FSIs and UINs. D–F, Examples of typical autocorrelation functions calculated in 1 ms bins for a FSI (D), an MSN (E), and a UIN (F ). The MSN
autocorrelation has a clear peak in the short ISIs indicating its tendency to exhibit burst activity. This peak is lacking in the UIN autocorrelation function despite having similar firing rates of �2.5
spike/s.
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other clusters it could be that this group is the tail of the FSIs. To
avoid introducing such a bias into the analysis, we referred to this
group of neurons as the unidentified interneurons (UIN) and
analyzed the data independently of the MSNs and FSIs. The un-
derlying assumption was that if the UINs were the tail of the FSIs
or the MSNs, then their behavioral attributes would be similar to
that of the FSIs or the MSNs, respectively, whereas if the UINs
would exhibit behavioral attributes distinct from those of the FSIs
and MSNs then they constitute a separate group of interneurons.
Overall, many firing pattern parameters including the autocorre-
logram shapes (Fig. 2D–F), CV2, and the percentage of spikes in
a burst (see Table 1) differentiated the three subgroups providing
evidence that the UINs constitute a separate neuronal group.

Different cell types exhibit distinct response patterns
To directly test whether the behavioral attributes of the UINs are
similar to or distinct from the FSIs and MSNs, we analyzed and
compared the response patterns of all recorded neurons. Within
a session the recorded neurons exhibited a variety of firing pat-
terns including increasing and decreasing firing rate during dif-
ferent behavioral epochs (Fig. 3A). To sort the neurons based on
their firing patterns, a firing rate distribution was calculated in 5 s
bins for each behavioral epoch within a session (i.e., BL1-2,
NE1-4, and HC1-2). The firing rate distributions of each neuron
were statistically compared to determine whether the neuron sig-
nificantly changed firing rate during the session (see Materials
and Methods). This yielded a six component response-vector for
each neuron with values of 1, �1, or 0, indicating whether we
observed a significant increase in firing rate, a significant decrease
in firing rate or no significant change in firing rate compared with
base line firing, respectively. Overall, 56% (127/225) of the neu-
rons changed their firing rate during at least one behavioral epoch
compared with BL. To enable the comparison between the vari-
ous response patterns we classified the neurons based on their
firing patterns into five dominant categories: “total responsive,”
“transition,” “NE,” “HC,” and “nonspecific.” The total respon-
sive category included neurons that significantly changed firing
rate relative to BL throughout the entire paradigm (n � 20; 16%;
Fig. 3B, light yellow). The transition category included neurons
that significantly changed firing rate relative to BL when the an-
imal was transferred into the NE or transferred back into the HC
or both (n � 48; 38%; Fig. 3B, light blue). The NE category
included neurons that significantly changed firing rate relative to
BL while the animal was in the NE but returned to BL firing when
placed back in the HC (n � 9; 7%; Fig. 3B, yellow), and the HC
category included neurons that significantly changed firing rate
relative to BL when placed back in the HC (n � 6; 5%; Fig. 3B,
red). The nonspecific category included neurons that signifi-
cantly changed firing rate relative to BL in at least one behavioral

epoch that was not included in the other categories (n � 44; 35%;
Fig. 3B, green).

Examination of the firing pattern category distribution
showed that the different types of neurons, MSNs, FSIs, and the
UINs, exhibited significantly different distributions (� 2 test,
p � 0.01; Fig. 3C). The majority (58%) of the MSNs were nonre-
sponsive whereas smaller fractions of the FSIs and UINs were
nonresponsive (30% and 24%, respectively). Furthermore, a rel-
atively large percentage (24%) of the UINs was classified into the
HC and NE categories compared with a negligible fraction of the
FSIs (2%). To test whether this may have been the result of sam-
pling bias we selected a subset of FSIs and MSNs as similar as
possible in number and properties to the UINs (i.e., we chose FSIs
with low firing rate and MSNs with equal PROPISI � 2 s distribu-
tions as the UINs) and tested their firing pattern distributions.
Repeated comparisons of the selected subset of neurons showed
that their category distributions remained significantly different,
as was the case for the complete sample (� 2 test, p � 0.01). These
results provide further evidence that the UINs are not the tail of
the FSI or MSN populations and instead they were sampled from
an independent neuronal population.

The fact that different cell types exhibited a preference for
specific firing pattern categories suggests that each cell type en-
codes different variables during the performance of the novel
environment exposure paradigm. To test this hypothesis, we ex-
amined whether we could extract information related to two at-
tributes—locomotion and context identity—from the recorded
neurons. First, we determined the capacity of the three neuronal
populations to encode locomotion and context identity and then
we assessed whether single MSNs encode both attributes or are
dedicated to the encoding of only one.

Populations of MSNs and FSIs approximate locomotion
significantly better than UINs
To determine how well the different neuronal subgroups en-
coded locomotion we calculated and compared the precision
with which they enabled estimation of the animals’ locomotion.
The contribution of each neuronal population was represented
by the average activity of all its neurons: (1) to eliminate neuronal
activity related to various sporadic behaviors while preserving
locomotion related activity which was common to all animals;
and (2) to minimize the bias expected from the groups’ sample
sizes. The average response of each cell type exhibited a clear peak
in activity during the transitions into the NE and back to the HC
(Fig. 4A). Nonetheless, the patterns of activity clearly differed
between cell types in terms of response strength and the shape of
the degradation observed in the novel environment. We there-
fore used a simple linear regression model to estimate how well
the average neuron of each cell type corresponded to the average
locomotion (see Materials and Methods). When the model com-
prised all cell types, the animal’s locomotion could be approxi-
mated very well (Fig. 4B, gray line; R 2 � 0.95; mean squares
error � 0.005). The regression coefficient of the MSNs was an
order of magnitude larger than that of both interneurons,
suggesting that the greatest contribution was from the MSNs.
Interestingly, the coefficients of the interneurons were nega-
tive, which could reflect their inhibitory role in controlling the
MSN response.

To control whether the approximated locomotion was not a
chance result we generated 10,000 locomotion vectors randomly
selected from a normal distribution with the same mean and
variance as the original locomotion vector. For each vector we
calculated the best regression coefficients and R 2 as described

Table 1. The neuronal subgroups exhibited different characteristics

Cell type MSNs (47%) FSI (40%) UIN (9%) TANs

Firing rate at
BL (spikes/s)

1.02 � 0.92 10.83 � 7.06* 1.98 � 0.97 8.0 � 2.9

Valley to peak
duration (�s)

504.54 � 23.26* 191.03 � 71.34 197.61 � 92.5 518.7 � 43.8

PROP ISI � 2 s �37% �29% �37% �12%
CV2 1.28 � 0.13 0.82 � 0.17* 1.08 � 0.16 0.65 � 0.13
% spikes in

a burst
34 � 13.4% * 19 � 9.2% 23 � 8.6% 15 � 5.4%

Neuronal characteristics of the MSNs, FSIs, and UINs were statistically compared using ANOVA followed by Tukey–
Kramer correction for multiple comparisons. *p � 0.01; data presented as mean � SD.
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above (see example in Fig. 4C). The average R 2 for the random
vectors was 0.44 � 0.23 and the probability of obtaining values
higher than 0.95 was �0.01 indicating that the quality of approx-
imation obtained by the model could not have been achieved by
chance.

To compare the contributions of each cell type, we calculated
a linear regression model using one cell type at a time (Fig. 4B).
As expected, the average activity of the MSNs provided the best
approximation of the animals’ locomotion (R 2 � 0.93; p � 0.01;
red line). The average activity of the FSIs also approximated lo-
comotion significantly better than chance level (R 2 � 0.7; p �
0.01; blue line), although not as well as the MSNs. In contrast, the
UINs approximated the animals’ locomotion quite poorly (R 2 �
0.25; p � 0.2). To calculate the probability of drawing a sample of
21 neurons that would poorly approximate locomotion as did the
UINs, we independently sampled 10,000 permutations of 21
MSNs and 21 FSIs and calculated the R 2 values of their regression
(Fig. 4D). Examination of the R 2 distributions showed that the
probability of sampling 21 FSIs with R 2 equal to or lower than

that of the 21 UINs was �0.01, suggesting that the UIN subgroup
was significantly worse than the FSIs in conveying locomotion
related information and that the UINs poor performance could
not have been due to sampling bias. The probability of sampling
21 MSNs giving R 2 equal to or lower than that of the 21 UINs was
0.13, suggesting that some of the MSNs encoded locomotion
reliably whereas others did not. Our results show that both FSI
and MSN subgroups encoded the mouse average locomotion
with high precision, whereas the firing of UINs appeared to be
insensitive to locomotion.

The MSNs are thought to use a sparse coding scheme because
each MSN responds to a limited range of stimuli with a short
burst of activity; however, the MSNs were best at approximating
locomotion. To test whether the MSNs use a different coding
scheme than sparseness during exposure to a novel environment
we assessed the similarity between the firing rate of each average
neuron and its constituents by calculating their RMSE (see Ma-
terials and Methods). The RMSE values of the MSNs (4.02 �
1.97; mean � SD), the FSIs (1.24 � 0.40; mean � SD), and the

Figure 3. The recorded neurons were classified into 5 distinct categories of firing patterns. A, Firing rate histograms calculated in 5 s bins for the entire period of a session. Left, An example of a
FSI that significantly increased firing rate relative to BL when transferred into the NE. This neuron maintained the same firing rate even when placed back at the home cage. Middle, An example of
a MSN that significantly decreased its firing rate relative to BL only when the animal remained in the NE. Right, An example of an UIN that significantly increased its firing rate when the animal was
placed back at its home cage. The red lines mark the transition times from the HC to the NE and then from the NE back to the HC. B, Firing rate distributions calculated in 5 s bins for each behavioral
epoch lasting 2.5 min. Five neurons representative of the different categories of distinct firing patterns and 1 nonresponsive neuron are shown. The color code for the different categories appears in
the lower right panel of the figure. The top 3 neurons are the same neurons as in A. Error bars are SDs. C, Firing pattern distributions of the different neuronal groups including all the recorded neurons.
Significant differences were found between the three groups (� 2 test with p � 0.01). D, Firing pattern distributions of the different neuronal groups including all the responsive neurons. Significant
differences were found between the three groups (� 2 test with p � 0.01).
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UINs (3.12 � 1.61; mean � SD) were significantly different from
one another (Kruskal–Wallis; p � 0.05), suggesting that the firing
patterns of individual MSNs were unique whereas the firing pat-
terns of individual FSIs were relatively similar. To better assess
the extent of variability of the firing patterns of each neuronal
type and to ensure that this result was not due to an order of
magnitude difference in the average firing rates of the three sub-
groups (FSIs, �15 spikes/s; the MSNs and UINs, �1 spikes/s) we
generated Poisson-distributed pseudo-neurons with similar av-
erage firing rates as the neurons in each subgroup (see Materials
and Methods). Comparison of the RMSE results for the sampled
and the artificially generated data (RMSE values of 2.75 � 1.18,
2.78 � 1.19, and 2.86 � 0.89 for pseudo-MSNs, pseudo-FSIs, and
pseudo-UINs, respectively) showed that the MSN firing patterns
were significantly more variable than expected for Poisson neu-
rons with matching firing rates, the UIN firing patterns had a
similar variability as their matching Poisson neurons, whereas the
FSI firing patterns were significantly less variable than their

matching Poisson neuronal group (one-
way ANOVA with post hoc Bonferroni ad-
justment; p � 0.05).

Thus, although the MSNs and FSIs re-
liably convey information regarding loco-
motion, they may use different coding
schemes; the MSNs use sparse population
coding in which the response of individ-
ual neurons is unique whereas the firing of
individual FSIs is relatively similar to one
another, suggesting temporal and spatial
redundancy in their activation pattern.

The MSNs and UINs identify contextual
information significantly better than
the FSIs
The initiation of exploratory behavior in a
novel environment relies on the animal’s
ability to recognize that it had been trans-
ferred from a familiar to an unfamiliar
environment. Hence, we tested whether
striatal neurons process contextual infor-
mation enabling the animal to differenti-
ate a familiar from a novel environment.
Neurons belonging to the NE category are
best suited for providing such informa-
tion because their firing rate is correlated
with the animal’s location but not corre-
lated with the animal’s locomotion (Fig.
5A). However, neurons belonging to
other categories may also carry valuable
contextual information about the envi-
ronment. To quantify how well striatal
neurons distinguish between the different
environments we used SVM to measure
the accuracy with which the neuronal sub-
populations identify the animal’s location
based on their firing rates (see Materials
and Methods). SVM algorithms are
known to be sensitive to the number of
degrees of freedom in the problem (i.e.,
the number of neurons within each sub-
group). In our case the number of MSNs
(n � 110) and FSIs (n � 94) was �5 times
larger than that of the UINs (n � 21),

which biases the computation and invalidates the population
comparison. Therefore, to correctly compare contextual infor-
mation carried by each subpopulation we repeatedly sampled 21
MSNs and 21 FSIs and ran the previously described computation
of the SVM algorithm for each random sample. We repeated this
procedure 3000 times to generate an accuracy distribution for
each subgroup (Fig. 5B). The average accuracies of the MSNs,
FSIs, and UINs were 87.0 � 7.1%, 88.8 � 5.0%, and 98%, respec-
tively. Examination of the accuracy distributions showed that the
probability of sampling 21 FSIs that would yield accuracies equal
to or higher than that of the 21 UINs was p � 0.05 (Fig. 5B),
suggesting that although some information regarding context
could be extracted from the FSIs it is not representative of this
population, whereas the ability of the UINs to convey contextual
information seems to represent that population reliably. The
probability of sampling 21 MSNs with accuracies equal to or
higher than that of the 21 UINs was p � 0.11 (Fig. 5B), suggesting
that some of the MSNs may contain contextual information. Our

Figure 4. The MSNs and FSIs approximate locomotion significantly better than the UINs. A, The time courses of the average
neuron of the MSNs (red), FSI (blue), and UIN (cyan) calculated using all recorded neurons within each cell-type. Dashed lines
represent mean firing rate at baseline �2*SD. B, Linear regression analysis using the firing pattern of the average neuron shows
that both MSNs and FSIs estimate locomotion significantly better than the UINs. The black line is the normalized average locomo-
tion over all animals and experiments. The colored lines are the results of the linear regression using the average neuron of all cell
types (gray), MSNs (red), FSIs (blue), and UINs (cyan). The regression using the UINs was not significant. C, The linear regression
model did not perform well when locomotion vectors were randomly drawn from a distribution having the same average and SD
as the measured locomotion. Shown is an example of a randomly selected locomotion vector (green) and the linear regression
result using the average neuron of all cell groups (light green). The black and gray lines are the same as in B. D, Distribution of R 2

values calculated using 10,000 repetitions of the linear regression model in which each time n � 21 MSNs (red) or n � 21 FSIs
(blue) were randomly drawn. The R 2 value of the regression analysis using the sampled UINs (n � 21) is shown in cyan.
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results show that the UINs reliably differentiated the home cage
from the novel environment and that they did it significantly
better than the FSIs. Importantly, some of the MSNs also differ-
entiated the home cage from the novel environment that may
enable them to convey downstream information regarding the
environment identity.

Distinct groups of MSNs convey locomotion and
contextual information
A thorough examination of the MSN accuracy distribution (Fig.
5B, red bars) revealed two peaks in the distribution separated at
the 95th accuracy percentile suggesting that some MSN combi-
nations are much better at identifying context than other combi-
nations. The bimodal shape of the accuracy distribution may be
the outcome of two alternatives that are not mutually exclusive:
(1) one subgroup of MSNs contributes both to locomotion ap-
proximation and context differentiation, whereas the remaining
neurons are indifferent to these behavioral attributes; and (2) one
MSN subgroup contributes to locomotion approximation,
whereas another subgroup contributes to context differentiation.
To directly test which of the alternatives was more plausible we
identified MSNs with locomotion correlated activity and those
carrying information about the environment identity and ex-
amined their degree of overlap. To identify the locomotion-
correlated MSNs, we quantified the correlations between
neuronal firing rate and locomotion in 2.5 min bins by calculat-
ing the correlation coefficient � (see Materials and Methods) for
each neuron. We found that the firing rates of 22 MSNs (20%)
were significantly correlated with the average horizontal move-
ment (i.e., locomotion) (Fig. 6A; p � 0.05). To identify the con-
text encoding MSNs, we repeated the SVM algorithm on each of
the MSNs and selected the neurons (n � 19, 17%) that identified
the environment significantly beyond chance level (Fig. 6A; see
Materials and Methods). These two MSN populations were mu-
tually exclusive. The probability of randomly drawing 22 and 19
neurons out of 110 with 0 overlap is �0.01 and thus lends weight

to the second explanation. Because this result was unexpected, we
used several methods to further test the hypothesis that distinct
MSN populations encode locomotion and context identity.

At the population level, the first explanation entails that the
locomotion correlated MSNs carry contextual information and
therefore will be prevalent in sampled combinations yielding
high accuracy of context identification comparable to context
neurons. The second explanation entails that the locomotion
correlated neurons should be randomly spread throughout the
distribution at chance level whereas the context neurons will be
unevenly distributed in terms of high accuracy ranking. A com-
parison of the prevalence of locomotion-correlated neurons and
context-dependent neurons in all permutations within a given
accuracy showed that the second explanation is more likely (Fig.
6B; see Materials and Methods).

Wetestedthevalidityof thesecondexplanationalsobyrepeatingthe
previously described algorithms using the locomotion-correlated and
contextual MSN subgroups. We found that the locomotion cor-
related MSNs approximated locomotion extremely well (R 2 �
0.8; p � 0.01) whereas the context-dependent MSNs did not
(R 2 � 0.48). In contrast, the locomotion-correlated MSNs dis-
tinguished the NE from the HC poorly (accuracy of 63.1 �
5.5%), whereas the context-dependent MSNs distinguished the
NE from the HC extremely well (accuracy of 93.0 � 3.1%). The
differences in performance of the two populations provide fur-
ther evidence that locomotion and context are processed primar-
ily by parallel MSN populations that do not interact.

The final method used to test the validity of the hypothesis was
to directly examine whether the encoding of locomotion by indi-
vidual MSNs was modulated by the animal’s presence in a specific
environment. If the encoding of locomotion would be different
in the two environments it would indicate that it is within the
capacity of this neuron to simultaneously encode locomotion
and, even though to a lesser extent, environment identity. To that
end we monitored in three mice the instantaneous locomotion by
time stamping the animals’ gridline crossings directly by the re-
cording system. We then compared firing rates during rest and
during locomotion between the NE and HC, predicting that the
locomotion neurons would yield similar firing rates in each con-
dition independently of the environment, whereas the context-
dependent neurons would yield different firing rates in each
environment independently of the conditions. A comparison of
firing rates during rest (Fig. 6C, left) and during high rates of
locomotion (Fig. 6C, right) showed that firing rates of the loco-
motion neurons in the NE and the HC were similar in both
conditions (high rate locomotion: y � 0.91x � 0.11; R 2 � 0.96;
no locomotion: y � 0.99x � 0.19; R 2 � 0.89). At the same time,
the firing rates of the context-dependent neurons in the NE were
independent of the firing rates in the HC regardless of whether
the animal moved or not (high rate locomotion: y � 0.24x �
1.12; R 2 � 0.01; no locomotion: y � 0.06x � 0.63; R 2 � 0.01; the
null hypothesis that these fits are different than 0 is rejected;
p � 0.7). These results provide evidence that the locomotion-
correlated and the context-dependent MSNs do not interact,
thus suggesting the existence of two functionally distinct MSN
populations.

Overall, our data clearly show that distinct, non-overlapping
MSN populations encode locomotion and environment identity
and that each population specializes in the processing of its
unique information with negligible influence from the other type
of information.

Figure 5. The MSNs and UINs identify contextual information significantly better than the
FSIs. A, Neurons were able to modulate their firing in relation to the environmental identity and
not the animal’s locomotion. The number of gridline crossings in 5 s bins (pink line) overlaid over
firing rate histograms calculated in 5 s bins of an exemplary UIN. B, The UINs and the MSNs
identify contextual information significantly better than the FSIs. Distribution of SVM accuracy
values for 3000 repetitions of random selection of n�21 MSNs (red) or FSIs (blue). The accuracy
value obtained using all the sampled UINs (n � 21) is shown in cyan.
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Discussion
We have shown that during exposure to a
novel environment, distinct MSN popula-
tions recorded in the mouse DLS correlate
with the animal’s average locomotion and
differentiate between familiar and novel
environments. This dissociation in infor-
mation processing was also present in stri-
atal interneurons: the FSIs conveyed
information about locomotion whereas
the UINs conveyed information enabling
context identification. Our results suggest
that the dorsolateral striatum simultane-
ously processes different types of infor-
mation that are locally modulated by
specific types of interneurons thus, hint-
ing at the existence of parallel processing
circuits within the sensorimotor striatum.

Neuronal identification and
recording bias
In recent years striatal neurons were suc-
cessfully classified into distinct cell types
based on waveform properties and firing
pattern characteristics (Ravel et al., 2001;
Berke et al., 2004; Liang et al., 2008;
Schmitzer-Torbert and Redish, 2008;
Sharott et al., 2009). In this study, three
parameters—waveform duration and fir-
ing rate as in the study by Berke (2008)
and PROPISI � 2 s as in the study by
Schmitzer-Torbert and Redish (2008)—
created four well separated clusters. The
properties of three of the clusters fit those
of the MSNs, FSI, and TANs; nonetheless,
their sampling probabilities were not rep-
resentative of the anatomy, thus raising a
concern regarding their identification.
However, studies that previously identi-
fied these neurons in primates (Kimura,
1990; Adler et al., 2012) and in rodents
(Berke et al., 2004; Gage et al., 2010;
Yarom and Cohen, 2011) report different
sampling biases, suggesting that despite
the bias the neurons’ identification re-
mains valid.

The fourth cluster comprising the
UINs did not fit with cell types previously
studied in behaving animals. Close exam-
ination of their characteristics suggests
that this group of striatal interneurons
matches a group of neurons referred to as
“others” in the study by Berke et al. (2004)
that was not analyzed because of their
small numbers. Complete separation of
the UINs from the FSIs was achieved by
adding the PROPISI � 2 s parameter. More-
over, we have shown that the UINs exhib-
ited significantly different response
patterns, coding scheme, and responses to
context, thus providing further support
for their identification as an independent
group. In attempt to speculate on the

Figure 6. Distinct groups of MSNs convey locomotion and contextual information. A, MSNs were found to modulate their firing
with the animal’s locomotion (top) and the environmental identity (bottom). B, Comparison of the sampling distribution of the
locomotion-correlated MSNs and the context-dependent MSNs averaged over all permutations per accuracy value. The context-
dependent MSNs contributed the most to the high accuracy values generated by the SVM algorithm whereas the locomotion-
correlated MSNs were evenly distributed at chance level over different accuracy values indicating their limited contribution to the
algorithm’s performance. Gray area marks chance level � 2*SD. C, The firing rate of locomotion correlated MSNs was independent
of environmental identity. Left, Comparison of firing rates calculated in bins lacking locomotion in the NE and the HC. Linear fit
( p�0.01) suggests that MSN firing rates remained unchanged when the animals were positioned in the NE or the HC. Right, Firing
rates calculated during high levels of locomotion (see Materials and Methods) of locomotion-correlated MSNs were similar in the
NE and the HC.
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UINs identity two studies seem relevant: (1) an in vivo study in
anesthetized rats revealing aspiny neurons that exhibited short
duration spike and phasic activation (Inokawa et al., 2010); and
(2) whole-cell recordings from Tyrosine Hydroxylase positive
(TH�) neurons in mice striatal slices showing that these in-
terneurons exhibit short duration spikes and low firing rate
(Ibáñez-Sandoval et al., 2010). Based on the similarity in proper-
ties, it is possible that the UINs are the rarely studied GABAergic
TH� interneurons (Dubach et al., 1987; Betarbet et al., 1997).

Neuronal encoding of locomotion
MSN encoding of motion was described many years ago in pri-
mates (DeLong, 1972; Alexander and DeLong, 1985; Crutcher
and Alexander, 1990). Recent rodent studies have reported that
activity in dorsal striatum is correlated with movement velocity
and acceleration (Costa et al., 2004; Yeshenko et al., 2004), how-
ever, none of these studies have attempted to classify the recorded
neurons into distinct cell-types. Circumstantial evidence links
FSIs to movement abnormalities: a reduced number of FSIs
has been observed in human Tourette syndrome (Kalanithi et
al., 2005) and in animal models of dystonia (Gernert et al.,
2000); moreover, selective inhibition of FSIs was reported to
elicit robust dystonia-like impairments (Gittis et al., 2011).
Interestingly, locomotor-correlated activity of FSIs was shown
under the influence of psychomotor stimulants and antipsy-
chotic drugs modulating FSI activation (Wiltschko et al.,
2010). Here, we demonstrated that both FSIs and MSNs ap-
proximated locomotion extremely well and significantly bet-
ter than the UINs subgroup that failed to approximate the
animals’ locomotion.

Neuronal encoding of context
Theoretical models have assumed that striatal spiny neurons play
a major role in contextual pattern recognition under the training
influence of reinforcement signals (Houk and Wise, 1995). In
these studies, the interpretation of contextual pattern recognition
was broader than simply referencing specific, time limited, short
sensory cues such as instruction tones. Environmental context
identification has traditionally been attributed to the hippocam-
pus (Sharp et al., 1985; Will et al., 1986; Phillips and LeDoux,
1994; Good and Honey, 1997; Berke et al., 2008; Chang and Li-
ang, 2012). Importantly, hippocampal contextual representa-
tions have been shown to impact ventral striatum (Mulder et al.,
2004). An interface between different striatal regions via the mid-
brain dopamine cells enabling information flow from ventral,
through central, and up to dorsal striatum has been demon-
strated (Haber et al., 2000). Taken together, it is plausible that
hippocampal-dependent information regarding the environ-
ment identity propagates along this pathway and potentially in-
fluences the animal’s decision to explore the environment via the
dorsal striatum. Alternatively, the source of contextual informa-
tion could arise from other striatal afferents such as the prefrontal
cortex and/or the thalamus.

Sparse coding scheme versus redundant population
coding scheme
Although both MSNs and FSIs encoded locomotion, they did so
by using completely different coding schemes; the firing patterns
of different MSNs were unique whereas the firing patterns of
different FSIs were similar to one another. The similarity in FSI
activity was previously described in relation to locomotion
(Berke, 2011). While it remains plausible that FSIs provide a
coordinated broad inhibition of MSNs, the dissimilarity between

individual MSN activation necessitates the integration of addi-
tional factors such as MSN biophysical properties and/or highly
variable converging inputs from the cortex, the thalamus, and
other basal ganglia structures.

The MSNs sparse coding was not the outcome of their low
firing rates because the UINs that exhibited similar firing rates
used a coding scheme similar to Poisson-distributed neurons.
Hence it seems that sparse coding is a fundamental trait of the
MSNs. Despite this seemingly inefficient coding scheme, the
MSN average neuron had the best fit to the locomotor profile of
the animals. Consequently, to reliably transfer the processed in-
formation downstream, enough MSNs must converge onto a sin-
gle neuron or a group of neurons in the GP. Given the known
convergence ratio between the MSNs and GPe of 60:1 in rats
(Oorschot, 1996) and 200:1 in humans (Graveland et al., 1985),
and higher ratios to the GPi and SNr, the underlying neural net-
work has the potential capacity to reliably transfer MSN informa-
tion downstream. Interestingly, GPe neurons are viewed as linear
integrators modulated by a large number of different parameters,
which makes them uniquely suited for independent processing of
a multitude of parameters (Arkadir et al., 2004).

Parallel computational circuits in the striatum
The dynamic formation of MSN cell assemblies comprising func-
tional reorganization into different response groups at different
trial epochs has been described previously (Adler et al., 2012). In
that study, MSNs belonging to different response clusters were
differentiated primarily by their temporal profile and not their
anatomical or neurochemical properties. Analysis of our data
collected during NE exposure, a paradigm emphasizing other
behavioral attributes than the previously described task, yielded
two distinct MSN groups for encoding context identification and
locomotion. This striking result rules out the striatum as a pri-
mary integration site for locomotion and context.

Which neuronal mechanisms endow a single striatal region
with the ability to perform parallel processing of at least two
independent types of information? One possibility would be a
fine scale anatomical afferent organization within the sensorimo-
tor striatum generating segregated parallel neuronal populations
each dedicated to the processing of a different type of informa-
tion. In this scenario, a functional neuronal population com-
prises a group of MSNs encoding a common theme and related
interneurons encoding the same theme; i.e., locomotion-
encoding MSNs are primarily innervated by FSIs whereas
context-encoding MSNs are primarily innervated by UINs. A
constraint on this configuration is that the expected number of
FSIs and UINs converging on the same MSNs should be negligi-
ble, and therefore, this alternative can be tested directly. The
other possibility requires a dynamic organization of basal ganglia
networks that enables the canceling out of the contextual com-
ponent in locomotion encoding MSNs and the locomotion com-
ponent in the context encoding MSNs. A dynamic computational
mechanism enabling the cancelation of self-movement evoked
electrosensory activity from that generated by a potential prey has
previously been described in cerebellar-like structures (Mont-
gomery and Bodznick, 1994; Bell et al., 1997). An additional third
system responsible for processing motivational information
could not be addressed in the simple form of the novel environ-
ment exposure paradigm used here, but the most likely candidate
is the striatal cholinergic interneurons (TANs) that are known to
respond to events of motivational value (Apicella, 2002; Kimura
et al., 2003; Ravel et al., 2003; Yamada et al., 2004).
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In this study, we provided evidence for parallel circuits within
the sensorimotor region of the striatum. One circuit is dedicated
to information processing related to locomotion and a second
circuit is dedicated to environmental identification. This paral-
lelization, which comprises the MSNs and two populations of
interneurons, calls for a reexamination of convergence patterns
of striatal afferents from different brain structures and the way in
which the relatively scarce interneurons interact with the MSNs.
Although it remains unclear whether the decision to move or not
in a novel environment is generated within the striatum or else-
where, these data provide important insights into striatal infor-
mation processing.
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