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Adult hippocampal neurogenesis is to a large degree controlled at the level of cell survival, and a number of potential mediators of this
effect have been postulated. Here, we investigated the small heat shock protein Hspb8, which, because of its pleiotropic prosurvival effects
in other systems, was considered a particularly promising candidate factor. Hspb8 is, for example, found in plaques of Alzheimer disease
but exerts neuroprotective effects. We found that expression of Hspb8 increased during differentiation in vitro and was particularly
associated with later stages (48 –96 h) of differentiation. Gain-of-function and loss-of-function experiments supported the hypothesis
that Hspb8 regulates cell survival of new neurons in vitro. In the dentate gyrus of adult mice in vivo, lentiviral overexpression of Hspb8
doubled the surviving cells and concomitantly promoted differentiation and net neurogenesis without affecting precursor cell prolifer-
ation. We also discovered that the truncated form of the crystallin domain of Hspb8 was sufficient to affect cell survival and neuronal
differentiation in vitro and in vivo. Precursor cell experiments in vitro revealed that Hspb8 increases the phosphorylation of Akt and
suggested that the prosurvival effect can be produced by a cell-autonomous mechanism. Analysis of hippocampal Hspb8 expression in
mice of 69 strains of the recombinant inbred set BXD revealed that Hspb8 is a cis-acting gene whose expression was associated with
clusters of transcript enriched in genes linked to growth factor signaling and apoptosis. Our results strongly suggest that Hspb8 and its
�-crystallin domain might act as pleiotropic prosurvival factor in the adult hippocampus.

Introduction
Adult hippocampal neurogenesis is dominantly regulated at the
level of the survival of newborn neurons. In 26 strains of the BXD
recombinant inbred panel of mice, 85% of the variability in adult
neurogenesis was explained by cell survival, whereas precursor
cell proliferation explained only 19% (Kempermann et al., 2006).
Learning and environmental complexity recruit more new neu-
rons by increasing survival.

Relatively little is known about the molecular mechanisms
underlying this survival-promoting effect, although specific sur-

vival effects have been seen in many experiments (e.g., Pieper et
al., 2010; Sahay et al., 2011). Reported mediators include neu-
rotrophic factors, most notably BDNF, hormones, and cytokines
(Rossi et al., 2006; Galea, 2008; Mueller et al., 2008; Peng et al.,
2008; Pinnock and Herbert, 2008; Mastrangelo et al., 2009;
Pawluski et al., 2009; Zhang et al., 2009; Koo et al., 2010; Leuner
et al., 2011). We have reported that melatonin has an almost
exclusive effect on survival and maturation of newborn neurons
in the adult dentate gyrus (Ramírez-Rodríguez et al., 2009, 2011).
At the intracellular level, the role of antiapoptotic factors, such as
Bcl2, have been described and functional studies suggest that the
activity-dependent promotion of survival is linked to the active
elimination of new cells (Perera et al., 2007).

Small heat shock proteins are interesting candidate molecules
to orchestrate complex functions because of their pleiotropic ef-
fects (Wang et al., 2004; Yew et al., 2005; Depre et al., 2006;
Quraishe et al., 2008; Gurusamy et al., 2009; Sui et al., 2009; Karch
and Borchelt, 2010; Gonzalez-Malerva et al., 2011; Kirbach and
Golenhofen, 2011). They are well suited as evolutionarily con-
served mediators of “activity,” considering their name-giving
ability to upregulate their expression in response to stressors.
Hspb8 has mainly been studied in the heart, where it exerts a
plethora of prosurvival functions, including the stimulation of
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glycogen synthesis (Wang et al., 2004), potentiation of BMP sig-
naling (Sui et al., 2009), and buffering oxidative stress, among
other mechanisms by modifying SOD (Karch and Borchelt,
2010). Overexpression of Hspb8 caused cardiac hypertrophy by
promoting cell proliferation and survival through an Akt-
mediated pathway (Sui et al., 2009).

Hspb8 is expressed in the brain; and according to the Allen
Brain Atlas, its expression is concentrated in (but not limited to)
the neurogenic niche of the hippocampus (www.brain-map.org;
Hspb8-Sagittal-b04-0153), where its expression is upregulated as
an early response to hypoxia (David et al., 2006). In addition,
Hspb8 is expressed in cultured hippocampal neurons (Kirbach
and Golenhofen, 2011).

Hspb8 is linked to neuronal survival by its interaction with Bag3
to induce macroautophagic removal of misfolded proteins (Yew et
al., 2005; Gurusamy et al., 2009). This chaperone activity has been
shown for amyotrophic lateral sclerosis (Crippa et al., 2010) and
proposed for Alzheimer disease (Wilhelmus et al., 2006). Mutations
of Hspb8 are involved in the hereditary peripheral neuropathy of
Charcot-Marie-Tooth neuropathy type 2 (Tang et al., 2005; Irobi et
al., 2010). Based on our preliminary observation and this literature,
we set out to investigate Hspb8 as potential pleiotropic survival
factor in adult hippocampal neurogenesis.

Hspb8 is also known as H11 kinase, Hsp22, Hsp20-like, or �C
Crystallin (Cryac). It is not to be confused with Hsp27/Hspb5
(�B Crystallin) on which a larger literature exists (e.g.,
Hagemann et al., 2009).

Materials and Methods
Animals. C57BL/6 mice were obtained from Charles River. They were
held in standard laboratory cages with a light cycle of 12 h lights on and
12 h lights off. The animals had access to food and water ad libitum at the
animal facility of the Max Delbrück Center for Molecular Medicine
Berlin-Buch, Germany. A total of 80 female mice, 8 weeks old at the
beginning of the experiment, were used. All animal work was performed
according to the rules of directive of the European Union and was ap-
proved by the responsible authority, Landesamt für Gesundheit und
Technische Sicherheit Berlin.

Isolation of adult hippocampal precursor cells (AHPCs). AHPCs were
isolated from the hippocampus of adult female mice as previously re-
ported (Babu et al., 2011). Briefly, animals were killed by cervical dislo-
cation. Brains were removed from the skull and placed in cold artificial
CSF (aCSF) containing 124 mM NaCl, 2.5 mM KCl, 1 mM CaCl2, 1 mM

MgCl2, 25 mM NaHCO3, 10 mM D-glucose. Hippocampal coronal slices
(300 �m) were obtained using a vibratome to dissect out the dentate
gyrus. Dentate gyri were dissociated by enzymatic digestion and cell sus-
pension separated by centrifugation using a Percoll gradient.

Precursor cells were plated on laminin-precoated coverslips or 96 mul-
tiwell plates and cultured with 20 ng/ml of human EGF and 20 ng/ml of
human FGF-2 (both from PeproTech) in Neurobasal medium supple-
mented with B27 (Invitrogen), for 24 h.

Western blot (immunoblotting). Precursor cells were lysed as reported
previously (Babu et al., 2009; Ramírez-Rodríguez et al., 2009). Total
lysate from AHPCs was obtained with RIPA buffer (150 mM NaCl, 10%
glycerol, 0.5 mM EDTA, 0.5% Triton X-100, 1 mM PMSF, 25 �g/ml
leupeptin, 25 �g/ml aprotinin, and 1 mM sodium ortho-vanadate in 50
mM Tris-HCl, pH 7.6) and homogenized with an ultrasonic homogenizer
for 30 s. Cellular debris was removed by centrifugation at 14,000 � g.
Total protein content was quantified using Bradford reagent (Bio-Rad).
Protein separation was performed by the Laemmli method (Cleveland et
al., 1977) and transferred to PVDF or nitrocellulose paper. Membranes
were blocked with 5% skim milk in 0.05% Tween 20-TBS and incubated
with the goat anti-Hspb8 1:500 (Abcam); rabbit-anti-Hspb8 1:3000 (a
kind gift from Dr. Roelfs, Radboud University Nijmegen, Nijmegen, The
Netherlands); goat- or mouse-anti-GFP (1:500, Abcam); rabbit-anti-
phospho AKT or rabbit anti-AKT (1:1000, Cell Signaling) or with the

mouse anti-GAPDH antibody 1:5000 (Millipore Bioscience Research Re-
agents, Hampshire, England). Blots were washed 3 times with Tween
20-TBS and incubated for 1 h in a 1:3000 dilution of phosphatase-
conjugated donkey anti-mouse; donkey anti-goat; donkey anti-rabbit
antibodies. Proteins were visualized with the enhanced chemilumines-
cence detection system. Autoradiograms were scanned with a GS-800
densitometer and PDQuest Advanced Software (Bio-Rad).

Standard RT-PCR and qRT-PCR. The expression of Hspb8 in AHPC
was analyzed by RT-PCR. RNA was isolated using RNeasy (QIAGEN),
and cDNA was generated using the Superscript system (Invitrogen).
Products were separated on 1% agarose gels. Primer sequences for Hspb8
(forward, TGAATTCCGACCAACATCATGGCTGAC; reverse, GAAG
TCGACCAAGGCTGACGTCTTAG) were from BioTez.

For analyzing expression changes of Hspb8 during neural precursor
differentiation in culture, RNA was extracted as was mentioned above at
0, 12, 24, 48, and 96 h, respectively. RNA samples were adjusted to 1
�g/�l and stored at �80°C. Three independent reverse transcriptase
(RT) reactions were performed for each RNA sample using oligo(dT)
primers and Superscript II RNase H reverse transcriptase, followed by
incubations with RNase H (Invitrogen) for 20 min at 37°C. Primer se-
quences were as follows: forward, CATCTCAAGCCACATCACCTTG;
reverse, GGCCAGGCAGAGGAGAGC. Quantitative PCR was per-
formed in a reaction mix containing SYBR Green (Quantitect SYBR
Green PCR kit, QIAGEN). The products were detected with an Opticon
DNA Engine (MJ Research). A melting curve analysis verified the speci-
ficity of the reaction. The PCR protocol was as follows: 95°C for 15 min;
94°C for 30 s; 58°C for seconds; 72°C for seconds; 40 cycles from steps
2– 4 followed by a melting curve from 55°C–90°C. The relative amount of
the tested transcript was normalized to the level of Gapdh using specific
primers set all obtained from BioTez.

Plasmid constructs. The full-length of Hspb8 was amplified from cDNA
of neural precursor cells by PCR with primers that flank the open reading
frame(forward,TGAATTCCGACCAACATCATGGCTGAC;reverse,GA
AGTCGACCAAGGCTGACGTCTTAG) and ligated into the pIRES2-
EGFP vector at the EcoRI/SalI sites. The pIRES2-EGFP vector enables
Hspb8 to be expressed together with the EGFP from a single bicistronic
mRNA. For cloning the Hspb8 truncated in the 120 –145 residues corre-
sponding to the � crystallin domain (�Hspb8), we used two primer sets
(forward,TGAATTCCGACCAACATCATGGCTGAC;reverse,CTCTGC
AGTATCCATCCTTGGTCTTTAC; and reverse, TTCCTGCAGAAGTG
GATCCAGCCA; forward, GAAGTCGACCAAGGCTGACGTCTTAG),
both fragments were digested using the enzymes EcoRI/PstI and PstI/
SalI, respectively, and ligated into the pIRES2-EGFP vector at the EcoRI/
SalI. The sequences of the full-length and the truncated Hspb8 (�Hspb8)
were verified by sequencing.

Precursor cell electroporation (overexpression and knock-down). Electro-
poration of precursor cells with the p-Hspb8-IRES2-eGFP and
p-�Hspb8-IRES2-eGFP was performed as described previously (Lie et
al., 2005; Jessberger et al., 2008). Briefly, precursors were detached, and
1 � 10 6 cells were transfected with 10 �g of the respective DNA using the
Nucleofector II electroporation device according to the manufacturer’s
instructions (Amaxa). After transfection, cells were plated at 2.5 � 10 4 or
1 � 10 5 densities, depending on the parameter that would be evaluated.
After 48 h, cells cultured in proliferation conditions were induced to
differentiate during 4 additional days. Proportions of neurons that ex-
pressed GFP were identified by MAP2 expression. Protein expression was
verified 36 h after transfection.

For knocking down expression of Hspb8, AHPCs were electroporated
with sense and antisense siRNA oligonucleotides. The control siRNA was
from Ambion, and Hspb8-siRNA was from MWG-Biotech. The Hspb8-
siRNA sequence was as follows: sense, CAACGAGCUUCCUCAAGAC;
antisense, GUCUUGAGGAAGCUCGUUG. The resuspended duplexes
were aliquoted and stored at �20°C. The electroporation of precursor cells
with siRNA was performed according to the protocol provided by Amaxa.
Briefly, before electroporation, cells were detached and 1 � 106 cells were
mixed with 160 nM of siRNA duplexes and 2 �g of control GFP plasmid
DNA (pmaxGFP, Amaxa). Then, AHPCs were plated and cultured under
proliferation conditions during 48 h. Thus, cells were induced to differenti-
ate during 4 additional days. The proportion of neurons that coexpress GFP
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and �III-tubulin were identified in randomized fields. Silencing of Hspb8 in
precursor cells was confirmed by immunobloting.

Approximately 200–300 cells were quantified. The analyzer was blinded
for the experimental conditions. Every experiment was performed at least
three times as duplicates. Additionally, conditioned media (CM) from pre-
cursor cells expressing the pIRES2-EGFP, p-Hspb8-IRES2-eGFP, or from
cells transfected with the control siRNA or Hspb8-siRNA was collected to
determine a possible cell-autonomous or non–cell-autonomous effect of
Hspb8 on precursor cell proliferation or survival determined by WST-1 and
BrdU incorporation using ELISA-based assay.

Immunocytochemistry. Cultures were fixed with 4% paraformaldehyde
in 0.1 M PBS, pH 7.4, for 20 min. After PBS washing, cells were perme-
abilized with 0.5% Triton X-100 in PBS for 30 min. Nonspecific sites
were blocked with 5% donkey serum (Millipore Bioscience Research
Reagents) containing 0.5% Triton X-100 (blocking buffer), free-
aldehyde groups were reduced with 1 M glycine for 20 min. Primary
antibodies were diluted in blocking buffer and monolayer incubated
overnight at 4°C. After washes with PBS, incubation with secondary
antibodies was allowed for 2 h at room temperature. The primary anti-
bodies were as follows: goat anti-Hspb8 1:500 and monoclonal mouse
anti-Hspb8 1:500 (Abcam); monoclonal mouse anti-Nestin 1:400 (BD
Biosciences); monoclonal mouse anti-�III-tubulin 1:1000 (Promega);
rabbit anti-�III-tubulin (TuJ1) 1:1000 (Covance); guinea-pig anti-GFAP
1:1000 (Advanced Immunochemistry); rat anti-BrdU 1:500 (Biozol);
and mouse anti-eGFP 1:500 (Abcam). Secondary antibodies raised in
donkey (Jackson ImmunoResearch-Dianova) were used at 1:250. Cola-
beled cells were quantified in randomized fields using a Leica TCS SP2
confocal microscope (Leica). All analyses were done in sequential scan-
ning mode to avoid false positive colabeling.

Lentiviral vectors. The control vector was pCH_CMV_eGFPWS_Isa
and to generate the Hspb8 and �Hspb8 vectors, we cloned their cDNA
upstream of the IRES and EGFP and inserted the bicistronic cassette in
place of the GFP sequence in the pCH_CMV_eGFPWS_Isa vector. The
empty vector was generated inserting the bicistronic cassette (IRES2-
EGFP) in place of the GFP sequence. Concentrated lentiviral vectors
(LV) stocks, pseudotyped by the vesicular stomatitis viral envelope, were
produced as described previously (Geraerts et al., 2006). Expression ti-
ters, determined in 293T cells by FACS analysis, were 1.65 � 10 8 to 3 �
10 8 transducing units/ml with a p24 concentration of 1.38 � 10 6 to
2.95 � 10 6 pg/ml.

Surgical procedure and immunohistochemistry. Mice were stereotacti-
cally injected with 2 �l of the LV containing Hspb8 or �Hspb8 and GFP
into the right hemisphere of the dentate gyrus. Coordinates from bregma
in mm are as follows: anteroposterior �2.3, mediolateral �1.7, dorso-
ventral �1.7. For control group, 2 �l of control GFP expressing LV was
injected. The group size was n � 5 or 6 mice.

To study the effects of Hspb8 and �Hspb8 expression on cell prolifer-
ation in the hippocampus, adult mice were injected three times with
BrdU (50 mg/kg body weight i.p.; Sigma-Aldrich) 6 h apart, starting the
first injection at 3 weeks after lentiviral injection. Mice were killed 2 h
after the last BrdU injection. For survival/differentiation studies, the
same BrdU injection protocol was applied and animals were killed at 3
weeks after the last BrdU administration.

Mice were deeply anesthetized with ketamine and perfused transcardially
with 0.9% sodium chloride followed by 4% paraformaldehyde in 0.1 M phos-
phate buffer, pH 7.4. Brains were removed from the skulls and postfixed
overnight. After fixation, brains were transferred into 30% sucrose. Brains
were cut into 40 �m coronal sections on a sliding microtome (Leica) and
cryoprotected. Sections were stained free-floating with antibodies diluted in
Tris-buffered saline containing 3% donkey serum and 0.1 Triton X-100. For
BrdU, DNA was denatured in 2N HCl for 30 min at 37°C. To study the
distribution of Hspb8 and its coexpression in the course of adult hippocam-
pal neurogenesis, we used a Nestin-GFP mouse.

Primary antibodies were applied in the following dilutions: rabbit
anti-Hspb8 (1:100; ProteinTech); goat anti-double-cortin (1:200; Santa
Cruz Biotechnology); monoclonal anti-calretinin (1:500; Swant); mono-
clonal mouse anti-NeuN (1:100; Millipore Bioscience Research Re-
agents); rabbit anti-S100� (1:250; Swant); goat anti-GFP (1:500,
Abcam); and rat anti-BrdU (1:500, Biozol). Fluorophore-coupled sec-

ondary antibodies were as follows: anti-rat TRITC, anti-mouse Cy5, anti-
rabbit Cy5, and anti-goat FITC. All secondary antibodies were raised in
donkey and diluted 1:100 or 1:250 (Jackson ImmunoResearch-Dianova).
Sections were coverslipped in polyvinyl alcohol with diazabicyclo-octane
as antifading agent.

Phenotypic analysis in vivo. Areas transduced by LV were identified by
expression of GFP. The proliferation and survival rates were expressed as
mean of BrdU/GFP � cells per animal. For phenotypic analysis of
lentiviral-labeled cells, one-in-12 series of sections were triple-stained
with immunofluorescence as described above. Fifty BrdU-labeled cells
within the subgranular and granule cell layer were analyzed for coexpres-
sion of the different markers.

The colabeling of BrdU/GFP/NeuN and BrdU/GFP/S100�, respectively,
identified new neurons and new astrocytes in the hippocampus. Analysis was
done by 3D confocal microscopy in sequential scanning mode. Newly gen-
erated neurons and astrocytes in infected areas are shown as fraction related
to the control group (Kempermann et al., 2004).

Bioinformatic analysis. Quantitative trait locus (QTL) mapping was
done using data and online tools available from the GeneNetwork repos-
itory (http://www.genenetwork.org). The analysis used a hippocampal
mRNA expression dataset measured using Affymetrix M430 version 2 mi-
croarrays and normalized with the PDNN method (Overall et al., 2009). This
dataset is accessible as “Hippocampus Consortium M430v2 (Jun06)
PDNN” from the GeneNetwork website. Gene enrichment analysis was
done with the DAVID online database (http://david.abcc.ncifcrf.gov)
(Huang da et al., 2009a, 2009b) using all genes present on the microarray as
background. The interaction network was generated using the STRING tool
(http://string.embl.de) (Snel et al., 2000; Szklarczyk et al., 2011).

Statistical analysis. Analysis was performed using SigmaStat 3.1 and
Statview 5.0.1 software. Results are presented as mean � SEM. Statistical
analysis from the in vitro and in vivo data was performed using one-way
ANOVA, followed by appropriated post hoc test. Differences were con-
sidered statistically significant at p � 0.05.

Results
Hspb8 is expressed during adult neural precursor
cell differentiation
Immunohistochemical investigations with antibodies against Hspb8
revealed that the protein is expressed in the dentate gyrus, the CA
fields, and the hilus of the hippocampus of adult mice (Fig. 1A,B),
confirming the mRNA distribution seen in the Allen Brain Atlas. The
expression of Hspb8 in the dentate gyrus was corroborated by PCR
and Western blot after microdissection (Fig. 2B,C). To analyze the
expression of Hspb8 in the hippocampus, we performed immunos-
tainings in tissue sections from Nestin-GFP reporter mice (Fig. 1).
We detected that Hspb8 is widely expressed in the hippocampus,
including in the wall of blood vessels (Fig. 1). To investigate which
cells would express Hspb8 in the course of adult hippocampal neu-
rogenesis, we colabeled Hspb8 with different markers of neurogen-
esis (Fig. 1). We detect Hspb8-staining in some Nestin-positive type
1 and type 2a cells (Fig. 1C). However, we found more colabeling
with Hspb8 in type 2b cells (Nestin/DCX-positive; Fig. 1C). Also,
postmitotic new neurons expressing calretinin (Fig. 1D) colabeled
withHspb8.StrongestexpressionofHpb8wasseeninthepopulationof
mature granule cell neurons that also coexpressed NeuN (Fig. 1E).
These results indicated that Hspb8 is expressed during various develop-
mental stages in the course of adult hippocampal neurogenesis.

We next analyzed the expression of Hspb8 in neural precursor
cells isolated from the dentate gyrus of adult mice. Neural precursor
cells cultured under proliferation conditions are polygonal and bi-
polar with plump and short processes (Fig. 2A). Hspb8 showed a
punctuate pattern in the cytoplasm of precursor cells (Fig. 2A3).
Again the presence of Hspb8 was confirmed by PCR and Western
blot (Fig. 2B,C). Western blot autoradiograms showed low levels
of Hspb8 in proliferating precursor cells (Fig. 2D).
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We next investigated the changes of
mRNA expression and protein during the
process of differentiation in vitro. In the
course of differentiation, the cells started to
extend long thin neurites after 12–24 h (Fig.
3A1) and reached their maximal neurite
length at 96 h after the induction of differ-
entiation. Most of these neurites made con-
nections with adjacent cells creating a
network (Fig. 3A2). Hspb8 mRNA was sig-
nificantly increased at 48 and 96 h after in-
duction of cell differentiation compared
with earlier time points (p � 0.0002; Fig.
3B). In addition to the changes in the tran-
script, the levels of Hspb8 protein in-
creased. Hspb8 protein levels were low
under proliferation conditions, similarly
to those shown in Figure 2C; and also at
12 h after the initiation of differentiation.
However, Hspb8 slightly increased after
24 h of differentiation reaching a maxi-
mum at 96 h (Fig. 3C). This time course of
expression suggested a primary relevance
of Hspb8 during relatively more advanced
stages of differentiation, presumably in-
cluding but not limited to survival per se.

Hspb8 is required for precursor cell
differentiation and survival in vitro
To further test for the functional involve-
ment of Hspb8 in differentiation and sur-
vival, adult hippocampal precursor cells
in vitro were transfected with Hspb8, and
the effect on neuronal differentiation was
evaluated at 4 d after the induction of dif-
ferentiation (Fig. 4A). Overexpression of
Hspb8 was confirmed by immunoblot-
ting of GFP as cotransfected reporter and
Hspb8 (Fig. 4B1). To analyze the effects of
Hspb8 on cell differentiation, we per-
formed immunocytochemistry against
GFP and MAP2ab on the cells in vitro (Fig.
4B2). MAP2ab was used as marker for rel-
atively mature neurons in vitro (Babu et
al., 2009). Overexpression of Hspb8 sig-
nificantly increased neuronal differentia-
tion by �66% compared with cells
nucleofected with the control plasmid
(p � 0.001; Fig. 4C). The effect of Hspb8
on neuronal differentiation was accompa-
nied by an increase of 22% in cell survival
after 4 d of differentiation (p � 0.001;
Fig. 4D).

We next silenced Hspb8 with specific
siRNA sequences by nucleofection and
verified protein expression after the in-
duction of differentiation (Fig. 5A–C).
Western blot analysis confirmed a de-
crease in Hspb8 protein expression after
siRNA transfection (Fig. 5C). Silencing Hspb8 caused a signifi-
cant decrease in neuronal differentiation of cells that coexpressed
GFP and the early pan-neuronal marker �III-tubulin by �60%
(p � 0.011, Fig. 5D), and also in cell survival (p � 0.004, Fig. 5E).

Control sequences did not affect cell differentiation (p � 0.44) or
survival (p � 0.75) compared with the control group.

Given that overexpression of Hspb8 increased precursor cell
differentiation and survival, that the silencing of the Hspb8

 Hspb8

H
sp

b
8 

C
al

re
ti

n
in

 
H

sp
b

8 
N

eu
N

 
H

sp
b

8 
N

es
ti

n
 D

C
X

 
H

sp
b

8 
N

es
ti

n
  

Hilus Hilus

Ml
GCL
SGZ

Ml
GCL
SGZ

Ml

GCL

SGZ

Hilus

Ml

GCL

SGZ
Hilus

Ml

GCL

SGZ

Hilus

A

C

C2 C2’ C2’’ C2’’’

B

C1

D

E

D1

E1

CA3

CA2

CA1

DG

CA3

CA2

CA1

DG

Figure 1. Hspb8 is expressed in the dentate gyrus (DG) of adult mice. Immunofluorescent labeling reveals the expression of Hspb8 in
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mRNA reduced neuronal differentiation and cell survival, and
that during differentiation the levels of Hspb8 increased at 24, 48,
and 96 h after induction of differentiation, Hspb8 appears to
regulate survival and differentiation of new neurons in vitro.

Hspb8 does not alter precursor cell proliferation in vivo
Based on both our in vitro results and the expression of Hspb8 in
the course of adult hippocampal neurogenesis in vivo, we next
addressed the functional effects of Hspb8 on adult neurogenesis
in vivo. We overexpressed Hspb8 using a lentiviral vector and
stereotaxic injection. Proliferating cells were permanently labeled
with three injections of BrdU, 6 h apart, at 3 weeks after viral
injection (Fig. 6A). Proliferating transduced cells were identified
by the codetection of both BrdU and GFP (Fig. 6B). Quantifica-
tion of BrdU/GFP-labeled cells revealed that overexpression of
Hspb8 or �Hspb8 did not change the number of proliferating
cells in the dentate gyrus (LVGFP, 68 � 16; LV-Hspb8, 60 �
13.86; LV-�Hspb8, 72 � 18; p � 0.87; Fig. 6C).

Hspb8 promotes survival and neurogenesis in vivo
In contrast, overexpression of Hspb8 increased survival of newborn
cells in the dentate gyrus. Surviving cells were labeled with BrdU 3
weeks after viral vector injection (Fig. 6D) and identified another 3
weeks later (Fig. 6E). Overexpression of Hspb8 significantly in-
creased the number of BrdU/GFP-labeled cells compared with the
control group (LVGFP; Fig. 6F). The number of surviving cells in
the Hspb8 transduced dentate gyrus increased significantly by 63%
(LVGFP, 88 � 14.42; LV-Hspb8, 144 � 17.66; p � 0.022; Fig. 6F).

We also analyzed the phenotype of surviving BrdU/GFP cells after
Hspb8 overexpression (Fig. 7A) and found a significant 2.33-fold
increase in the fraction of cells that coexpressed BrdU/GFP and the
neuronal marker, NeuN (LVGFP, 1 � 0.29; LV-Hspb8, 2.33 � 0.60;
p � 0.026, Fig. 7B). A similar but not statistically significant increase
was seen in the number of BrdU/GFP/S100�� astrocytes (LVGFP,
1 � 0.58; LV-Hspb8, 1.5 � 0.65; p � 0.49; Fig. 8).

The � crystallin domain is involved in the proneurogenic
effects of Hspb8
Several small heat-shock proteins share a highly conserved func-
tional domain, the �-crystallin domain. Both Hspb8 and Hspb5
contain this domain. To study the potential role of the domain in
the observed effects on neurogenesis, we overexpressed a trun-
cated form of Hspb8, which lacks 120 –145 residues of the
�-crystallin domain (�Hspb8) in vitro and in vivo.

In cultured precursor cells, overexpression of �Hspb8 pre-
vented the effect of Hspb8 on neuronal differentiation (�34%,
p � 0.001; Fig. 4C) and cell survival (p � 0.007; Fig. 4D).

Similarly, �Hspb8 did not show the effect on the survival of
BrdU/GFP-labeled cells seen after transduction with Hspb8 in
vivo (LV-Hspb8, 144 � 17.66; LV-�Hspb8, 75 � 5.74; p � 0.006;
Fig. 6F).

Again, and consistent with the in vitro data (Fig. 4C), the effect
of Hspb8 was specific to the survival of new neurons because
�Hspb8 did not show this effect (LV-Hspb8, 2.33 � 0.60; LV-
�Hspb8, 1 � 0.20; p � 0.020; Fig. 7B). In addition, the mean
fraction of astrocytes appeared to be reduced by 50% after trans-
duction with �Hspb8, but this change did not meet the criterion
of conventional statistical significance (LVGFP, 1 � 0.58; LV-
�Hspb8, 0.5 � 0.29; p � 0.41; Fig. 8B). These results further
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corroborate the involvement of the �-crystallin domain in the
Hspb8-induced increase in survival of the newborn neurons.

Hspb8 regulates survival of differentiated precursor cells via
Akt signaling
To get information about possible mechanisms by which Hspb8
exerts its effects on survival of precursor cells, we evaluated the
activation of the key survival protein Akt, which is activated by
Hspb8 in other cellular models (Sui et al., 2009). As previously
reported, we also found that activated Akt (phospho-Akt) was
downregulated in precursor cells that had been induced to differ-
entiate (45%; p � 0.001; Fig. 9A,B) (Bracko et al., 2012). How-
ever, overexpression of Hspb8 caused a significant increase in the
levels of phospho-Akt in differentiating precursor cells (91%; p �
0.001; Fig. 9C). To confirm the involvement of Akt signaling
pathway in the survival of differentiating hippocampal precursor
cells induced by Hspb8, we incubated precursor cells with a spe-
cific inhibitor (LY294002) for phosphatidyl-inositol-3-kinase
(PI3K), a protein that is upstream of Akt in the survival pathway
(Sui et al., 2009). We found a significant decrease in the levels of

phospho-Akt in precursor cells that were transfected with Hspb8
after the incubation with the PI3K inhibitor (164%; p � 0.001;
Fig. 9C). Additionally, we found that silencing Hspb8 signifi-
cantly decreased the activation of Akt compared with controls
(49%; p � 0.001; Fig. 9D). These data suggest that Hspb8 acts at
least partly via the Akt-dependent signaling pathway to regulate
survival and differentiation of precursor cells.

Hspb8 regulates survival of differentiating precursor cells in a
cell-autonomous manner
We also sought to determine whether Hspb8 exerts a cell-
autonomous or non– cell-autonomous effect on the survival of
differentiating precursor cells. For these studies, we measured
both proliferation and survival of wild-type precursor cells that
were exposed to CM derived from precursor cells that overex-
pressed Hspb8 or had been transfected with siRNA-Hspb8 (Fig.
10A). The extent of BrdU incorporation was similar across pre-
cursor cells treated with the CM collected from all groups (p �
0.14; Fig. 10B). In a similar manner, the Wst-1 assay did not show
differences in the viability of proliferative cells (p � 0.24; Fig.
10C). Wild-type precursor cells exposed to CM and induced to
differentiation did not show significant changes in survival mea-
sured with the BrdU and Wst-1 assays (p � 0.15 and 0.22, respec-
tively; Fig. 10D,E). These studies revealed that the effects of
Hspb8 on survival of differentiating precursor cells in vitro can-
not be attributed to factors secreted by transfected precursor cells
or by differentiated cells derived from transfected precursor cells.
Thus, our data rather suggest a possible cell-autonomous mech-
anism, by which Hspb8 promotes survival and possibly the dif-
ferentiation of precursor cells. In vivo additional or alternative
indirect mechanisms might be active.

Expression genetic analysis suggests an antiapoptotic role
for Hspb8
We finally used our database of hippocampal gene expression in
BXD mice to investigate the expression of Hspb8 and its variation
in a genetic reference population (Overall et al., 2009). The BXD
panel consists of mouse strains derived from inbreeding the prog-
eny of an intercross between C57BL/6J and DBA/2J such that
each resulting strain has a unique mix of both parental genotypes
while being homozygous at every locus. The study described an-
alyzed 69 of these strains, including the parental lines. The Af-
fymetrix M430 version 2 microarray used in that study contains 3
probe sets targeting Hspb8, 1456434_x_at, 1417013_at, and
1417014_at. Because all three probe sets are of good quality
(target-specific and expressed well in the hippocampus), we de-
cided to use the first principal component (Hspb8-PC1, which
explains 	90% of the expression variance in these probe sets) as
a meta-trait for further analysis. To address the genetic control of
Hspb8 in the hippocampus, we performed QTL mapping with
Hspb8-PC1 to identify genomic loci influencing transcript ex-
pression. We found that expression of the Hspb8 gene maps
strongly to its own physical location in the genome (LOD score
17.5; Fig. 11A). This significant cis-QTL suggests that Hspb8 is
largely autoregulatory in the hippocampus and might exert a
dominating effect in genetic networks in which it is involved.

We next searched for genes whose mRNA expression covaried
with that of Hspb8 in the hippocampus under the premise that genes
regulated in a similar pattern are more likely to be under common
genetic control or acting in the same biochemical pathways. To do
this, we calculated the Pearson correlation coefficient for Hspb8-
PC1 with every probe set in the expression dataset. The top 200
correlating probe sets were used for functional enrichment analysis

Figure 4. Overexpression of Hspb8 affects neuronal differentiation of precursor cells in vitro.
A, Experimental time line for Hspb8 effect on precursor cell (AHPC) differentiation. B, Expression
of Hspb8, �Hspb8, and GFP after nucleofection was verified by Western blot (B1). B2, Repre-
sentative image of new neurons identified by the coexpression of GFP (green) and MAP2 (red).
Nuclei were stained with DAPI (blue). Scale bar, 70 �m. C, Precursor cells expressing Hspb8 or
�Hspb8 were differentiated during 4 d. Quantification of MAP2/GFP neurons was done as
described in Materials and Methods. There were significant differences in neuronal differenti-
ation between groups. Hspb8 and �Hspb8 affect neuronal differentiation of precursor cells.
Experiments were duplicated and repeated at least three times. Results represent the mean �
SEM of total GFP. *p � 0.001, control versus Hspb8 (Tukey’s post hoc test after one-way
ANOVA). **p � 0.001, Hspb8 versus �Hspb8 (Tukey’s post hoc test after one-way ANOVA). D,
Effect of Hspb8 overexpression on cell survival was done with Wst-1 assay, showing that Hspb8
significantly increased cell survival and that �Hspb8 affects this parameter. Wst-1 analysis
from six wells per group was performed three times. Error bars indicate SEM. *p � 0.001,
control versus Hspb8 (Tukey’s post hoc test after one-way ANOVA). **p � 0.007, Hspb8 versus
�Hspb8 (Tukey’s post hoc test after one-way ANOVA).
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(data not shown). Because there is strong linkage disequilibrium at
this locus, which means that adjacent genes will be correlated be-
cause of genotype and not necessarily because of their functional
expression pattern, we ignored probe sets from the Hspb8 linkage
block (defined as the interval in which markers correlated with an r2

	 0.1 with the markers adjacent to the Hspb8 gene). The remaining
probe sets were split into genes positively or negatively correlating
with Hspb8, and these two groups analyzed for enriched functional
categories using the DAVID bioinformatics tool (Dennis et al., 2003;
Huang da et al., 2009a, 2009b).

In the positively correlating group, we found enrichment for
the categories “regulation of growth” (Hopx, Ddr1, Fgfr1, and
Ngf) and “regulation of apoptosis” (Bag3, Fgfr1, Ngf, and Ti-
cam1) (Fig. 11B). The negatively correlating group showed enrich-

ment for categories, including “intracellular
signaling” (Arhgef9, Rab14, Rap2a, Gnaq,
Plcb1, Gm266, Spred2, and Usp8), “apopto-
sis” (Bcl2l11, Fem1b, and Peg3) and “tissue
morphogenesis” (Acvr1, Fem1b, and Ser-
pinb5) (Fig. 11B).

We used the STRING online tool to
identify a core network of interacting
genes by submitting the gene names cor-
responding to the list of correlates de-
scribed above and extending the network
by adding the most-connected genes from
the STRING database. The resulting core
network (Fig. 11B) has been annotated to
indicate the genes correlating with
Hspb8-PC1. Positively correlating genes
are highlighted green, negatively correlat-
ing genes in red. Two major clusters are
apparent, one based around the nerve
growth factor family of which several are
positively correlated with Hspb8-PC1.
Another group, positively interacting
with the Hspb8/Bag3 complex, is com-
posed of members of the apoptotic
machinery.

Discussion
In the present study, we show that small
heat-shock protein Hspb8 is highly ex-
pressed in the course of adult hippocam-
pal neurogenesis in vivo and during
differentiation of adult hippocampal pre-
cursor cells in vitro. Overexpression of
Hspb8 increased the survival of newborn
neurons in vitro and in vivo. Our data in-
dicate that the �-crystallin domain of
Hspb8 is involved in the effects caused by
Hspb8 and that Hspb8 promotes survival
of new neurons in vitro through the acti-
vation of Akt suggesting, at least in vitro, a
cell-autonomous mechanism.

Small heat shock proteins are differen-
tially expressed in the brain of adult rodents
(Quraishe et al., 2008; Kirbach and Golen-
hofen, 2011). Hspb8 is expressed in the hip-
pocampus of adult mice and rats, but the
expression of Hspb8 mRNA is dependent on
the developmental stage (Quraishe et al.,
2008; Kirbach and Golenhofen, 2011). At
embryonic and postnatal stages, Hspb8 is

modestly or not at all expressed in the rat hippocampus, whereas in
the adult, expression of Hspb8 increases considerably (Kirbach and
Golenhofen, 2011). In nonpathological human brain, small heat
shock proteins are also expressed. In such studies, Hspb8 was ex-
pressed in neurons and also in blood vessels (Wilhelmus et al., 2006).
We confirmed that Hspb8 is widely expressed, including on blood
vessels, and is detectable in the neurogenic subgranular zone (Figs. 1
and 2B,C). Hspb8 was increasingly expressed from type 2b cells to
mature neurons (Fig. 1). Moreover, in cultured precursor cells,
Hspb8 mRNA and protein were expressed (Fig. 2B,C). These data
first indicated that Hspb8 might be involved in survival and differ-
entiation during adult neurogenesis in vivo, an idea supported by
different lines of evidence suggesting an important role for Hspb8 in

Figure 5. Knock-down of Hspb8 decreases neuronal differentiation and survival of precursor cells (AHPC) in vitro. A, Time line
for the experiments in which Hspb8 was silenced to evaluate its effects on neuronal differentiation and survival. B, Immunofluo-
rescence images of precursor cells nucleofected with control siRNA and Hspb8 siRNA sequences are shown in B1 and B2, respec-
tively. The decrease of Hspb8 was studied in cells that showed colocalization of the signals for Hspb8 (red) and GFP (green). B2,
Merged images show cells with a decrease in Hspb8 expression without altered GFP expression after silencing. Scale bar, 30 �m.
C, The effect of Hspb8 knock-down was analyzed by immunoblotting. Silencing of Hspb8 (si-Hspb8) decreased the expression of
Hspb8, whereas control sequences (si-Ctl) did not affect Hspb8 expression levels. GAPDH was used as loading control. D, E, Hspb8
knock-down significantly affected neuronal differentiation and survival of precursor cells. Control sequences did not significantly
affect either parameter. Quantification of �III-tubulin/GFP neurons was performed as described in Materials and Methods. Exper-
iments were as duplicates with three independent runs. Results represent the mean � SEM of total GFP. *p � 0.011, Ctl versus
si-Hspb8 (Tukey’s post hoc test after one-way ANOVA); p � 0.44, si-Ctl versus si-Hspb8 (Tukey’s post hoc test after one-way
ANOVA). E, Effect of Hspb8 overexpression on cell survival was also assessed with the Wst-1 assay. Wst-1 analysis from six wells per
group was performed three times. *p � 0.004, Ctl versus si-Hspb8 (Tukey’s post hoc test after one-way ANOVA); p � 0.75, Ctl
versus si-Ctl (Tukey’s post hoc test after one-way ANOVA).
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Figure 7. Hspb8 modulates neuronal differentiation in vivo. A, Neuronal differentiation was
assessed by quantifying BrdU-labeled (A1, red) and NeuN-labeled (A3, blue) cells coexpressing
GFP (A2, green) in the transduced areas (arrows). Scale bar, 40 �m. The merged image shows
a granule cell triple labeled for BrdU/NeuN/GFP (A4 ). B, Significant increase in BrdU/NeuN/GFP-
labeled cells in the dentate gyrus of mice injected with LV-Hspb8 related to LV-GFP control mice.
The truncated LV-�Hspb8 affects neuronal differentiation caused by LV-Hspb8. N�5 or 6 mice
per group. Error bars indicate SEM. *p � 0.026, LV-GFP versus LV-Hspb8 (Fisher’s post hoc test
after one-way ANOVA). **p � 0.020, LV-Hspb8 versus LV-�Hspb8 (Fisher’s post hoc test after
one-way ANOVA).
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Figure 9. Overexpression of Hspb8 activates the Akt survival pathway during differentiation
of precursor cells in vitro. A, Experimental time line for Hspb8 effects on precursor cell (AHPC)
survival. B, Levels of phospho-Akt (p-Akt) decrease with differentiation of AHPC. C, Overexpres-
sion of Hspb8 increases levels of p-Akt, whereas cells that overexpressed Hspb8 and were
incubated with PI3K inhibitor, LY294002 10 �M (I-PI3K) showed a decrease in levels of p-Akt. C,
Knock-down of Hspb8 also decreased Akt phosphorylation. B–D, Representative autoradio-
grams and densitometric analysis of p-Akt. B, Total Akt (unphosphorylated form). D, GAPDH
autoradiograms. Data were normalized to total Akt and GAPDH levels. Densitometric analysis
represents the mean � SEM. B, p � 0.001. C, p � 0.001. *Control (Ctl) versus Hspb8. **Ctl
versus Ctl � I-PI3K. ***Hspb8 versus Hspb8 � I-PI3K. D, p � 0.001. *Control (Ctl) versus
siHspb8 (Tukey’s post hoc test after one-way ANOVA).

Figure 6. LV-mediated overexpression of LV-Hspb8 affects cell survival in vivo. A, Experi-
mental design for the proliferation study in adult mice transduced with control viral vector
(LVGFP), LV-Hspb8, or LV-�Hspb8. After viral vector injection, proliferating cells were labeled
by three sequential injections of BrdU (50 mg/kg). B, Cells in the proliferation phase were
identified by the coexpression of BrdU/GFP in the transduced areas. Scale bar, 30 �m. C, Quan-
tification of BrdU-labeled cells did not show significant changes in cell proliferation between
LV-GFP, LV-Hspb8, and LV-�Hspb8 groups. D, Three weeks after viral vector injection (LVGFP,
LV-Hspb8, or LV-�Hspb8), cells were labeled by three sequential injections of BrdU (30 mg/kg).
Surviving cells were quantified 3 weeks after the last BrdU administration. E, Representative
image of cells coexpressing BrdU/GFP in the transduced dentate gyrus. Scale bar, 30 �m. F,
Quantification of BrdU-labeled cells indicated an increase in cell survival caused by LV-Hspb8
compared with LV-GFP. However, the truncated LV-�Hspb8 did not affect cell survival caused
by LV-Hspb8. N � 5 or 6 mice per group. Error bars indicate SEM. *p � 0.022, LV-GFP versus
LV-Hspb8 (Fisher’s post hoc test after one-way ANOVA). **p � 0.006, LV-Hspb8 versus LV-
�Hspb8 (Fisher’s post hoc test after one-way ANOVA).

Figure 8. Hspb8 does not affect astrocytic differentiation in vivo. A, Astrocytic differentiation
was assessed by counting BrdU-labeled cells (A1, red) and S100�-labeled cells (A3, blue) co-
expressing GFP (A2, green) in the transduced areas (arrows). Scale bar, 40 �m. The merged
image shows a triple-labeled cell for BrdU/ GFP/S100� (A4 ). B, Slight increase in BrdU/GFP/
S100�-labeled astrocytes in the dentate gyrus of mice injected with LV-Hspb8 in relation to
LV-GFP control mice (not significant). In contrast, the truncated LV-�Hspb8 decreased the
fraction of astrocytes in relation to to LV-GFP control mice. N � 5 or 6 mice per group. Error bars
indicate SEM. p � 0.49, LV-GFP versus LV-Hspb8 or LV-Hspb8 versus LV-�Hspb8 (Fisher’s post
hoc test after one-way ANOVA).
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survival of different cell types, including neurons (Wang et al., 2004;
Yew et al., 2005; Depre et al., 2006; Quraishe et al., 2008; Gurusamy
et al., 2009; Sui et al., 2009; Karch and Borchelt, 2010; Gonzalez-
Malerva et al., 2011; Kirbach and Golenhofen, 2011). Accordingly,
we saw an increase in Hspb8 mRNA and protein, when the differen-
tiation of precursor cells was induced in vitro (Fig. 3B,C).

Overexpression of Hspb8 in precursor cells favored survival
and neuronal differentiation. This effect was lost when the frag-
ment comprising amino acid residues 120 –145 of the crystallin
domain of Hspb8 was deleted.

To confirm these results in vivo, we overexpressed Hspb8 with
a lentiviral vector. If injected into the hippocampus, these vectors
predominantly (�85%) transduce precursor cells and immature
neurons rather than mature granule cells (van Hooijdonk et al.,
2009). However, this is not exclusive because, as in our experi-
ment at 1 or 5 weeks after viral injection, transduced cells were

found in the subgranular zone (van Hooijdonk et al., 2009;
Fitzsimons et al., 2012). This might imply that the virus also
infected the radial glia-like stem cells (type 1 cells).

The gain-of-function experiments confirmed that Hspb8 in-
creased cell survival without affecting proliferation and pro-
moted neuronal differentiation without significant changes in
astrocytic differentiation. Hspb8-expression in astrocytes is con-
sistent with a recent report (Seidel et al., 2012). Overexpressing
Hspb8 with a truncated �-crystallin domain affected the effects
of wild-type Hspb8. Surprisingly, the truncated form of the
�-crystallin domain of Hspb8 that lacks the putative
N-myristoylation site, the N-glycosylation, and protein kinase C
motifs did not decrease baseline survival. However, in our con-

Figure 10. Soluble factors in CM from transfected precursor cells do not affect cell prolifer-
ation and survival of wild-type precursor cells in vitro. A, Time line for experiments, in which
Hspb8 and siHspb8 were transfected to collect CM for subsequent treatment of nontransfected
(wild-type) precursor cells (AHPC). B, C, CM from Hspb8- and siHspb8-expressing precursor cells
did not affect cell proliferation (BrdU) and viability (Wst-1) of wild-type cells. Similar results
were obtained with cells treated with normal proliferation media (NM) or with CM obtained
from nontransfected cells. Error bars indicate SEM. B, C, p � 0.14 (BrdU) and p � 0.24 (Wst-1)
(Tukey’s post hoc test after one-way ANOVA). D, E, Wild-type precursor cells treated with CM
from Hspb8- and siHspb8-expressing precursor cells did not lead to significant changes of sur-
vival. D, Wild-type precursor cells were prelabeled with BrdU before cells were switched to CM.
Cells treated with NM or CM obtained from differentiated nontransfected cells did not show
changes in cell survival. Error bars indicate SEM. D, E, p � 0.15 (BrdU) and p � 0.22 (Wst-1)
(Tukey’s post hoc test after one-way ANOVA). The BrdU and Wst-1 analysis from six wells per
group was performed three times each.

Figure 11. Genetic interactions of Hspb8. A, Genomic association mapping of Hspb8 mRNA
expression. A composite trait comprised of the principal component of transcript expression
measured by three microarray probes was mapped to the mouse genome. A very strong cis-QTL
(quantitative trait locus at the same location as the Hspb8 gene, blue trace) was highly signifi-
cant (LOD 17.5), indicating that a sequence variant at this locus strongly affects Hspb8 gene
expression. Gray and red horizontal lines indicate genome-wide significance at p � 0.63 and
p � 0.05, respectively. B, A subnetwork from the STRING database showing genes associated,
directly or indirectly, with Hspb8. Colored connections indicate conceptual links between genes
based on different sources of evidence, such as literature commentary, protein–protein bind-
ing, and microarray coexpression. Genes exhibiting expression correlation in a pertinent hip-
pocampal microarray study are highlighted green for positive and red for inverse correlation.

Ramírez-Rodríguez et al. • Hspb8 in Adult Hippocampal Neurogenesis J. Neurosci., March 27, 2013 • 33(13):5785–5796 • 5793



struct, other regions remained intact, such as hydrophobic se-
quences and phosphorylation motifs for Erk that are also
important for the chaperon action of Hspb8 (Irobi et al., 2004;
Shemetov et al., 2011). Thus, we cannot exclude that other re-
gions of Hspb8 are modulating or cooperating with the deleted
portion of the �-crystallin domain to promote survival. At the
present time, it is not known which domain of Hspb8 is involved
in protein interaction or whether Hspb8 is able to directly acti-
vate the kinases or promote the subcellular redistribution of pro-
teins involved in survival. Further work is required to understand
the contribution of each domain or regulatory site of Hspb8 to
regulate adult hippocampal neurogenesis. However, silencing of
Hspb8 confirmed that Hspb8 is relevant for cell survival and
neuronal differentiation. This effect is also in line with reports
that silencing Hspb8 caused cell death in MCF7 human breast
adenocarcinoma cells (Gonzalez-Malerva et al., 2011).

Relatedly, missense mutations in residues of the crystallin
domain of Hspb8 have caused neurodegeneration in cultured
motor neurons without inducing cell death (Irobi et al., 2010).
The �-crystallin is mutated in distal hereditary motor neurop-
athy and Charcot-Marie-Tooth neuropathy type 2. The effect
of this mutation, however, is specific to motor neurons (Irobi
et al., 2010). Our data indicate that the �-crystallin neverthe-
less has more general effects on neuronal survival and differ-
entiation. These data are also in accordance with studies, in
which overexpression of Hspb8 protected cardiomyocytes
whereas missense mutations in Hspb8 reduced survival
(Sanbe et al., 2009; Carra et al., 2010).

Of note, abnormal expression of �B-crystallin (HSPB5) in oligo-
dendrocytes was suspected to underlie a familial syndrome charac-
terized by atrophy of the dentate gyrus, dementia, and congenital
cataract (Hudson and Munoz, 1997). A link to adult neurogenesis
was proposed and has been discussed (Hudson and Munoz, 2003).
However, no mutation has been found in the crystallin gene. In the
heart, a mutation to Hspb8 causes desmin-related cardiomyopathy,
in which desmin and Hspb8 form damaging amyloid. Intriguingly,
this process is blocked by Hspb8 (Sanbe et al., 2009).

Consequently, the mechanisms underlying the survival-
promoting effects of Hspb8 appear to be multifold and complex.
In the heart, Hspb8 acts via the activation of key enzymes for cell
survival, such as PI3K (Sui et al., 2009), accompanied by an in-
crease in phosphorylated Akt. Akt is a serine/threonine protein
kinase that acts downstream of PI3K and is involved in glucose
metabolism, cell proliferation, apoptosis, transcription, cell mi-
gration, and dendritic growth through mTOR (Depre et al., 2006;
Danan et al., 2007; Kim et al., 2009, 2012; Sui et al., 2009). Future
studies should examine direct or indirect effects of Hspb8 on
other aspects of adult neurogenesis, including neurite growth and
maturation and the functional integration of the newborn cells.

Hspb8 apparently directly binds to Akt and 5AMP-activated
protein kinase for promoting the nuclear translocation of both
proteins to promote survival (Depre et al., 2006). Here, we show
that Hspb8 acts via PI3K to activate Akt for promoting the sur-
vival of differentiating precursor cells (Fig. 9C), which is in line
with the assumed role for Akt in modulating survival in the brain
(Brazil et al., 2004). In addition, our in vitro data suggest that the
effect of Hspb8 might be based on a cell-autonomous mechanism
because soluble factors contained in CM from precursor cells or
differentiated precursor cells transfected with Hspb8 or with
siRNA oligonucleotides for Hspb8 did not affect cell proliferation
and survival (Fig. 10). However, our study does not rule out
changes mediated through Hspb8-dependent cell– cell interac-
tions in vivo. Given that Hspb8 is also expressed in blood vessels

(Fig. 1), the in vivo experiments cannot fully exclude an extrinsic
role for Hspb8. The vasculature presumably plays an important
role for neurogenesis, given that the vascular niche presumably
provides many regulators that could act as extrinsic cues for neu-
rogenesis (Palmer et al., 2000). At least for the songbird system,
such regulatory link is well established (Louissant et al., 2002).

Moreover, Hspb8 inhibits proapoptotic effectors, such as Bad,
Foxo, and glycogen synthase kinase-3�, and activates antiapop-
totic effectors as endothelial NO synthase isoforms (Depre et al.,
2006). In cardiomyocytes treated with HSP inducer geranylgera-
nylacetone, Hspb8 inhibited the activation of caspase-3 (Sanbe et
al., 2009). Together, these data suggest multiple potential mech-
anisms and not a single mode of action.

Thus, our findings related to the prosurvival effect of Hspb8
are consistent with recent reports indicating that the promotion
of survival is an important step in the stimulation of neurogenesis
(Pieper et al., 2010; Sahay et al., 2011), which might consequently
enhance the functionality of the dentate gyrus (Sahay et al., 2011).

In addition, we used our database of hippocampal gene ex-
pression in BXD mice to identify potential target genes in our
system (Overall et al., 2009). This approach makes use of geneti-
cally determined variation in transcript expression to detect co-
variance as indicator of a shared direct or indirect causality.

Indeed, Hspb8 expression positively correlated with genes in-
volved in cell growth (Hopx, Ddr1, Fgfr1, and Ngf). Some of these
genes, such as Ngf, increase Bcl and decrease Bax to prevent neu-
ronal apoptosis (Deckwerth et al., 1996; Putcha et al., 1999;
Arthur et al., 2006). Consequently, Hspb8 also positively corre-
lated with other genes regulating apoptosis, such as Ticam1 and
Bag3. The correlation between Hspb8 and Bag3 is particularly
interesting in the context of adult neurogenesis given that recent
studies indicated that Bag3 binds to Hspb8 to promote au-
tophagy in different cell types (Carra et al., 2008a, 2008b; Carra,
2009; Fuchs et al., 2009; Gurusamy et al., 2009; McCollum et al.,
2009; Arndt et al., 2010). Autophagia is a catabolic process in-
volving lysosomal degradation and recycling of cytoplasmic con-
stituents and occurs at low basal levels in all tissues. Autophagia
contributes to tissue homeostasis (Levine and Kroemer, 2008)
and is rapidly upregulated after damage. Nevertheless, in some
circumstances, the upregulation of autophagy protects against
the onset of apoptosis (Levine and Kroemer, 2008).

Similar to the antiamyloidogenic effect of Hspb8 in cardiomy-
ocytes, a prevention of �-sheet formation in Alzheimer disease
and Huntingin aggregation in Huntington disease have also been
suggested (Wilhelmus et al., 2006; Carra et al., 2009).

A related small heat-shock protein, Hspb4 (Cry�A) is ex-
pressed in a highly region-specific manner and was discovered to
be an essential survival factor for the dopaminergic interneurons
in the olfactory bulb (Ninkovic et al., 2010). It thus seems that
crystallins play important roles in neuronal survival, with differ-
ent genes exerting more or less specific functions in different
populations of cells. In conclusion, we here provide evidence that
Hspb8 acts as an important factor in regulating survival in the
adult hippocampal neurogenesis through the activation of a key
survival pathway that involves PI3K and Akt.
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