1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Author manuscript
Compr Physiol. Author manuscript; available in PMC 2019 August 22.

-, HHS Public Access
«

Published in final edited form as:
Compr Physiol. ; 9(2): 565-611. doi:10.1002/cphy.c180025.

Studying Human Neurological Disorders Using Induced
Pluripotent Stem Cells: from 2D Monolayer to 3D Organoid and
Blood Brain Barrier Models

Sarah Loganl2# Thiago Arzual:2#, Scott G. Canfield3, Emily R. Seminary!, Samantha L.
Sison?, Allison D. Ebert!, Xiaowen Bail:2"

1Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee,
WI, USA

2Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA

3Department of Cellular & Integrative Physiology, IU School of Medicine-Terre Haute, Terre Haute,
IN, USA

Abstract

Neurological disorders have emerged as a predominant healthcare concern in recent years due to
their severe consequences on quality of life and prevalence throughout the world. Understanding
the underlying mechanisms of these diseases and the interactions between different brain cell
types is essential for the development of new therapeutics. Induced pluripotent stem cells (iPSCs)
are invaluable tools for neurological disease modeling, as they have unlimited self-renewal and
differentiation capacity. Mounting evidence shows: 1) various brain cells can be generated from
iPSCs in 2-dimensional (2D) monolayer cultures; 2) further advances in 3D culture systems have
led to the differentiation of iPSCs into organoids with multiple brain cell types and specific brain
regions. These 3D organoids have gained widespread attention as /n vitrotools to recapitulate
complex features of the brain, and 3) Complex interactions between iPSC-derived brain cell types
can recapitulate physiological and pathological conditions of blood-brain barrier (BBB). As iPSCs
can be generated from diverse patient populations, researchers have effectively applied 2D, 3D and
BBB models to recapitulate genetically complex neurological disorders and reveal novel insights
into molecular and genetic mechanisms of neurological disorders. In this review, we describe
recent progress in the generation of 2D, 3D and BBB models from iPSCs and further discuss their
limitations, advantages, and future ventures. This review also covers the current status of
applications of 2D, 3D and BBB models in drug screening, precision medicine, and modeling a
wide range of neurological diseases (e.g., neurodegenerative diseases, neurodevelopmental
disorders, brain injury, and neuropsychiatric disorders).
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Introduction

Neurological disorders, such as neurodegenerative, neurodevelopmental, and psychiatric
disorders, have emerged as a predominant healthcare concern in recent years, due to their
severe consequences on quality of life and prevalence throughout the world. The causes and
risk factors behind these diseases, including a combination of environmental and/or genetic
factors, are complex and not well understood. Many neurological disorders are chronic and
incurable conditions with debilitating effects that may continue for years or even decades
post-diagnosis. For instance, Alzheimer’s Disease (AD) is one such prominent disease
taking a major toll on the aging population and places a huge burden on the healthcare
system. In its 2018 Annual Report (473), the Alzheimer’s Association estimated 5.7 million
Americans are living with AD. Further research into the mechanistic causes of neurological
disorders is essential for the development of new therapeutic approaches for disorders like
AD.

Since there are many inherent barriers to conducting research directly on human subjects
and primary brain samples, animal models have played a major role in studying neurological
disorder mechanisms for decades and have been at the forefront of evaluating novel
therapeutic approaches (39, 41, 71, 225, 234, 242, 247, 347, 354, 414). Nevertheless,
considerable questions have emerged regarding the translatability of such animal-based
research to human disease treatment since there are many differences in physiology, genetics
and developmental patterns between human and animal brains (143, 144, 173, 237, 273,
416, 494). For example, microcephaly is a neurodevelopmental disorder in which brain size
is markedly reduced. However, genetically engineered mice expressing several human
microcephaly-related gene mutations have failed to recapitulate the severely reduced brain
size seen in human patients (25, 164, 237, 268, 361). Discordance between preclinical drug
studies conducted in animal models and human clinical trials has also raised significant
concerns. Many prospective drugs for stroke, traumatic brain injury (TBI) and AD were
found to be effective in animal experiments; however, these same drugs failed in clinical
trials (4, 276, 402, 440, 458). The high clinical failure rate in drug development is based at
least in part on the inability to adequately model human neurological disorders in animals.
The advent of human induced pluripotent stem cells (iPSCs) with their ability to
differentiate into different types of neural cells provide unprecedented opportunities to
decipher the mechanisms of neuronal loss occurring in neurological diseases and to develop
therapeutic approaches in conditions that may better translate to humans.

In 2007, the team of Shinya Yamanaka showed that human iPSCs could be reprogrammed
from a small sample of skin-derived fibroblasts in a culture dish through the combined
expression of pluripotency-associated transcription factors SRY (sex determining region Y)-
box 2 (SOX2), octamer-binding transcription factor 4 (OCT4), Kruppel like factor 4 (KLF4)
and myc pronto-oncogene (c-Myc) (428). Since skin biopsy remains an invasive approach,
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more and more studies appeared in recent years describing the successful reprogramming of
iPSCs from many other human somatic cell types such as blood and urine cells (82, 367,
374, 411, 456). Although there may be some methylation profile differences between iPSCs
and embryonic stem cells (ESCs) due to the reprogramming process (117, 219), iPSCs and
ESCs are considered similar in regards to cell morphology, proliferation and differentiation
capacity (283), without the same ethical barriers as for cells in extra-embryonic tissues (e.g.
placenta) (22, 68, 217, 428, 433, 488). Thus, human iPSCs are ideally suited for obtaining
large quantities of neural cells required for disease modeling, drug screening and cell-based
therapy (Figure 1). Importantly, iPSCs can be derived from patients who have neurological
disorders, allowing researchers to study nervous system diseases within an endogenous
human system. Development of iPSC technology, therefore, offers unique possibilities to
investigate the cellular consequences of genetic vs. environmental factors in a human model
as well as the underlying mechanisms (21, 39, 414).

The central nervous system (CNS) is composed of two major cell types: neurons, which are
the primary signaling cells, and glial cells (astrocytes, oligodendrocytes, and microglia),
which support neurons in various ways. Neural stem cells (NSCs) proliferate and
differentiate into neurons, astrocytes, and oligodendrocytes, and play important roles in
brain development (125, 482). Microglia, the innate immune cells of the CNS, are present
throughout the CNS, but they are not derived from NSCs. Nevertheless, microglia play
important roles in synaptic plasticity, neurogenesis, homeostatic functions, and immune
activity (1). The blood-brain barrier (BBB) forms the critical biological barrier between the
peripheral circulation and the CNS and maintains the strict environment required for normal
brain function through selective substance crossing. The BBB can be altered under
pathological conditions often exacerbating disease phenotypes. The BBB consists of four
cell populations: brain microvascular endothelial cells (BMECS), pericytes, neurons, and
astrocytes (404). Importantly, these various human brain cells have been generated from
iPSCs in 2-dimensional (2D) monolayer cultures (1, 68, 217, 359, 431, 459), and the BBB
can be constructed in the culture dish using human iPSC-derived astrocytes, neurons, and
endothelial cells (373). Recent advances in 3-dimensional (3D) culture systems have led to
the generation of brain organoids from human iPSCs by mimicking routine neurological
development. This article includes 10 sections: generation of different brain cells from
iPSCs in 2D monolayer cultures, blood-brain barrier modeling using iPSCs, generation of
3D organoids from iPSCs, the strengths and limitations of 2D and 3D culture approaches,
modeling neurodegenerative diseases, modeling traumatic brain injury, modeling
neurodevelopmental disorders, modeling neuropsychiatric disorders, screening drug toxicity,
translation of human iPSCs: using of iPSCs in screening drug efficacy and precision
medicine for neurological disorders. The focus of this article is to review recent progress in
1) generating 2D, 3D and BBB systems from human iPSCs in culture dishes, and 2) the
applications of these systems to neurodegenerative, brain injury, neurodevelopmental, and
neuropsychological disease modeling, drug screening, and precision medicine. The
limitations, advantages, and future ventures associated with the use of iPSCs as /in vitro
models of neurological disorders are also discussed.
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Generation of Different Brain Cells from iPSCs in 2D Monolayer Cultures

Neural stem cells

Neurons

During fetal mammalian neurodevelopment, and to some extent in postnatal through
adulthood, NSCs or neural progenitors cells (NPCs) act as self-renewing cells that can
differentiate into multiple types of brain cells (27, 232, 323, 397), although there may be
some restriction on their differentiation and proliferation potential (191). The development
of multiple different protocols to generate NSCs has been of great interest for the study of
neurodevelopment, as well as for identifying potential therapeutics targeted at
neurodegenerative diseases (52). There are ongoing clinical trials in the United States and
around the world that utilize NSC transplantation for a variety of diseases, including PD and
ALS (163, 399).

Following developmental cues, some of the protocols grow iPSCs as uniform flat colonies
(Figure 1) before being cultured in a low-attachment dish with chemically defined medium
to drive the formation of embryoid bodies (EB) to mimic early human embryogenesis. EBs
can then be cultured with specific growth factors [e.g., fibroblast growth factor 2 (FGF-2),
usually presence of B27 and/or N2 medium formulation] for the formation of neural
rosettes. Paired box protein-6 (Pax6)-positive neural rosettes are radial arrangements of cells
that mimic the developmental pattern of neuroepithelial cells in the neural tube. The rosettes
can then be re-plated in a monolayer culture, which consists primarily of NSCs (139, 489).
One of the limitations to using these protocols to generate NSCs was the variation among
different iPSC lines and batch-to-batch variation (49, 196). Other protocols used longer EB
formation periods, and specific sorting methods alongside different growth factors, to
generate clonal neural rosettes more efficiently, with longer pluripotency and the possibility
of easy expansion (75, 141, 326). Circumventing the EB formation, Ebert et al proposed a
method that generates pre-rosette stem cells with the help of FGF-2 and epidermal growth
factor (EGF). This protocol was more efficient in generating NSCs, with a more simple and
economic approach (135). In general, NSCs can be characterized by cell morphology and
cell-specific marker expression. iPSCs express pluripotent stem cell markers OCT4 and
stage-specific embryonic antigen 4 (SSEA4). NSCs show triangle-like morphology distinct
from the flat morphology of iPSCs (Figure 1) and express NSC markers SOX2 and Nestin.
NSCs have strong proliferative potential and are passaged every 5-6 days to allow for
population expansion. They can differentiate into cells of various neural lineages (108, 165,
189). A summary of NSC differentiation strategies can be found in Table 1. It is important,
however, to point out that there are many other protocols that have been reported with small
changes compared to the summarized table 1, but the principles described remain similar.

While the exact number of neurons within the human brain is unknown, most estimates
place this number around 85 billion (17, 381). Neurons receive, transmit and process
information through intricate networks formed by different specialized types of neurons,
many of which are affected by complex neurological diseases. Being the primary functional
component of the CNS, understanding how neurons function in both healthy and normal
processes is essential. Non-specific neurons can be also directly differentiated from iPSC-
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derived NSCs by culturing NSCs in neural differentiation medium including brain-derived
neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), dibutyryl cyclic
adenosine monophosphate (CAMP), and ascorbic acid (165).

There has been a push to generate specific types and subtypes of neurons. These neurons can
mimic neurotransmitter outbursts, defined electrophysiological patterns and present distinct
receptors and markers. Some of these include nociceptors, motor, dopaminergic (DA),
GABAergic, glutamatergic, cortical, hippocampal, and serotonergic neurons (Table 2). The
ability to produce different subtypes of neurons has significantly contributed to recent
advances in phenotyping diseases that might affect only certain populations of neurons (118,
221, 358, 380).

There are a number of similarities between the protocols developed to generate these
different types of neurons, with most of them modulating the bone morphogenetic protein
(BMP)/SMAD signaling cascade and Wnt signaling in early development. Chambers et al in
2009 showed that dual SMAD inhibition via SB431542/Noggin treatment was an efficient
and fast way to achieve neural induction without the need for EB formation (77). The
SMAD inhibition protocol (77) provided the foundation for many subsequent neuronal
differentiation protocols. There are, however, several variations to any given strategy. As
pointed out by Sances et al, considering the available techniques to generate only motor
neurons, there has been more than 10 different publications with slightly modified
differentiation protocols used for different timeframes and subtype specifications (386).
With that, Table 1 offers a representative example of the protocols to generate the various
neuronal subtypes, but it is not an exhaustive list of the potential differentiation protocols.

Glial cells include oligodendrocytes, astrocytes, ependymal cells, Schwann cells, microglia,
and satellite cells. On average, glial cells make up about 50% of the brain volume, with a
total number of cells similar to the number of neurons (17). They provide support and
protection for neurons and maintain homeostasis, while also helping neurotransmission.
Several diseases previously thought to be affecting neurons where later discovered to be
affecting these support cells, e.g. multiple sclerosis (MS), and Guillain-Barré syndrome
(332). Other pathologies, like schizophrenia, have also been recently linked to glial cell
dysfunctions, such as white matter abnormalities (32). Glial cells are also essential for scar
formation in response to CNS injury - whether traumatic, ischemic or in different models of
AD and PD (28, 58, 417). Thus, understanding the processes behind normal gliogenesis
during development is important in devising better therapeutic strategies (124). Below we
summarize a few of the protocols used to generate different glial cells from iPSCs (Table 1).

Oligodendrocytes

In the CNS, oligodendrocytes are responsible for myelinating neurons, a role played by
Schwann cells in the peripheral nervous system. During normal development, they are the
last cell type to be generated, although their progenitors tend to arise alongside the first
neurons (432). Similar to other cells in the developing brain, these progenitors follow a
complex spatiotemporal differentiation, where each area of the brain gives rise to different
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specific types of oligodendrocytes (432). Diseases affecting mature oligodendrocytes are
called demyelinating diseases and include MS and leukodystrophies; these diseases are
usually associated with decreased motor function and sensation (248). Early studies with
embryonic stem cell transplantations showed that oligodendrocyte progenitor cells (OPCs)
transplanted into myelin-deficient adult rats were able to migrate, myelinate and later
recover locomotor abilities (81, 213, 263). While there is no iPSC-based therapy yet, ESC-
derived OPCs are being used in a clinical trial for spinal cord injury, and iPSC-based models
of MS have been developed as a tool to understand the disease progression (477).

Using a similar approach to EB-based neuron differentiation protocols, Wang et al. created
OPCs that were, in fact, capable of generating both myelinated astrocytes and
oligodendrocytes (460). This was done by generating neural rosettes as described above.
These were cultured for 35-40 days, then switched to a glial induction media supplemented
with platelet-derived growth factor-AA (PDGF-AA), insulin growth factor-1 (IGF-1) and
Neurotrophin-3 (NT3). These factors drove the formation of gliospheres, which can be
replated in small cell clusters to form oligodendrocytes. The overall differentiation duration
from iPSC to oligodendrocytes varies from 110-150 days, generating myelin basic protein
(MBP)- and oligodendrocyte transcription factor (OLIG2)-positive cells that were shown to
myelinate immunodeficient mouse brains, with the ultrastructure showing mature compacted
myelin (460). A more recent protocol was also established by Douvaras and colleagues, in
which neural induction was achieved via dual SMAD inhibition prior to the formation of
EBs (129). This allowed for a more efficient formation of OLIG2-positive cells in the
absence of any exogenous FGF2. This new protocol was also able to generate OPCs from
primary progressive MS (PPMS) patients, a more severe form of the disease. A summary of
oligodendrocyte differentiation strategies can be found in Table 1.

Microglial cells in humans are derived from myeloid progenitors in the yolk sac, and in the
CNS they act as the first line of immune defense (16, 161, 249). They are constantly
scanning the brain environment for plaques, cell debris, and possible infectious agents, even
though the BBB usually excludes most pathological factors (157). Because of their role,
microglia are essential for the inflammatory responses of the CNS, and they have been
shown to be dysregulated in several different diseases, including AD, PD, and MS (385).

In recent years, at least five different protocols to generate microglial cells from iPSCs have
been proposed (1, 128, 169, 317, 349). A common component in all of these protocols is
Colony-stimulating factor 1 (CSF1) receptor ligands. CSF1 receptor signaling is essential for
normal macrophages proliferation, differentiation, and survival (85, 86). Muffat et al
proposed an early protocol utilizing EB formation using CSF1 and IL-34 as the main
differentiation factors (317). Pandya et al later presented a similar method that also included
an astrocytic co-culture layer (349). To bypass the formation of EBs, the related problems of
batch-to-batch variability, and generation of contaminating cell types, Abud and colleagues
proposed a different protocol in which iPSCs are directly differentiated into hematopoietic
progenitors with the help of FGF-2 and BMP4 (1). These cells were further differentiated
into microglial-like cells, capable of migration, secretion of cytokines and phagocytosis.
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Both Douvaras et al and Haenseler et al further improved upon this method using IL-34
along with granulocyte-macrophage colony-stimulating factor (GM-CSF) instead of CSF1
(128, 169). That methodological change provided them with higher efficiencies and fewer
starting iPSCs, and in the case of Douvaras et al, no need for the co-culture feeder layer. A
summary of microglia differentiation strategies can be found in Table 1.

Astrocytes are often referred to as the housekeeping cell of the brain based on their
invaluable role in brain homeostasis, synaptic plasticity, and response to pathological states
of the CNS (26, 91). Astrocytes are a heterogeneous population and have varying
morphological and physiological characteristics largely dependent on regional localization
with each astrocyte contacting up to a million individual synapses (170, 187, 309, 441, 490,
496). Significant differences exist between human and rodent astrocytes, which is a limiting
factor in the ability to capture human clinical pathophysiology phenotypes in an animal
model. Human astrocytes are up to 30-fold larger and extend up to 10 times more processes
compared to their rodent counterparts (337, 338). Additionally, human astrocytes react to
neuronal synapses at a much faster rate by rapidly propagating calcium waves and
responding to glutamate faster than rodent astrocytes (172, 337, 425, 498). The inability to
obtain viable adult human astrocytes and potential ethical concerns utilizing fetal-derived
astrocytes significantly hindered early studies (313). iPSC-derived astrocytes overcome
some of these barriers, and although they are not as well studied as neuronal subtypes, iPSC-
derived astrocytes have demonstrated several functional characteristics.

The significance of astrocytes in the CNS has led to a number of iPSC-derived astrocyte
protocols attempting to replicate the physical and functional properties of /n vivo astrocytes
(Table 1). To successfully differentiate astrocytes from stem cells, several requirements need
to be met. First, a loss of pluripotency while transitioning to a neural progenitor cell type is
most commonly done by modulating SMAD (77, 102, 224, 230, 231, 261). Next, a neuron-
to glial switch must occur; this default switch can occur following extensive elongated
periods of culture (224, 230, 261), serum addition (251, 348, 378) or modulation of the
Janus kinase/signal transducers and activators of transcription (JAK/STAT), bone
morphogenic protein (BMP), and NOTCH signaling pathways (46, 230, 337, 403). Regional
specificity can be ascertained by modulating RA, BMPs, and sonic hedgehog (SHH) in
differentiating astrocytes from stem cells (230, 261, 378). The ability to derive mature and
regionally specific astrocytes will be critical for future disease modeling applications.

Characterizing iPSC-derived astrocytes has been a challenge, as scientists attempt to discern
between subtypes and maturation levels. Outside of a morphological appearance of iPSC-
derived astrocytes, a number of markers can be utilized (228, 231, 498). Nuclear factor I-A,
a transcription factor, is commonly expressed in immature astrocytes (72, 116). Astrocyte
progenitors express S100 calcium binding protein p (S100p) (114), although varying cell
types of the CNS can also express these markers. Additionally, Aquaporin-4, Aldehyde
dehydrogenase family 1 member L1, glutamate transporter 1 and glutamine aspartate
transporter 1 have been utilized in the identification of astrocytes representing different
maturation states (378). Glial fibrillary acidic protein (GFAP) has been the gold standard in
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characterizing mature astrocytes; however, its expression varies dramatically in different
regions of the CNS and expression of additional markers can begin to identify subtypes (62,
229, 498). A summary of astrocyte differentiation strategies can be found in Table 1.

Generation of 3D Organoids from iPSCs

Different 3D culture systems have existed for more than a decade, with the inclusion of both
scaffold-based cultures, and scaffold-free cultures (e.g. spheroids) (179, 311). Here we will
follow a definition for organoids as provided by Huch et al in 2017: “a 3D structure derived
from either pluripotent stem cells (ESCs or iPSCs), neonatal or adult stem/progenitor cells,
in which cells spontaneously self-organize into properly differentiated functional cell types,
and which recapitulates at least some function of the organ” (201). In the case of cerebral
organoids, this includes neurons, astrocytes, and oligodendrocytes that form a dorsal cortical
organization reminiscent of the ventricular zone layer, a transient layer present at an early
embryonic stage. The neurons present in cerebral organoids are also functionally active,
demonstrating spontaneous calcium surges and action potentials blocked by the application
of tetrodotoxin (236).

Many improvements in an organoid generation have been made in recent years by making
minor modifications of the original Lancaster protocol. This method takes between 1-2
months to differentiate iPSCs into organoids, which can then be kept for up to a year;
however, growth is reduced by 2 months, and cerebral organoids start shrinking after 5-6
months (237). Similar to the 2D model procedure described above, the start of this 3D
cerebral organoid generation protocol begins with the formation of EBs from iPSCs on ultra-
low attachment plates with medium containing decreased FGF-2. After forming an
ectoderm, the EBs are then transferred to a neural induction medium composed of DMEM-
F12, N2 supplement, and heparin, which generates neuroectoderm within 3-4 days.
Following the formation of neuroectoderm, the tissues are embedded in Matrigel, a
gelatinous mixture that can mimic an extracellular matrix (ECM). This allows for further
development of the organoids, aided by differentiation media composed of Neurobasal
media, and B27 supplement; RA is added at a later stage to caudalize the organoids. The last
discovery made by Lancaster and colleagues was that agitating the organoids after
differentiation was completed improved the diffusion of nutrients and allowed for prolonged
organoid survival and growth (237). While it is difficult to pinpoint the exact
neurodevelopmental age at which organoids correlate with the /n vivo human brain, 2-
month-old organoids seem to be most similar to the developing brain of the first trimester
(237). A representative image from our group highlights the heterogeneity and organized
structure in 2-month-old cerebral organoids, showing the presence of NSCs, astrocytes,
neurons, and synapse structure (Figure 4).

The field of cerebral organoids has seen significant advances in the last 4-5 years (214),
with the inclusion of more complex and specific protocols, and more recently, vascularized
organoids (286, 357). One of the first advances was the discovery that, when compared to
human fetal brains, cerebral organoids have significant similarities in their methylome and
transcriptome (67, 274). Analysis of these epigenomic signals also showed that the
organoids are strongly correlated to early-to-mid fetal cortical development, with many
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genes related to the ECM being differentially expressed (274). This is possibly due to the
use of Matrigel as an embedding material. Other studies using single-cell RNA-sequencing
showed that 6-month-old organoids had 10 transcriptionally distinct cell population. There
were, however, concerns about the reproducibility of such studies, since the authors did
report a high degree of batch effects (274).

By modifying specific parts of the established protocol, several groups have been able to
generate organoids with different properties. Quadrato et al. have shown that organoids with
an enhanced maturity (achieved by plating fewer iPSCs in the beginning and supplementing
the media with BDNF) are able to form photosensitive cells, which is in agreement with the
findings of retinal-like cells in organoids (366). The enhanced organoids also had dendritic
spines, the protrusions responsible for helping the electrochemical signaling between
neurons, and an indication of increased neuronal maturation (366).

The two main types of neurons in the cortex are either excitatory glutamatergic or inhibitory
GABAergic, and these are predominantly generated by the dorsal forebrain progenitors and
ventral forebrain progenitors, respectively (174). Therefore, a recent development was
achieved by fusing two different organoids, one with a dorsal and one with ventral identity
(19). The formation of a dorsal-ventral axis allows for more elegant models involving
neuronal cell migration, and it also opens the doors for other types of fusion-based
protocols. While undoubtedly complex, the organoids presented so far are highly self-
organized, with most of the possible changes coming from chemical signals. Lancaster et al
changed that when they introduced microfilament-engineered cerebral organoids (enCORS)
(19). These are organoids that, with the help of poly(lactide-co-glycolide) copolymer fibers,
form elongated neuroepithelia, display improved cortical development, a polarized cortical
plate, and even increased reproducibility. In contrast with fused organoids, these organoids
contain dorsal and ventral identities in a single organoid, while also showing a complex
organization of the cortical plate (235). Alongside the advancements in BBB modeling in 2D
previously mentioned, 3D cultures have also seen a push towards complex models. Nzou et
al recently created a spheroid model of the NVU, which included the presence of endothelial
cells, pericytes, astrocytes, microglia, oligodendrocytes and neurons that generated
organoids exhibiting tight junctions, adherens junctions, and transport proteins (335).

Blood Brain Barrier Modeling using iPSCs

Multiple barriers exist within the CNS, including the epithelial blood-cerebrospinal fluid
barrier and the arachnoid barrier; however, iPSC-derived models have only been utilized to
study the BBB. The BBB is responsible for the homeostasis between the cerebral
vasculature and the brain and implements active interaction between the bloodstream and
CNS (215). The BBB consists of specialized microvascular endothelial cells, pericytes,
neurons, and astrocytes (404). Neurovascular unit (NVU) is a structural functional basis of
the BBB. NV U enables tight regulation of blood flow through the vasculature, which has a
unique structure in the brain. NVU, consisting of brain microvascular endothelial cells
(BMECs), basement membrane, pericytes, astrocytes and microglial cells, couples local
neuronal function to local cerebral blood flow and regulates transport of blood-borne
molecules across the BBB. Individual cell components have their respective roles within the
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NVU (279, 296). The regulation of molecular transport enables the brain to properly
function under physiological conditions and modulate the transport of pharmaceuticals into
the brain. However, a number of pathological conditions display dysfunctional BBB. Thus,
the need for physiological /n vitro BBB models is critical for both pharmaceutical screens
and modeling disease states. Astrocytes, neurons, pericytes, and NSCs have all been shown
to induce, regulate, and maintain these BBB properties in BMECs (23, 207, 369, 375, 421,
437, 464). Taken together, the enhanced barrier tightening, tight junction protein expression,
active nutrient and efflux transporters, reduced para-cellular diffusion, reduced trans-cellular
transport, and diminished leukocyte adhesion molecule in BMECs contribute to the tightly
regulated movement of molecules, ions, and cells between the cerebral vasculature and the
brain tissue.

The majority of BBB models have focused on the interplay between astrocytes and BMECs
(207). Astrocyte co-culture has been demonstrated to enhance barrier tightening in BMECs
(113). However, following neuron co-culture, BMECSs can display continuous tight junctions
(69, 391-393, 437). More recently, pericytes, similarly to astrocytes, can increase TEER and
decrease permeability (256, 320, 321). Surprising, astrocyte and pericyte-secreted factors
alone have upregulated BBB properties in endothelial progenitor populations (50, 73).
However, the ability to derive multi-cellular models comprising combinations of pericytes,
neurons, astrocytes, or NSCs in co-culture with BMECs have induced the greatest BBB
properties compared to co-culture with any single NVU cell type (56, 69, 190, 256, 258,
259, 320). To further advance /n vitro BBB models, especially their application in
understanding neurovascular dysfunction in several CNS diseases, patient specific iPSCs can
be utilized to derive each component of the multicellular BBB model. A number of
approaches have been utilized to optimize the /n vitro multicellular BBB model: transwell
co-culture system, microfluidic devices, and cell aggregate model (Figure 2). The following
subsections include the recent progress of generating two BBB cell components (endothelial
cells and pericytes) and /n vitro BBB models from iPSCs.

Brain microvascular endothelial cells

BMEC:s are specialized endothelial cells that form a physical, metabolic, and transport
barrier between the blood and the brain. Compared to peripheral endothelial cells, BMECs
have a much greater restriction to para-cellular diffusion of ions, molecules, and proteins.
This markedly reduced diffusion is a result of the expression of tight junction proteins:
occludin, claudin-5 and zonula occludens-1 (Z0-1) (150, 315, 331). The formation of the
tight junctional proteins results in elevated barrier tightness, represented by an increase in
trans-endothelial electrical resistance (TEER). BMECs display elevated TEER levels greater
than 1000 Q x cm? compared to peripheral endothelial cell TEER levels that often don’t do
not exceed 30 Q x cm? (64, 104, 105, 342, 370). The markedly reduced para-cellular
diffusion and restricted trans-cellular transport enable BMECs to regulate nutrient and
metabolic movement from the blood to the brain. A variety of molecular transport systems
including solute carriers (SLC; nutrient transporters) and efflux transporters assist in the
regulation of ion and small molecule movement across BMECSs. Glucose transporter 1
(GLUT1), L-type amino acid transporter 1 (LAT-1) and monocarboxylate transporter 1
(MCT-1) are responsible for the transport of glucose, large amino acids, and
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monocarboxylates, respectively (42, 103, 159, 216, 334, 340, 341, 499). Efflux transporters:
p-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP-1) and breast cancer
resistance protein (BCRP) are vital in human transendothelial transport (99, 101, 138, 243,
282, 307, 394, 495, 497).

Considering their clear role in modulating molecule flow around the brain, a number of
models have been utilized to study BMEC. Rodent, porcine and bovine models have all
shown capabilities of expressing several BBB properties including elevated TEER, tight
junction protein expression, response to the co-culture NVU cell-types and active efflux
transporters (182, 469). However, due to species variations, these models need to be
interpreted carefully when comparing them to human conditions (113, 427, 462). Primary
and transformed BMECs exhibit reduced barrier properties once removed from the brain
microenvironment and can begin to de-differentiate following prolonged culture periods (65,
146, 285, 465). Therefore, iPSC-derived BMECs offer a unique opportunity to generate
BMECs and model various diseases affecting components of the BBB. Lippmann et al
developed the first iPSC-derived BMEC population by creating a micro brain environment
with co-differentiating neural-like and endothelial cells (258). The resulting BMECs could
reach barriers exceeding 2000 Q x cm? when treated with RA and over 5000 Q x cm? when
placed in co-culture with pericytes, neurons, and astrocytes (256). Additionally, iPSC-
derived BMECs expressed active efflux transporters: P-gp, MRP-1 and BCRP and a number
of solute carrier (SLC) genes: LAT-1, GLUT-1, and MCT-1 (256, 258). Several iPSC-derived
BMEC protocols have been developed in an attempt to further define differentiation
conditions, expedite the differentiation timeline and incorporate pathological conditions (11,
119, 190, 363, 365, 373, 449, 461). A summary of BMEC differentiation strategies can be
found in Table 1.

CNS-pericytes are essential for BBB maintenance, regulation, and development. Pericytes
directly contact BMECs and contribute to several critical BMEC properties. Pericytes first
contact BMECs in the developing CNS capillaries during embryogenesis. This initial contact
between BMECs and pericytes enables a substantial decrease in paracellular transcytosis and
inflammatory protein expression (110). Following initial barrier development, pericytes
assume a regulatory and maintenance role of the BBB. Pericytes have been demonstrated to
regulate both the stability and diameter of cerebral capillaries (29, 123, 171, 353) while also
contributing to BMEC basement membrane proteins (123, 382, 422, 447). Importantly,
pericytes have demonstrated a striking reduction in transcytosis, a type of transcellular
transport of macromolecules across the interior of the BMECs (15).

Pericytes along with vascular smooth muscle cells are typically categorized as mural cells.
Vascular smooth muscle cells are typically associated with larger vascular systems such as
arterioles and venules where pericytes are typically associated with smaller vascular
structures such as capillaries. Mural cells express a variety of markers including platelet-
derived growth factor receptor-beta, neural/glial antigen-2, smooth muscle protein 22-alpha
and calponin-1 (14). Potassium voltage-gated channel subfamily J member 8 (KCNJ8) and
ATP-binding cassette, sub-family C member 9 (ABCC9) have been identified as pericyte-
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specific transcripts in the murine CNS vasculature but has been unconfirmed in the human
CNS vasculature (44, 200). Unfortunately, an /n vitro distinction is difficult as no specific
marker will discern smooth muscle cells from pericytes. However, developmentally, CNS-
derived pericytes arise from neural crest stem cells, while other peripheral mural cell types
originate from a mesodermal lineage (140, 226). iPSCs have demonstrated their capability to
be differentiated into CNS-mural cells through an intermediary neural crest stem cell stage
(84, 299) although their ability to enhance BBB properties remains unknown. A summary of
pericyte differentiation strategies can be found in Table 1.

iPSC-based blood brain barrier model

Recent discoveries of significant species differences in the abundance and function of key
BBB transporters have highlighted the need for the development of human BBB models (31,
373). Canfield et al first demonstrated that neurons, astrocytes, and BMECs could be derived
from the same iPSC cell line (69). Following co-culture with neurons and astrocytes,
BMECs displayed significantly improved barrier tightening and tight junction localization.
Several studies confirmed the reproducibility and application of iPSC-derived multicellular
BBB transwell models displaying elevated barrier tightening, improved tight junction
localization, efflux transporter activity, appropriate para cellular permeability, and transport
activity (11, 190, 373). Hollmann and Qian demonstrated that BMECs could be
differentiated under defined conditions and in a reduced timeframe while exhibiting elevated
barrier properties (190, 363). iPSC-derived BBB models have been utilized to further
understand the pathological barrier in Huntington ‘s disease and AHDS (253, 449).
However, a limitation of these models is the utilization of the transwell-system. Direct
contact between NV U cell types and BMECs is severely limited or even absent due to
BMECs being seeded on top of the porous transwell, while co-culture subtypes are seeded
on the bottom of the transwell or in the plate itself.

Microfluidic devices can be incorporated to further improve BBB phenotypes by
concentrating BBB enhancing-secreted factors, introducing flow-mediated shear stress, and
allowing for a more appropriate interaction between BMECs and NVU cell types to occur.
Several studies have demonstrated that microfluidic devices can be utilized to model the
BBB utilizing primary and animal sources (3, 457). Wang et al established a microfluidic
device utilizing iPSC-derived BMECs and primary astrocytes that displayed elevated, stable,
and near /n vivo TEER and para-cellular permeability (461). The complete incorporation of
all human iPSC-derived components and the ability to monitor BBB properties in real time
may further improve the soundness and scalability of multicellular BBB microfluidic
models. Finally, a cell-aggregate model that allows for direct contact between the NVU cell
types has displayed tight junction expression, adherins junctions, and active P-gp efflux
transporters (88, 444). Interestingly, human cortex spheroids displayed charge selectivity
through the barrier and were susceptible to hypoxic conditions, indicating potential
applications in drug discovery and toxicity testing (336). However, the incorporation of
iPSC-derived cell types remains to be investigated in cell aggregate/spheroid models.
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The Strengths and Limitations of 2D, 3D, and BBB Culture Approaches

Since iPSCs provide multiple opportunities for modeling cell types and interactions as
occurs within the brain, it is important to look carefully at the strengths and weaknesses of
each system prior to application and data interpretation. In the following subsections and
Table 3, we will summarize major considerations of 2D, 3D, and BBB systems; techniques,
applications, and data interpretation will be discussed, in addition to new directions in
applying the various models.

2D Monolayer models

The iPSC-derived 2D monolayer model was first to originate and represents a classical
approach to isolate specific neural cell types and perform mechanistic cellular and molecular
studies. The initial ability of scientists to use what is known of the /n vivo brain development
patterning to achieve neural cell differentiation has been groundbreaking, and lead to
protocols using chemically defined medium and appropriate culture environments to mimic
internal and cues to achieve neural cell types of interest (260). As discussed above, specific
subtypes of neural cell types, e.g., cholinergic neurons, can be generated as well (13). In
contrast to more complex BBB co-culture and cerebral organoids, the various methods to
generate homogenous neural cell types from iPSCs, in addition to performing stationary 2D
culture, is relatively less challenging, time consuming, and expensive (185). The likelihood
of reproducibility through differentiation batches is higher, and it is easier to analyze the
types of cells present, and cell type-specific physiology (134). Confounding variables of
multiple cell types and unknown physiological components are reduced in data
interpretation, and 2D monolayer models also provide great resolution of cell morphology.
Accordingly, disease modeling has limitations in various neurodegenerative conditions in
achieving certain disease phenotypes. In more recent years, the primary strength of 2D
monolayer models has been highlighted in personalized medicine and disease modeling.
While this topic will be discussed in greater detail later in this review, the ability to obtain
cells from healthy and diseased patients, reprogram them to iPSCs, and then generate the
neural cell of interest, represents the next generation of medicine. Since 2D monolayer
culture is more feasible to perform for the reasons discussed above, drug responsiveness and
disease phenotypes unique to different individuals can be assessed.

The feasibility and relative simplicity of the 2D monolayer model relative to other models
imply its greatest weakness, in the lack of structure, dynamic growth expansion,
heterogeneous cell types, organ complexity, /n vivo organ environment, vascularization, and
maturity. Many skeptics question the viability of studying singularized cells apart from an
intact system and believe that physiological pathways, drug responses, and phenotypic
background/outcomes cannot be modeled in a manner that would resemble occurrences in
the /n vivo human (297). Additionally, recent studies have reported how the quality of 2D
monolayer culture, specifically cell health, differentiation efficacy, depend greatly on cell
plating density, specific patient-derived iPSCs, and the individual handling the cells and
performing differentiation (134). The concept of micropatterning has become more
important, which emphasizes cell orientation and positioning in combination with providing
appropriate environmental factors and supporting cell types. Studies have begun to discover
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the significance of area, mechanical forces, and attachment surface for optimal stem cell
growth and proliferation, in order to achieve more viable cultures and cells through
resemblance of the polarity and dynamics of brain development observed /n vivo (250).
Through continued attempts to overcome these limitations, 2D monolayer models remain the
most widely used iPSC-derived approach based on financial and technical feasibility, and for
the high throughput potential in personalized medicine/drug testing (59). Future work
remains focused on gene editing to determine the significance of genetic background/
mutations in various human diseases (260), in addition to applying 2D monolayer protocols
to generate co-culture systems, e.g., BBB models, or 3D organoids.

3D Organoid models

Cerebral organoids contain multiple brain cell types, show distinct brain regions, and contain
highly complex tissue organization and dimension. Thus, the 3D cerebral organoid model
has been recognized as the next advancement from 2D monolayer models and BBB co-
culture systems an /n vitro tool to recapitulate complex features of the /n vivo human brain.
More so than comparatively static 2D monolayer models and BBB constructs, cerebral
organoids are accepted as a highly dynamic model of the embryonic developing brain over
time.

Compared with the widely used iPSC system cultured as a 2D monolayer and BBB cultures,
cerebral organoids are more similar to developing human brains in the aspects of complexity,
structure, and function furthering the study of neurodevelopment and neurological diseases
(106, 364, 366). Specifically, there is enhanced opportunity to study multifaceted human
diseases and gene mutations that affect many cell types, their interactions, components of
the constantly changing neurodevelopmental process, and the function of neuronal circuits
(151, 237, 333, 351, 364). Starting the differentiation process with singularized, detached
iPSCs allows for the process of self-organization and patterning occurring during embryonic
development, and gives rise to significant tissue architecture not possible when tissues are
attached the plate in 2D monolayer and BBB methods (13). Additionally, Matrigel coating
provides a basement membrane and growth factors to allow maturation and differentiation of
heterogeneous neural cell populations over time (236). In summary, the neural environment
is best mimicked /n vitro by employing 3D cerebral organoid cultures and has made cerebral
organoids the most desirable method for physiologically understanding mechanisms of
disease (260), drug action, personalized medicine (136).

One of the greatest limitations in the different types of organoids thus far is their size
limitation, due to the lack of vascularization. Although many studies on neurodegeneration
and aging suggest a need for a longer duration of organoid culture, the emergence of a
necrotic center has been observed in turn with cerebral organoid maturation. In order to
minimize the amount of cell death in the center of the organoid as it gets bigger, bioreactors
are often used to oxygenate the culture medium, but this is only sufficient for a short period
of time (237). In relation to determining which stage of development cerebral organoids
represent, and despite the fact that cerebral organoids are nearly as sophisticated as fetal
brain tissues in the early second trimester and recapitulate developmental dynamics and a
greater degree of maturation, it is still a challenge to define the exact real human brain-
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equivalent age of cerebral organoids (229). Using brain region emergence and specific
neural cell types to estimate the age of cerebral organoids has been limited by an imprecise
recapitulation of specific cortical layers and orientation of brain regions in cerebral
organoids compared to what is observed in the /n vivobrain (236). These 3D models are
generated from iPSCs, they have the same limitations as all other iPSC models, including
differentiation efficacy across cell lines and batch to batch variability. Therefore, some
limitations still exist in modeling diseases associated with aging and neurodegeneration over
time (185). Finally, cost, technical difficulties to generate cerebral organoids, and time
commitment, are the greatest for cerebral organoids. Despite the limitations described above,
the 3D cerebral organoid field is rapidly moving forward with methods to vascularize the
organoids (286), scaffolding approaches to ensure uniform growth via an external structure
(235), patient-specific cells, drug testing, and disease-related gene editing (214). A summary
of neural cell types in 2D modeling is shown in figure 3.

Scientists began to create BBB models to overcome some of these limitations of the 2D
model in resembling the environment surrounding neural cells, including cell composition,
chemical properties, and physical selectivity. Overall, the goal is to better mimic /n vivo
physiological function of the brain and create a system in which diseases and drug action
can be better assessed (69). Since BBB properties greatly differ across species, careful
attention is taken to achieve human-specific molecular regulated molecular transport across
endothelial cell layers and neural cell types of used in the iPSC-derived model (205).

In order to accurately set up the BBB model, as discussed above, iPSCs have been a
favorable cell type, to begin with, as they can be differentiated into all of the cell types
required for the co-culture BBB construct (BMECs, astrocytes, pericytes, etc.) (11). The
ability to harness this advantage of iPSCs to be the single source for different co-cultured
cell types has led to a BBB that is less likely to degenerate/de-differentiate over time,
compared with cells derived from animals, multiple progenitor cell sources, or BBB
constructs in which certain necessary cell types are missing (239). Since BMEC transporter
and membrane characteristics are essential in the physiological relevance of artificial BBB
models, it has been a strength to observe specific transporters, the polarized flux of
substrates, and /77 vivo TEER properties and values (205). Since the BBB is often a
contributing factor in the development of many neurodegenerative diseases, iPSCs from
diseased individuals can also be used to generate the various cell types required for the
model. The BBB offers more opportunities than a 2D monolayer and 3D culture to focus on
environmental contributions to phenotype (257), and also allows environmental factors to be
manipulated by the experimenter compared to the spontaneous environment arising from
differentiation of a particular cell type or organoid.

Similar to what was discussed as a limitation of 2D monolayer systems, widely different
differentiation processes are possible based on the starting iPSC line (257), highlighting
issues in variability, phenotypic outline, and general experimental protocols. The in vivo
BBB is defined by its ability to determine the selectivity of which substances can cross from
the circulating blood into the brain. Thus, the primary weakness of the BBB is clear in its
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isolation from a vascularized system containing variations in perfusion, and an environment
containing capillaries and vascular beds (205). Cost and technical difficulty compared with
2D monolayer systems also limit the application of BBB models (239). Another major
limitation in iPSC-BBB models is the lack of contributing cell types of the BBB including
iPSC-derived pericytes and microglia. The role of pericytes in regulating several BBB
properties has been well documented in various primary/animal models. iPSC-derived brain
pericytes will certainly enhance future BBB models in an attempt to recapitulate the /n vivo
BBB in both physiological and pathological state. Due to the relative novelty of the BBB
system, only a small number of drugs have been tested for their permeability through
BMECs and their effect on neural cell types. Advancements in iPSC-derived BBB models
will certainly benefit from bioengineering approaches. Advanced BBB models will both
improve our understanding of the BBB under pathological conditions but will also enhance
our ability to deliver neuro-pharmacological agents across the BBB. Combining approaches
mentioned in the previous sub-sections including addition of contributing iPSC-derived
NV U cell types, direct contact between all cell types, the addition of flow-induced shear
stress, and allowing BBB properties to be monitored in real time will be critical in
understanding critical in understanding neurovascular disorders of the CNS. Additionally,
there is a great avenue for pharmaceutical and disease assessment using iPSC-based BBB
model (257), so this remains an area that both basic scientists and commercial ventures are
focused on. In addition, the long-term viability of BBB models is being assessed, in addition
to methods that can more accurately assess flow conditions, and recapitulate /n vivo TEER,
transporters, and polarized cell composition (11, 239).

Overall, different iPSC-based models described above have benefits and limitations. It is
also important to highlight the human relevance of studies employing iPSCs compared with
an animal model, as human conditions can be modeled that would be impossible 7n vivo. We
will continue to discuss how 2D, 3D, and BBB iPSC-based systems are utilized to study
disorders and diseases of the CNS. Attention to specific neural cell types, stages in the
differentiation process, and patient-specific studies will highlight both the strengths and
limitations of iPSC-derived models. As discussed above, 2D monolayer models have been
the most widely used for cell culture, but 3D cerebral organoid and BBB models are gaining
momentum and being applied to model brain disorders.

Modeling Neurodegenerative Diseases

Neurodegenerative diseases, such as AD, PD, Huntington’s disease (HD) and ALS,
represent a significant health concern, affecting approximately 6.8 million people in the
United States (293, 472, 474, 475). These diseases rob those affected of their independence
in the latter half of their lives, each disease in their own unique way. Effective treatment
options for these diseases remain limited, and no cures are available. This is in part due to
the fact that attempts at modeling these diseases, while numerous, are imperfect.

Rodent models of neurodegenerative diseases are valuable in that they allow researchers to
study these diseases in an /n vivo context. Yet, many of these models require the
overexpression of a mutant protein in order to reveal a disease phenotype. This is likely
required because these symptoms take decades to manifest in humans, and rodents simply
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do not live that long. Additionally, having to wait for the rodents to reach an advanced age,
relative to their own lifespan, is not conducive for research on a timely scale. However,
overexpressing proteins, both wildtype and mutant, is likely to alter the protein function
(160). In particular, protein aggregation is a common feature of neurodegenerative diseases,
and increasing the copy number of any protein to a sufficient level could cause it to
aggregate. Therefore, it is difficult to parse out what observed phenotypes are inherent to the
mutant protein itself and not due to the non-physiological levels present in the models. This
is especially true given that many studies do not compare the mutant models to transgenic
mice overexpressing the wild-type protein at the same level. Therefore, human in vitro
models have also been utilized, including primary samples, immortalized cell lines, and
iPSCs.

Due to the cell types that are affected by neurodegenerative diseases, access to primary
samples is limited to post mortem tissue. These samples, therefore, can only provide insight
on the end-stage of the disease. Additionally, evaluating whether a particular therapy is
effective is not possible with these tissues. Therefore, before the advent of iPSCs,
researchers routinely used immortalized cell lines, fetal derived NPCs, and ESC-based
systems to investigate disease pathways and the benefits of therapeutics. However, these
models also required the overexpression of mutant proteins. Therefore, human iPSCs have
distinct advantages as they can be derived from specific patient populations and retain the
specific genetic background. This is particularly important for studying diseases that
primarily lack a clear genetic influence. Neurodegenerative diseases are primarily
considered in terms of which neuron sub-type is affected during the disease progression, i.e.
motor neurons (MNSs) in ALS and medium spiny neurons (MSNSs) in HD. Therefore, the
majority of studies utilizing iPSCs to model these diseases have focused on generating the
affected neurons in 2D monolayer models, and as such, are the focus of this review. A
section was also included to discuss more recent approaches in 3D cerebral organoids. As
multiple cell types are clearly affected in neurodegenerative disease, including disorders
inclusive of multiple cell types comprising the BBB, we have also included some discussion
of the involvement and of these cell types and potential for BBB modeling in the context of
the specific disease.

2D models to study neurodegenerative diseases

Alzheimer’s Disease

AD affects millions of people worldwide, making it the most common cause of dementia as
well as the most common neurodegenerative disorder (436, 484). It initially affects short-
term memory, but progresses into widespread cognitive impairment, leaving those affected
without the ability to independently perform daily tasks on their own (436, 484). While AD
can be inherited through mutations in the amyloid precursor protein (APP) gene, presenilin 1
(PSEN1) gene or presenilin 2 (PSENZ2) gene, over 95% of all AD cases are sporadic (436).
On a cellular level, AD is characterized by extracellular amyloid-p (Ap) plaques and
intracellular neurofibrillary tangles that are made of hyperphosphorylated tau (436, 484).
While it is unknown whether these pathological hallmarks play a causal role in the observed
cell loss, it is known that they occur in the regions that show severe atrophy, including the
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hippocampus, entorhinal cortex, temporal lobe, parietal lobe, frontal cortex, and cingulate
gyrus (436).

iPSCs have been utilized extensively to model AD, primarily by use of 2D monolayer
models, and there is a remarkable amount of overlap in their findings (Table 4). However,
these studies have been largely limited to characterizing the lines generated and determining
whether they recapitulate the key pathological hallmarks of AD. In this regard, while the
majority of studies have shown signs of elevated Ap production and tau
hyperphosphorylation, only one study was able to specifically detect Ap aggregates (223).
As such, future work with AD iPSC-derived neurons should be focused on identifying novel
disease mechanisms so that effective therapeutics can be developed.

Microvascular damage could play a role in the progression of AD (54) as studies have
indicated that basement membrane dynamics are altered in AD and may contribute to BBB
leakiness (33, 127, 384). Although some studies have demonstrated that no BBB effect has
been detected in AD (149, 212, 246), others have shown a compromise in BBB integrity in
AD patients (6, 418, 452). Soluble Ap reduces P-gp expression, a key efflux transporter in
BMEC:s in animal models (176, 350). Observations in animal studies and in iPSC-derived
neurons indicate that the recent advent of iPSC-derived BBB models could be vital in
understanding the underlying microvasculature impairment in AD patients. An in-depth
discussion of AD iPSC disease modeling has been reviewed elsewhere (436, 484).

Disease

PD is the second most common neurodegenerative disease and is caused by the loss of DA
neurons within the substantia nigra pars compacta. The loss of these neurons within the
midbrain causes a variety of motor issues including tremors, rigidity, and bradykinesia
which progressively worsen over time. Although PD is primarily sporadic, about 10% of
cases are caused by a genetic mutation. As such, using iPSCs reprogrammed from PD
patients allows us to model both sporadic and familial forms of the disease within an
endogenous system.

A summary of PD studies utilizing iPSC-derived DA neurons in 2D monolayer culture and
their findings can be found in Table 4. The majority of these studies did not observe a
reduction in cell viability or differentiation ability without exogenous stressors. However, a
few groups were able to detect cell viability or neuronal differentiation defects (343, 387,
406). Moreover, a number of studies showed a-synuclein accumulation, suggesting that
iPSC-derived DA neurons from PD patients can recapitulate at least one hallmark phenotype
of the disease. There is a great deal of overlap between the studies published thus far (Table
5). The main phenotypes found in PD patient iPSC-derived DA neurons are mitochondrial
dysfunction, oxidative stress, decreased neurite outgrowth, alpha-synuclein accumulation,
and increased susceptibility to external stressors. However, only a few studies have
addressed a possible mechanism by which these phenotypes are manifesting (194, 270, 396).
Furthermore, correcting PD mutations using zinc-finger nucleases (ZFN) can reverse the
observed phenotype, implying a causal link from the mutations to the observed pathologies
(371, 388). Given that the field has shown that iPSC-derived DA neurons can be used to
model both sporadic and familial PD, future work should focus on further elucidating the
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mechanisms underlying PD pathology and identifying drug targets. Further analysis of PD
disease modeling using iPSCs can be found in the review written by Cobb and colleagues
(92).

Huntington’s Disease

HD is a neurodegenerative disorder that is caused by a mutation in a single gene and is
autosomal dominantly inherited. In HD there is a repeat expansion of the amino acid
sequence for glutamine (CAG) within exon 1 of the Huntingtin (Htt) gene; CAG repeats of
approximately 40 or more causes HD, with repeats of more than 60 causing juvenileonset
HD (70, 438). This expansion, while ubiquitously expressed, primarily causes the death of
MSNSs in the striatum, but cells in the cerebral cortex, hippocampus, and hypothalamus are
also affected (94). The dysfunctions in these brain regions lead to both motor deficits as well
as cognitive and psychiatric phenotypes.

iPSC modeling of HD has been reviewed extensively by Tousley and Kegel-Gleason (438).
Given that HD has a clear developmental phenotype, many labs choose to study both
undifferentiated iPSCs and NSCs in 2D monolayer culture to better understand the early
deficits of the disease (438). However, for the purpose of this review, we have chosen to
highlight only the papers that generated functional neurons for study, detailed in Table 6. In
this pursuit, it has been well documented that HD iPSC-derived neuron cultures do not
exhibit a cell death phenotype until BDNF has been removed from culture media (Table 6).
Additionally, while the mutated, higher molecular weight protein can be detected by western
blot, aggregated Htt has either not been detected (181, 479) or not specifically addressed
(Table 6). These data indicate that despite HD being a monogenetic disease, current iPSC
techniques do not recapitulate two of the characteristic disease phenotypes without
exogenous stressors. Nevertheless, some key phenotypes have been identified in iPSC-
derived MSNs. For instance, it has been found that ATP levels are decreased in HD MSNs
(87, 167). This may be important for disease pathogenesis as recent work has indicated that
ATP is intimately involved in maintaining protein solubility (352). In accordance, efforts to
increase the expression of the adenosine receptor AoaR reduce DNA damage after HoO»
treatment (87). In addition, conferring with the developmental deficits seen in studies
utilizing undifferentiated iPSCs/NSCs, the HD iPSC Consortium has found alterations in the
expression of genes relating to neuronal development and function that indicate a reduction
in the maturity of HD iPSC-derived MSNs (180).

A number of studies have indicated that HD can impair cell types of the NVU and have
detrimental effects on the BBB (130, 198, 255). Impairment of Hithas been directly linked
to alterations of the microvasculature. For example, changes in cerebral blood volume,
density, and BBB permeability have been found in both rodent models and HD patient-
isolated tissue (130, 147, 193, 198, 255). Drouin et al observed decreased tight junction
protein expression, increased transcytosis and increased permeability of the BBB in an HD
mouse model (130). Utilizing HD patient-isolated tissue the authors observed a similar
decrease in occludin and claudin-5 expression correlated to an increase in permeability in
HD samples compared to control. However, these studies could not discern the role of each
cell type in the NVVU and the corresponding leakiness of the BBB. It, therefore, remained
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unclear whether BMECs contribute to the observed HD pathologies or if it is secondary to
neurodegeneration. Lim et al generated HD iPSC-derived BMECSs, which interestingly
displayed increased angiogenic properties and dysfunctional BBB properties, including
decreased TEER and increased trans-cytosis (253). Targeted intervention of altered
angiogenic properties partially rescued some of the deficits observed in HD-derived BMEC:s.
From a therapeutic aspect, the ability to address neurodegenerative diseases with effective
treatments relies heavily on the status of new techniques to employ the iPSC-derived human
BBB model.

Amyotrophic Lateral Sclerosis

ALS, or Lou Gehrig’s Disease, is caused by the loss of the upper and lower MNs of the
brain and spinal cord. The loss of these neurons leads to progressive paralysis and death,
typically within 3-5 years of symptom onset. ALS is a less common neurodegenerative
disease, with at most 3.6 new diagnoses per 100,000 people a year, although the exact
incidences vary (166). Yet, ALS is particularly challenging to model due to its heterogeneity.
While the vast majority of all cases are sporadic, like AD and PD, approximately 10% can
be traced through families and caused by a genetic mutation (502). However, mutations in
over two dozen different genes have been identified as causative for ALS, and more continue
to be identified (502). This has made generating mouse models of every gene unrealistic and
made iPSCs an especially valuable tool.

A summary of common ALS disease phenotypes in iPSC-derived MN cultures in a 2D
monolayer format by genetic mutation can be found in Table 7. The majority of the literature
has utilized iPSCs with mutations in one of the four most common genes - superoxide
dismutase 1 (SOD1), chromosome 9 open reading frame 72 (C90rf72), transactive response
DNA binding protein 43 kDa (TDP-43), and fused in sarcoma (FUS) (502), and only a small
number of studies modeling sporadic ALS have been published (Table 7). Although familial
cases account for a small percentage of ALS cases similar disease phenotypes exist between
familial and sporadic subsets. While some studies were able to detect a reduction in basal
viability of the MN cultures (35, 38, 208), the majority showed no reduction in cell viability
or differentiation ability without the addition of exogenous stressors (Table 7). Alternatively,
almost all of these studies showed evidence of proteinopathy, suggesting that ALS iPSC-
derived MN cultures were able to recapitulate some key disease phenotypes. Interestingly,
genetic correction of the mutations using CRISPR 9 Clustered Regularly Interspaced Short
Palindromic Repeats)/Cas9 has been shown to reverse the observed disease phenotypes
including hyperexcitability, ER stress, morphological alterations, and increased DNA
damage (35, 325, 400, 453), confirming that the observed alterations are due to the mutation
itself rather than normal population variation. A major limitation in the current iPSC-derived
MN studies detailed here is the limited overlap in the general lines of inquiry. Endoplasmic
reticulum (ER) stress, mitochondrial abnormalities, and alterations in excitability are the
three most common phenotypes found in ALS iPSC-derived MNs (Table 7). However, the
exact mitochondrial phenotype found varies from study to study, making it challenging to
validate which alteration is the most relevant (9, 35, 109, 325). Additionally, findings on
excitability changes are contradictory, as some studies reported hyperexcitability (121, 453)
while others report hypoexcitability (324, 325, 390), and another study found no alterations
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in excitability (400). As MNs with the hexanucleotide repeat expansion in C9orf72 have
been found to be hyperexcitable (121, 453), hypoexcitable (390), and regularly excitable
(400), it is unclear which accurately represents the true disease state. However, as recent
work has suggested that ALS MNs shift excitability phenotypes during maturation /n vitro
(121), this could be indicative of the variability in maturation in culture between labs, lines,
and differentiation protocols.

ALS astrocytes have also been studied extensively to determine their role in the disease
progression, which has been reviewed nicely by others (241, 481). It has been shown that
ALS astrocytes cause MN death in both co-culture experiments and when MNs are treated
with conditioned medium from astrocyte cultures (111, 122, 277, 288). Interestingly, further
highlighting the important role astrocytes play in ALS, expressing mutant SOD1 in
astrocytes alone has been shown to be sufficient to induce MN death (319). Additionally,
Qosa et. al. demonstrated that mutant SOD1 astrocytes upregulated P-gp expression and
increased reactive oxygen species (ROS) in endothelial cells. The roles of matrix
metalloproteinases, inflammatory cytokines, and oxidative stress have all been indicated in
ALS progression and certainly require further studies (7, 34, 45, 95, 115, 142, 376).

Evidence has also suggested that entire NVU comprising of BMECs, pericytes, astrocytes,
neurons and the extracellular matrix is compromised in ALS (178, 448). As early as 1984,
ALS patients demonstrated altered blood-cerebrospinal fluid barrier phenotypes with
elevated cerebral spinal fluid 19gG and albumin levels (10, 245). Garbuzova-Davis et. al
observed leaky barriers in SOD1 mice in addition to degenerated endothelial cells and
astrocytes, mitochondrial dysfunction and dissociation of astrocyte end feet and endothelial
cell interactions (153-155). Additionally, animal ALS models have several alterations in the
endothelium: reduced expression of platelet-endothelium cell adhesion molecule, altered
tight junction proteins, reduced basement membrane components, altered efflux transporter
activity (306, 312, 328). In human studies, familial and sporadic ALS patients were found to
have reduced expression of tight junction proteins: ZO-1 and occluding (183). Similarly to
previous studies, ALS patients exhibited astrocyte end-feet dissociated from the endothelium
(312). BBB models utilizing iPSCs will enable a more thorough evaluation of multiple ALS
disease subsets as well as dissecting the role of each BBB cell type in disease progression.
The capabilities of an iPSC-derived BBB model can meaningfully improve ALS disease
modeling applications and may unveil sites of therapeutic intervention. iPSC modeling for
ALS has been further discussed in a review by Guo and colleagues (166).

Aging cell culture models

Most neurodegenerative disorders first appear in adulthood. However, iPSC-derived neurons
resemble fetal brain cells (51, 289), thereby potentially limiting how accurately they can
model the neurons of an aged individual. Many different methods of increasing the age of
iPSC-derived cell types have been developed. One such method is to express progerin in
iPSC-derived cells (308); progerin is the mutant form of lamin A that causes the premature
aging disease Hutchinson-Gilford progeria syndrome. The addition of progerin to the culture
conditions has been shown to increase many marks of aged cells, including abnormalities in
nuclear morphology, DNA damage, shortened telomeres, and senescence-associated p-
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galactosidase (SA-p-gal) expression, among others (308). However, it is challenging to
determine whether the observed phenotypes in these “aged” cultures are due to the age of
cells or the exogenous application of progerin. Another method to induce aging in iPSC
cultures is to treat them with a telomerase inhibitor which results in shorter telomeres (450).
Like progerin expression, telomerase inhibition has been shown to increase evidence of
DNA damage and mitochondrial ROS production in iPSCs (450). Although effective,
telomerase inhibition still relies on exogenous treatments to obtain an aged phenotype.
Finally, it has been suggested that using high passage iPSCs (i.e. iPSCs cultured for one
year) induces many aging marks, including changes in nuclear lamina structure and
disruption of nucleocytoplasmic shuttling (355). This method, while a much less artificial
aging method compared to the other two strategies discussed here, has its limitations.
Namely, this method requires waiting a year to age iPSCs before they can be used for further
experiments. Additionally, long-term culturing of iPSCs increases the possibility for
chromosomal abnormalities, which again causes a potential confounding variable in the
resulting data (355).

To counteract the limitations in these aging strategies while still achieving the desired aged
cell type, many labs have directly reprogrammed somatic cells into the cell type of interest
and completely by-passing the iPSC state, summarized in Table 8. It has been shown that
these cells retain the aging marks of the somatic cell, in this case, fibroblasts (301, 430),
thereby potentially providing a more accurate model of a symptomatic patient’s neurons. To
date, neurons of many different cell types have been made, including MNs, DA neurons, and
MSNs, which are applicable for modeling ALS, PD, and HD respectively. While these
studies have primarily focused on optimizing the method by which the desired cell type is
produced, a few studies have shown that directly converted patient fibroblasts to the affected
cell type resulted in phenotypes that more closely mimicked the disease state (262, 266,
451). Notably, directly reprogrammed cells from HD patient fibroblasts formed Htt
aggregates (266, 451) and exhibited a reduction in viability without exogenous stressors
(451). These are hallmark pathologies of HD that are not observed in iPSC-derived MSN
cultures, thus supporting the use of directly reprogrammed MSNs to model symptomatic
HD. Additionally, directly converted MNs from ALS patient fibroblasts have also been
shown to recapitulate characteristic pathologies, including reduced viability and protein
mislocalization (262). Given this success in better recapitulating the disease phenotype,
directly converted cells will likely be helpful in future studies to better understand the
disease mechanism as well as be used for drug screening.

Despite the benefits of directly reprogrammed cells exhibit, there some major limitations to
their application as disease models. One of these limitations is that these cultures introduce a
lot of error into the study, as each well represents a separate reprogramming event that is
unlikely to be identical across the entire plate. Additionally, since the majority of these
studies converted fibroblasts into terminally differentiated neurons, the converted cells are
generally incapable of expansion in culture in order to maximize the sample size. Similarly,
fibroblasts are not indefinitely proliferative in culture, which limits researchers’ ability to
generate a large number of cells for conversion. Therefore, many groups have attempted to
directly generate NPCs from fibroblasts so that the reprogramming occurs only once,
reducing introduced error, and the resulting cells would be proliferative (192, 303, 310).
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These induced NPCs (iNPCs) have been shown to be capable of differentiating further into
specific neuronal subtypes that exhibit many disease relevant phenotypes (192, 303, 310).
However, it is not yet clear whether the neurons derived from iNPCs more closely mimic the
disease state compared to iPSC-derived neurons.

3D models to study neurodegenerative diseases

One common limitation that all studies discussed so far share is that the models have all
been 2D, thus inherently restricting how well they can model a 3D human. Therefore, much
effort has been put into developing various 3D models of neurodegenerative disorders,
summarized in Table 9, each with their own strengths and weaknesses.

3D models have most extensively been utilized to model AD (Table 9), the simplest of
which merely involves differentiating NSCs into neurons and glia while they are embedded
into Matrigel (89). This model is clearly not as structured as other 3D models of AD;
however, when NSCs overexpressing mutant AD proteins are grown this way, extracellular
deposits of AP can be detected (89). This is a key phenotype of AD brain tissues that has not
been directly observed in 2D iPSC models of AD, indicating that even simple 3D model can
improve on disease modeling. If this phenotype can be recreated with AD patient iPSC-
derived NSCs, this could be a powerful model of AD that may be technically easier than
other organoid models.

Various organoid models have also been generated in order to model AD and PD (Table 9).
Cortical organoids have primarily been utilized in AD models, and midbrain organoids have
been described for PD modeling. However, in both cases, the majority of the work done with
these organoids has been largely descriptive in an attempt to prove that these models can be
generated and that they are structured similarly to the specific brain region of interest.
Indeed, all of the studies describing midbrain organoids have only been proof of concept
reports rather than true disease modeling papers (210, 314, 364, 434). Cortical organoids for
AD modeling studies have gone slightly farther in that these studies determined whether the
organoids recapitulated any AD phenotypes (240, 368, 483). In this pursuit, evidence of Ap
accumulation and tau hyperphosphorylation has been found (240, 368, 483). Additionally,
one study was able to show that -y-secretase inhibition, which has been used extensively in
AD models, was less efficacious in the organoids compared to 2D models, indicating the
importance in considering the 3D nature of the brain when performing future drug screening
experiments (240).

3D models of HD and ALS have not yet been widely used (Table 9); a single report of 3D
models have been published for each disease. For HD, the neurodevelopmental phenotypes
have been modeled well in cortical organoids generated from HD iPSC lines (93). However,
as it is unlikely that these organoids contain MSNSs, this model will not be able to be utilized
for studying deficits of the MSNs specifically. ALS 3D modeling has so far taken a different
approach than organoids. Osaki and colleagues describe the development of MN spheroids
that are then plated onto endothelial cells in a microfluidic device (346). These spheroids
express various MN markers more highly than monolayer cultures, indicating an
improvement in the maturation of these neurons (346). Additionally, the presence of
endothelial cells in the microfluidic device mimics the vasculature that would be present in
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an /n vivo system, which has been largely missing from other organoid models. It would,
therefore, be very interesting to see if other organoids can be grown with endothelial cells in
a similar manner to MN spheroids and how this would improve upon the model.

Modeling Traumatic Brain Injury

TBI is defined as an insult to the brain from an external mechanical force, unrelated to
degeneration and congenital conditions (300). Multiple causes exist, including car accidents,
firearms, explosions, athletic injuries, and falls, and the consequences of TBI can be
relatively acute, chronically debilitating physically and psychologically, or fatal. TBI can be
the result of an open head injury, close head injury, deceleration, metabolic, hypoxic,
oncogenic, infectious, or stroke-related (360, 467). The effects on the brain may be
undetectable and are physically manifested in loss of consciousness, headache, nausea,
altered sensory output, drowsiness, and difficulty sleeping. In more severe cases, penetration
of brain tissue, tissue tears, bruising, bleeding, and altered brain morphology occurs (36,
284, 316). Moreover, brain injury extends to multiple cell types within the brain, including
neurons, astrocytes, oligodendrocytes, and microglia, and leads to complex effects on
synaptic plasticity, metabolism, and cognitive function (383).

More has been discovered regarding the prevalence of TBI in recent years, with the goal of
better diagnoses, biomarkers, and treatment options. Accordingly, TBI modeling has begun
to be studied in iPSC-derived neurons. In one study investigating a simulation of closed-
head TBI, cell culture plates containing iPSC-derived neurons were lined with silicone
membranes able to stretch. When neurons were exposed to repeated strain, it was observed
that increasing strain augmented neural injury, with phenotypes such as cell death, reduction
in neurite length, and altered neuronal morphology (410). In a 3D cerebral organoid model,
Zander and colleagues utilized explosives to simulate blast pressures capable of producing
TBI. At two different blast pressures, there was no difference in cell viability, but an increase
in reactive oxygen species was observed. Additionally, intracellular calcium and sodium
were increased following the two blast pressures (491). Therefore, these studies indicate that
subtle effects from TBI may be identified using iPSC model systems. Additionally,
generating homogenous populations of different cell types in 2D cultures (e.g., astrocytes,
neurons, and oligodendrocytes), and heterogeneous populations of cells in BBB culture and
cerebral organoid approaches have potential in being used to dissect the complex effect of
TBI on multiple neural cell types, mentioned above.

Modeling Neurodevelopmental Disorders

Brain development begins within the first month of gestation and is believed to extend
through adolescence (199, 435). In addition to the complex cellular and molecular patterning
events influencing the complex processes within neurodevelopment, environmental
exposures are critical in determining the fate of the brain (162). The extensive process
includes structural formation within the embryo, fetal development of brain regions, and the
prolonged period of neurogenesis (57). The events during neurogenesis are strong
determinants of the neural cell survival, neuronal migration, and network connections
formed within the brain and its constituent cell types (222). A summary of iPSC-derived

Compr Physiol. Author manuscript; available in PMC 2019 August 22.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Logan et al.

Page 25

models to study neurodevelopmental disorders, such as viral exposure, autism, and Allan-
Herndon-Dudley syndrome, is shown in Table 10. It should be noted that other
developmental disorders (e.g. Fragile x Syndrome, Down Syndrome, and Angelman’s
Syndrome) have been extensively modeled using iPSC technology and are discussed
elsewhere (2, 12, 55, 145, 202, 265). So far, to our knowledge, only 2D monolayer and 3D
cerebral organoid cultures have been used to model the below disease conditions.

Developmental viral conditions

Viral infection extending to the developing brain, usually through maternal transmission
during prenatal development, has a devastating effect on the formation of the brain, in
addition to neurocognitive outcomes (100, 412). Cytomegalovirus (CMV) is a herpes virus
which may not harm healthy individuals but can be detrimental to infants as fetal infection
can cause deformities and mental disability (446). CMV only infects human cells, so there
are no appropriate animal models to study the neurological effects of CMV infection. As
such, the majority of studies examining the CMV infection has been performed on human
fibroblasts. These cells are valuable for understanding various mechanisms of viral infection
and spread, they are insufficient to evaluate the neural consequences of CMV infection. As
such, iPSCs, NSCs, and human neural cell lines are valuable model systems. CMV infection
has been successfully modeled by exposing healthy iPSCs, NSCs, and neurons at various
stages of the differentiation process to CMV. Interestingly, iPSCs were not permissible to
CMV infection when experimentally treated; however, neural progenitor cells were
susceptible to CMV, which significantly impacted the differentiation to more mature
neurons. Bigley and colleagues also found that CMV reduced NSC differentiation into
neurons and astrocytes and further showed that a viral kinase inhibitor to restore some of the
differentiation capabilities (37). CMV infection has also been shown to impair neural
calcium release (107). A similar study found that iPSC-derived NSCs underwent apoptosis
as a result of cytomegalovirus infection (322). Thus, these data may offer insight into the
cellular and molecular mechanisms of neurological deficits resulting from infection during
the vulnerable developmental period.

Along these lines, Zika virus has similar effects on the developing brain and has made
headlines in the recent years. Specifically, the virus is transmitted by mosquitos, and when
pregnant women contract Zika, the effects on the fetus lead to reduced brain size and altered
morphology, ophthalmic problems, and neurodegeneration extending to multiple neural cell
types (407, 445). In iPSC-derived cortical neurons, MNs, and astrocytes, African and Asian
viral strains produced infection, with the Asian Zika strain showing greater ability to
replicate in host cells (238). In contrast to iPSC-derived 2D model to study Zika, iPSC-
derived 3D cerebral organoids have been more recently employed as a model to look at the
transient, dynamic nature of the developing brain. Exposing cerebral organoids to African,
American, and Asian viral strains was sufficient to infect cerebral organoids. At the level of
NSCs, premature differentiation and reduced proliferation were reported following infection
by African and American Zika virus, specifically affecting proliferating ventricular zone
apical progenitor cells. These adverse effects on neural progenitor cells attenuated
neurogenesis and led to cortical degeneration (151). A second cerebral organoid study
generated forebrain-specific organoids and observed increased apoptosis, reduced
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proliferation, and subsequently diminishing cell volume following infection over time with
African and Asian viral strains. Accordingly, ventricular size was increased within cerebral
organoids, and both the ventricular zone and neuronal layer were reduced in size (364). The
iPSC-derived cerebral organoid model affords the opportunity to assess infection as it
progresses over time to identify the time-, spatial-, and cell type-specific effects.

With an increasing number of studies focusing on Zika virus, specific genes have been
implicated in the progression of viral infection. In iPSC-derived cerebral organoids, AXL
receptor tyrosine kinase gene has been studied for its role in propagation of Zika virus
infection through mediating viral entry into the cell (298). Initial RNA-sequencing of
astrocytes, radial glia, neurons, endothelial cells, and microglia, showed high expression of
the AXL receptor in human cortical primary cell cultures, suggesting cell-specific
susceptibility to Zika viral entry. The researchers then utilized iPSC-derived cerebral
organoids to asses AXL receptor expression and saw enrichment in regions resembling the
ventricular zone. Closer examination revealed that these cell types showed markers of the
choroid plexus and radial glia, with reduced AXL receptor expression in neurons (333).
Despite cell-specific profiling of the candidate AXL-receptor, a more recent finding refuted
its prominent role in Zika virus infection. Wells et al used CRISPR/Cas9 to knockout AXL
in iPSCs, and then observed the effect of Zika virus infection in iPSC-derived neural
progenitor cells and iPSC-derived cerebral organoids that had been genetically edited.
Knockout of the AXL receptor did not protect the neural progenitor cells from Zika
infection or Zika-induced apoptosis, and that cells expressing a radial glia phenotype within
cerebral organoids were also infected. AXL receptor knockout also did not protect from
microcephaly, and the authors concluded that Zika virus must have an alternative mechanism
for cell entry and infection (240). Collectively, the multiple models for Zika virus have
shown how iPSC-derived 2D and cerebral organoid models can complement each other. In
the field related to Zika virus, and in other fields, there is utility in assessing different cell
types individually and then translating that knowledge into a more heterogeneous model
system in which the different cell types can be studied throughout development and in
synchrony.

Autism spectrum disorder originates as a neurodevelopmental condition and includes a vast
range of disability in social, behavioral, and functional activity. From a very young age,
individuals with autism can exhibit attention deficits, challenges with social interactions,
impaired or loss of speech, repetitive or inappropriate behavior, and inappropriate reactions
to novel circumstances. In a subset of patients, copy number variation 16p11.2 has been
linked to autism (454). To better study the phenotypic outcomes of these patients with this
copy number variant, patient-specific iPSCs were differentiated into cortical neurons. These
neurons showed morphological abnormalities such as neuronal hypertrophy, altered soma
size, and differences in dendrite length and branching relative to neurons derived from iPSCs
of healthy individuals. Individuals with the 16p11.2 deletion showed increased neuronal
action potential firing, while the opposite was true for neurons from individuals with the
16p11.2 upregulation. Both upregulation and downregulation of 16p11.2 resulted in
enhanced synaptic strength (118). Changes in synapse morphology and activity were also
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observed in iPSC-derived neurons from individuals with Rett Syndrome, a condition within
the autism spectrum caused by a mutation targeting methyl-CpG-binding protein-2
(MECP2) gene on the X chromosome. These patient iPSC-derived neurons showed a
reduction in glutamatergic synapses and altered neuronal morphology, reduced calcium
release, and a lower frequency of postsynaptic currents (287). Another iPSC-based study
related to autism generated iPSC-derived placodal neurons from individuals with
microdeletions in the SH3 region of the multiple ankyrin repeat domains 3 (SHANKS3) locus
(211). SHANKS is a protein found within the post-synaptic density. Neurons from autistic
patients showed a reduction in synaptic markers. Additionally, time course analysis in iPSC-
derived NSCs and early post-mitotic neurons showed that autistic patients exhibited reduced
SHANKS3 throughout the differentiation process and may be responsible for the altered
neuronal morphology in autistic patients. SHANKS3 rescue through lentiviral transduction in
placodal neurons from autistic patients was sufficient to attenuate the neural dysmorphology
(211). A better understanding of gene expression and alterations in synaptic events
throughout the differentiation process will be valuable to defining developmental outcomes
and treatment approaches.

Allan-Herndon-Dudley syndrome

Allan-Herndon-Dudley syndrome (AHDS) was one of the early X-linked mental retardation
syndromes mapped onto the X chromosome. Mutation analysis identified the
monocarboxylate transporter 8 gene (MCT8) within each family diagnosed with AHDS.
Inactivating mutations of MCTS8 alters thyroid hormone levels and ultimately severe neuro-
psychomotor impairments (133, 148). Several animal models expressing MCT8 knockout
failed to represent the human pathological conditions (133, 439). Additional MCT8-deficient
fibroblasts and human cell lines have been utilized to model AHDS, however, they lack key
characteristics of affected neurons or endothelial cell populations. The ability to derive
neurons and BMECs from iPSCs initially reprogrammed from AHDS patients diminishes
the shortcoming of the inadequate models. Vatine et. al generated iPSCs from patients with
MCT8 mutations along with associated and corrected controls utilizing CRISPR/Cas 9
technology (449). iPSC-derived neurons deficient in MCT8 transporter displayed depressed
thyroid hormone uptake, but still displayed normal triiodothyronine neural maturation.
Interestingly iPSC-derived BMECs were deficient in transporting the thyroid hormone into
the brain and was ultimately responsible for the decreased concentrations of triiodothyronine
in MCT8-deficient brains, unveiling mechanistic insight and potential therapeutic
approaches (449). Thus, this adverse transport phenotype of AHDS could potentially be
more accurately modeled by employing a BBB model in the future.

Modeling Neuropsychiatric Disorders

The spectrum of neuropsychological illness is very broad and is becoming more prominent
in contributing to disability, difficult diagnoses, and the need for a personalized approach to
treatment options. Neuropsychiatric disorders are especially challenging for basic scientists
as animal models are very limited in their behavioral capabilities and their inability to report
and communicate (83, 330, 463). So far, a component of heritability has been reported in
humans for some psychological conditions, and there have been multiple genome wide
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associations purposed to elucidate underlying genes, environmental factors, and any clues of
the underlying cellular and molecular pathways (379, 420). The use of patient-specific
iPSCs and the ability to perform differentiation protocols to recapitulate vulnerable cell
types in specific disorders is invaluable in addressing some of these previous limitations. A
summary of iPSC-derived models to study neuropsychiatric disorders is shown in Table 11.
These models have been applied in 2D monolayer and 3D organoid culture approaches.

Schizophrenia

Schizophrenia is a severe, chronic, psychological condition with effects extending to
emotion, perception, and behavior. There are three classes of schizophrenia: 1) positive, with
symptoms being hallucinations, delusions, and disordered thought and movement; 2)
negative, with symptoms of reduced emotions related to pleasure, diminished speaking
ability, and difficulty in performing activities; 3) cognitive, where patients exhibit poor
understanding of information and subsequent decision making, trouble with focus and
attention, and a reduction in utilizing learned information (177, 429). Schizophrenia is a
heritable disease and is believed to be polygenic. Additionally, there are other potential
causes of schizophrenia, such as pre- and postnatal neurodevelopmental problems, and
exposure to viruses (158). At a cellular and molecular level, reduced brain volume, dendritic
spine density, and an abnormal distribution of neural cell within the prefrontal cortex have
been reported, with DA and glutamatergic neurons being most impacted (53).

With such complex genetic and environmental components to schizophrenia, in addition to
little understanding of the disease relative to other brain conditions, studies in the field have
begun to dissect similarities and differences across affected individuals. Brennand et al
obtained iPSCs from a patient with child-onset schizophrenia and other patients with a
family history of schizophrenia (51). iPSCs from all patients differentiated to glutamatergic
and DA neurons but showed deficits in the connection between neurons and neurite
outgrowth. Loxapine, an anti-psychotic drug used in humans, improved neuronal network
connectivity (53). In order to look more closely at this dysregulation in synapse formation
and neuronal morphology, iPSCs from keratinocytes of three individuals with paranoid
schizophrenia receiving clozapine treatment were differentiated into DA and glutamatergic
neurons (377). Mitochondrial dysfunction was implicated to play a role in the disruption of
neural networks. At different points in the differentiation process, starting from the
keratinocytes derived from the affected individuals, basal mitochondrial respiration was
reduced. In both patient-derived keratinocytes and iPSCs, mitochondrial complex I showed
greater dopamine-induced inhibition. Furthermore, mitochondrial membrane potential was
reduced in keratinocytes, iPSCs, DA NSCs, and glutamatergic NSCs, accompanied by
abnormal distribution of mitochondria within the cells (377). Mitochondrial dysfunction has
been implicated in various neurodegenerative conditions, but this was the first time such an
in-depth resolution was achieved by using iPSCs to observe the manner in which
schizophrenia alters the dynamics of neural circuitry.

Bipolar disorder

Bipolar disorder is a type of depression in which episodes of mania occur with a varying
degree of frequency on a patient-specific basis. The depressive aspect is manifested as
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chronic periods of sadness, hopelessness, anxiety, and other symptoms. The mania within
the depression may cause abnormal elation, irritability, and uncontrollable behavior (206).

As is the case with Schizophrenia and other psychological disorders, the disease is believed
to be heritable, polygenic, and/or environmental, posing challenges in considering
differences among individuals. In focusing on genes underlying network connections
between neurons and within the brain in bipolar disorder, Chen et al collected iPSCs from
bipolar disorder patients and performed a microarray to look at transcript variants in both
iPSCs and differentiated neurons relative to healthy controls (78). Pathway analysis revealed
that iPSCs from bipolar patients showed alterations in calcium signaling-related genes
involved in differentiation, neuroplasticity, and response to stress. Bipolar disorder neurons
showed increased gene enrichment in genes related to neuronal morphology, differentiation,
synapse formation and organization, neurotransmitter action, and growth factor release (80).
To further comprehend this polygenic aspect of bipolar disorder, a second study obtained
iPSCs from family members with and without bipolar disorder (278). A close look at the
neuronal differentiation process showed that iPSCs from bipolar disorder patients
sequentially formed neural rosettes, but only a subset of cell lines from bipolar patients was
able to be differentiated to NSCs. Furthermore, NSCs from bipolar disease patients showed
reduced proliferation and a smaller yield of fully differentiated neurons (278). The
development of well-defined iPSCs to neuron differentiation protocols allows focusing on
specific points during the neurodevelopment process and leads to fine control of
experimental design and dysfunction at various stages that underlie bipolar disease.

Screening Drug Toxicity

As described above, iPSC-derived neurons have enabled mechanistic insights into human
cells that are otherwise difficult to obtain. For many years, drug exposures and drug actions
have been studied in animal models, allowing scientists to elucidate cellular, molecular, and
behavioral phenotypes. In some cases of drug exposures on the human brain, e.g.,
developmental anesthetic exposure (21, 48, 295), almost nothing is known of the human
relevance of animal studies. Neurocognitive studies in animals are also limitations in
translating phenotypes to what is observed in human populations. Additionally, it has been
challenging to dissect the specific effects of drugs only affecting specific types of neurons
and their subsequent output altering behavior (156, 275). As addiction becomes more and
more of a worldwide epidemic, in addition to exponential growth in pharmacological
development, iPSCs have been utilized to generate neurons and other neural cell types to
shed light on potential drug toxicity and the underlying mechanisms. Here are two
representative research fields regarding applications of human iPSC models in testing the
neurotoxic effect of additive drugs and anesthetic agents. A summary of iPSC-derived
models to study drug toxicity is shown in Table 12, which has mostly been modeled in 2D
monolayer models.

Additive drugs

Certain genetic backgrounds have been reported to increase susceptibility to addictive
disorders. Once gene polymorphisms have been identified that render individuals more
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susceptible to conditions, iPSCs can be obtained from these individuals, as they maintain
their genetic signature prior to reprogramming and throughout the differentiation process.
Knowing that the nicotinic receptor alpha 5 has been linked with risk of addiction, iPSCs
were obtained from individuals containing either the major or minor single nucleotide
polymorphism and were differentiated into DA or glutamatergic neurons (344). Interestingly,
the minor allelic polymorphism resulted in greater neuronal excitability in response to
current injections. While both populations of DA neurons showed spontaneous action
potentials, DA neurons with the minor allele variation were more responsive to nicotine
exposure (344). Similar to the DA neuron response, glutamatergic neurons from individuals
with the minor allelic variant showed a greater response to nicotine (344). This elegant study
highlights the value of the iPSC system to model human disease. A study employing this
same concept collected iPSCs from opioid-dependent individuals and control subjects, both
containing different polymorphisms in the dopamine receptor transporter, and generated DA
neurons (409). Neurons from opioid-dependent individuals showed increased dopamine
release, and administration of valproic acid, a treatment for addiction and other
neuropsychological disorders, increased expression of DA genes (409). These two studies
show great advantages in dissecting the effects of drugs on specific cell subtypes, and
methods for differentiation. They also provide direct findings applicable to the human
population and highlight a high-throughput approach to study patient-specific outcomes.

Anesthetic drugs

The field of anesthetic-induced developmental neurotoxicity has posed a different, unique
epidemiological paradox relative to addiction: despite years of evidence that anesthetics are
harmful to the developing brain of rodents and nonhuman primates studied in the lab (267,
423, 482, 492, 501), and recently in human ESC-derived neurons (20, 442, 443), there is no
direct evidence that anesthetics result in harm to the brain during childhood.

To cross this barrier from basic science to the clinic, iPSCs have begun to be utilized to test
for any detrimental effect of anesthetics on human neurons. First in this field to use this
approach was Ito et al, who tested the effect of ketamine on iPSC-derived DA neurons (204).
High doses of ketamine resulted in adverse neuronal morphology, with decreased network
formation and reduction in neuronal processes. High doses also increased apoptosis, reactive
oxygen species, and NADH/NAD* production, and reduced ATP production, via ATP
synthase, mitochondrial membrane potential, and neurotransmitter reuptake (204). This
iPSC-based approach provided much greater cellular and molecular insight than previous
animal studies, in addition to looking at the effect of anesthetics on a particular cell type
without the confounding effects of the entire brain. Additionally, similar mitochondrial-
related findings to what was observed in iPSCs have been reported using human ESC-
derived neurons (442, 443), further promoting the use of iPSCs due to consistent
conclusions and a more ethical approach. A second study on developmental anesthetic
exposure utilized iPSCs to generate NSCs and exposed the NSCs to different doses of
propofol. Toxicity was observed following high doses of propofol, with increased apoptosis
and reduced cell viability. There was no effect of propofol on neural stem cell proliferation
(269). Combined and independently, these two studies represent the strength of iPSCs to
look at the effect of anesthetics at different time points in the developmental neurogenesis
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process. Additionally, the opportunity exists to test different drug doses, different durations,
and frequencies, which is impossible in humans /7 vivo and limited in animal models.

Translation of Human iPSCs: Using of iPSCs in Screening Drug Efficacy

and Precision Medicine for Neurological Disorders

Precision medicine has also been termed “personalized” and “individualized” medicine.
Over recent decades, there has been a persistent movement toward precision medical
treatment tailored for the individual patient based on genetic information derived from a
patient’s own biological samples. The major aims of precision medicine are 1) prescribing
the right drug at the right dosage and time for each patient, thereby improving drug
efficiency, minimizing drug-induced adverse events, and improving the overall cost-
effectiveness of health care, and 2) forming earlier diagnosis so that patients can receive
preventive therapeutics before a disease causes irreversible damage (168). Several recent
studies have taken a step toward using iPSC-derived neurons to model disease-specific
neuronal features that may in the future facilitate personalized treatments for neurological
disorders. The following subsections will highlight a few examples of how iPSCs have been
used in precision medicine-related studies. iPSC-derived 2D monolayer models remain the
most widely used so far, but techniques in 3D and BBB models continue to evolve and be
put to use.

Screening drug efficacy on neurological disorder treatment

Since certain types of neurons have been found to be differentially affected in leading to
neuropsychological dysfunction, obtaining pure populations of specific neuronal subtypes
has been invaluable in studying human neurons inaccessible /7 vivo. Serotonin has been
recognized for its contribution to mood, emotion regulation, sleep, and hunger, while
dysfunction in the serotonergic system leads to adverse psychological disorders, such as
depression, bipolar disorder, anxiety, and eating disorders. Here, we discuss example studies
on the individualized response to treatment options (Table 13).

The need to model these pressing conditions lead to a protocol to obtain serotonergic
neurons through iPSC differentiation by activation of the WNT/sonic hedgehog signaling
pathway (271). Following generation of rostral hindbrain NSCs, serotonergic neural
progenitor cells originated, and ultimately led to a population of serotonergic neurons. These
neurons tested positive for CNS-specific serotonergic markers, such as serotonin, tryptophan
hydroxylase 2, and GATA binding protein 3. Electrophysiologically, serotonergic neurons
showed a characteristic action potential profile, serotonin release following stimulation, and
responded to tramadol and escitalopram oxalate, drugs used to treat anxiety and depression
in humans (271). Development of these differentiation protocols is central to personalized
medicine and drug testing. A large-scale drug screen was used to test the effect of thousands
of potential drugs on treating Zika virus infection (478). iPSCs were used to generate neural
progenitor cells and astrocytes, and activated caspase 3 was measured following Zika virus
exposure. In addition to the FDA approved drug Niclosamide, inhibitors of cyclin-dependent
kinase activity were effective at preventing the Zika virus from replicating (478). As
exemplified by this study, iPSCs provide a great opportunity to further inform clinical trials
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to ensure that drugs will be safe and effective in humans /n vivo. Although proving the
concept of the BBB is perhaps in its infancy relative to 2D monolayer and 3D cerebral
organoid cultures, it has already begun to be used to test drug action. For example, two anti-
brain tumor drugs were assessed in an iPSC-derived BBB model, and it was found that the
drugs were better able to permeate into the brain than what has been observed /in7 vivo (195).
This highlights the potential of BBB models to also inform drug action and targeting, in
addition to assessing disease phenotypes specific to the individual.

Another application combining drug testing and personalized medicine is that patient
specific iPSCs can be differentiated, and their individual response to drugs can be observed.
In this regard, one study utilized iPSC-derived DA neurons from PD patients carrying
mutated acid p-glucocerebrosidase 1 which is responsible for Gaucher disease and also
implicated in PD (294). These patient-specific DA neurons displayed dysregulation of
calcium homeostasis and increased stress vulnerability involving elevated cytosolic calcium;
furthermore, correction of the acid p-glucocerebrosidase mutations rescued the pathological
disease phenotypes (168, 395). Another exciting demonstration for the application of iPSC
model in precision medicine research is the comparison of iPSC-derived hippocampal
neurons derived from healthy and bipolar disorder individuals, as well as between bipolar
disorder patients who were clinically responsive or nonresponsive to lithium. The bipolar
disorder patient-specific iPSC-derived neurons were hyperactive compared with control
neurons. This hyper-excitability phenotype was reversed by lithium treatment only in
neurons derived from bipolar disorder patients who responded to lithium treatment in the
clinic (302). These data suggest that patient specific iPSC-based model is a valuable tool in
precision medicine research of studying the mechanisms of neurological disorders, screening
drug efficiency, and developing new therapies.

Gene editing

Genomic editing in iPSCs has led to major breakthroughs in the realm of personalized
medicine, understanding unique mutations, and also providing a human model without the
uncertainty of translating an animal model to human disease (188). We discuss a few
example studies, summarized in Table 14. Multiple methods of altering gene expression
and/or the genome itself in vitro are possible, including, but not limited to, RNA interference
(RNAI) strategies such as small interfering RNA (siRNA) or short hairpin RNA (shRNA),
transcription activator-like effector nucleases (TALEN), ZFN, and CRISPR/Cas9 (280, 419).

RNAI, in general, is a relatively simple method of temporarily knocking down the
expression of genes by affecting their mRNA transcripts (476). While this does not take into
account the genetic background of a patient (5), it has been helpful in identifying the
unknown significance of genetic mutations and correlating phenotypes seen in human
disease to a specific gene(s). In a patient presenting developmental and speech delay, and
language disability, sequencing detected rearrangements in the glycosyltransferase like
domain containing 1 gene (GTDC1). In this patient, iPSC-derived neural progenitors had
reduced ability to proliferate and alterations in neurogenesis. GTDC1 was then knocked
down via shRNA in human embryonic stem cells and in zebrafish, and confirmed to be
involved in adverse effects on the CNS (5). In this case, iPSCs were used for initial
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identification of phenotypes underlying the uncharacterized human condition, and the work
done in iPSCs could also be validated in other model systems.

TALEN gene editing, on the other hand, acts directly on the desired DNA sequence,
inducing cleavage and therefore cause a complete knockdown (43). Wen et al reprogrammed
iPSCs from schizophrenic patients with the Disrupted in schizophrenia 1 (DISC1) frameshift
mutation and differentiated them into forebrain neural progenitor cells. By correcting the
DISC1 mutation by use of a donor vector TALEN gene editing, DISC1 protein rescue was
achieved, and reduced the adverse synaptic phenotypes observed in the iPSC-derived
neurons from patients with the frameshift mutation (466). ZFN was one of the first gene
editing tools to be introduced, and it acts similar to TALEN, through non homologous end
joining repair mechanisms, although its efficiency is not as high (152). As mentioned before,
ZFN gene editing was used to reverse mutations in the leucine rich repeat kinase 2 (LRRK2)
gene. Mutations in this gene are associated to mitochondrial dysfunction in PD patients, and
increased vulnerability to oxidative stress in iPSC-derived NSCs from PD patients. Sanders
et al and Reinhardt et al showed that repairing LRRK2 G2019S mutation in iPSCs improved
mitochondrial viability, and opened new mechanisms behind PD, respectively (371, 388).

To better address this type of study on rare human diseases, a gene editing platform utilizing
CRISPR/Cas9 was combined with the differentiation strategy of generating neurons from
iPSCs. Specifically, iPSCs were transfected as single cells with a CRISPR/Cas9 system
targeting Glutamate lonotropic Receptor NMDA Type Subunit 2B, a gene implicated in rare
neurodevelopmental disorders. The single iPSCs could then be differentiated to neural
progenitor cells, midbrain cells, and neuronal cells within cerebral organoids, with
achievement of a stable, persistent knockout throughout the entire process (30). With a
greater push for personalized medicine, these rapid pipelines for addressing questions via
genetic manipulations are key and facilitate the understanding of disease phenotypes at both
a cell-specific and organismal basis.

Conclusion

Brain diseases are among the most serious health problems facing our society and cause
human suffering and enormous economic costs. Different diseases might target different
types of brains cells and the different development stages of tissues. Unlimited human iPSC-
derived 2D cultured brain cells, 3D brain organoids, and BBB provide researchers with
invaluable human models that can be applied in the following brains disease research areas:
1) studying the progression from early progenitor cells to neurons and other brain cells, 2)
allowing experimental analysis of disease pathogenesis linking them to molecular
phenotypes, 3) dissecting the contribution of different types of brain cells to brain diseases,
and 4) investigating the effect of individual disease cause or risk factors on the different
types of cells. Compared with the simple 2D model, 3D cerebral organoid development
allows the iPSCs to differentiate into realistic layers similar to those of real developing
brains (237), representing a more clinically relevant model for brain disease research. Many
studies have provided convincing evidence supporting the use of iPSC-derived 2D, 3D, and
BBB models in human brain disease modeling, drug screening, and novel therapeutic
development.
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Besides the great potential of these iPSC models, recent work also highlights the following
major limitations of iPSC models that must be overcome or be taken into consideration. 1)
Using current protocols, generation of patient-specific and matched healthy individual-
derived iPSCs and iPSC-derived brain cells are expensive and time consuming, which leads
to small sample sizes for most reported studies. 2) One of the major caveats with this /n vitro
stem cell study lies in the relevance of the in vitro model compared to a true /n vivo system.
3) The current /n vitro platforms used to configure cells to replicate the BBB (e.g., transwell
model) is not perusable capillaries seen in brains (205). 3D organoids lack vascularization,
which results in the impaired passage of nutrient and oxygen deep within organoids,
therefore, leading to necrosis at the center of organoids (Figure 4) and preventing prolonged
growth. 5) There is an absence of immune cells such as microglia in 3D organoids, which
restricts the use of organoids in modeling inflammation responses to infection. 6) Most
neurodegenerative disorders first appear in adulthood. However, iPSC-derived neurons
resemble fetal brain cells (51, 289). Although cerebral organoids were nearly as
sophisticated as fetal brain tissue in the early second trimester (237), it is still a challenge to
define the exact real human brain-equivalent age of cerebral organoids.

These limitations reflect some of the current concerns for employing iPSC-based models for
studying brain diseases. However, these should be viewed as features that need to be
clarified and considered for improvement rather than as shortcomings of the innovative
research tool. Great strides have been made toward potentially overcoming some limitations
of iPSC models. For instance, it has been shown that skin fibroblasts could be directly
converted into expandable NSCs by timely restricted expression of four genes OCT4, SOX2,
KLF4, and cMyc. These NSCs were able to differentiate into neurons (304). Recently, Pham
et al developed a protocol for vascularization of brain organoids. On day 34 after the
initiation of differentiation, brain organoids were reembedded in Matrigel with human iPSC-
derived endothelial cells. On day 54, vascularized organoids were transplanted into mice.
The human CD31-positive blood vessels were detected within the center of the organoids 2
weeks after the transplantation (357). In summary, since the first discovery in 2007 that
human skin fibroblasts can be reprogrammed to iPSCs, many studies have continued to
apply this iPSC technology and successfully recapitulating a variety of brain diseases /in
vitro. iPSC-based disease modeling is a newly developing field. Rapid developments in
iPSC technology and other advances in cellular, molecular and developmental neurobiology,
and global collaboration among researchers in academia and industry will be the future
driving forces to accelerate development of more clinically relevant human iPSC models and
new treatments for people with brain diseases. It is predicted that over the next 5 to 10 years,
researchers will resolve many fundamental questions about the technology, including
generating more mature neurons from iPSCs (408). Perhaps the best advice at present is to
take multiple levels of study using a combination of iPSC-derived 2D monolayer, 3D
organoid, BBB, and various animal models, to provide a reliable understanding of the
pathological phenotypes and underlying mechanisms of human brain diseases.
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Major teaching points

Didactic Synopsis

Induced pluripotent stem cells (iPSCs) are able to differentiate into different
types of neural cells (e.g., neurons, astrocytes, and oligodendrocytes) by being
cultured in chemically defined induction media in 2-dimensional (2D)
monolayer cultures.

iPSC-derived 3-dimensional (3D) cortical organoids are composed of multiple
neural cell types and exhibit defined brain regions. Cortical organoids have
received widespread attention as /n vitrotools to recapitulate function,
architecture, and geometric features of human brain tissues and offer an
unprecedented opportunity to study complex human diseases that affect
multiple cell types, their interactions, and the function of neuronal circuits.

iPSC-derived astrocytes, endothelial cells, neurons, and pericytes have been
utilized to construct the blood-brain barrier (BBB) in culture dishes. Human
iPSC-derived BBB replicates key features of the BBB seen /n vivoand
enables new mechanistic investigations of BBB functions in neurological
diseases and drug screening.

2D cell models, BBB models, and 3D organoids have different advantages
and limitations for studying neurological diseases.

Human iPSC disease modeling has key advantages compared to animal
models such as providing a complicated genetic signature of patients and
unlimited cell resource. Human iPSC-derived 2D,3D, and BBB systems have
been used for modeling various neurological disorders to study the
pathological phenotypes and mechanisms. Specifically, patient-specific iPSC-
derived neural cells provide a promising human model for precision medicine
research in dissecting genetic contribution to disease development, testing the
efficiency and toxicity of drugs, and developing new therapeutics for
neurological disorders.

iPSC-derived 2D cell models 3D organoids and BBB models, have been used
for /n vitro modeling of neurodegenerative diseases [e.g., Alzheimer’s disease
(AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and
traumatic brain injury (TBI), Huntington’s disease, neurodevelopmental
disorders (e.g., cytomegalovirus (CMV) infection, Zika virus infection,
autism, Rett syndrome, and Allan-Herndon-Dudley syndrome (AHDS), and
neuropsychiatric disorders (e.g., schizophrenia and bipolar disorder)]. The
findings have provided novel insights into molecular and genetic mechanisms
of brain diseases.

Techniques in iPSCs, gene editing, and patient-specific cells are at the
forefront of approaches towards personalized medicine initiatives. Gene
editing allows for disease modeling and obtaining cells from patients
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suffering from conditions allows for the study of response to therapeutics and
phenotypic analysis.

. Limitations of iPSC-based models for neurological disorders (e.g., immature
features of differentiated neural cells and lack of vascularization) should be
taken into consideration in future studies. Developments in iPSC technology
and other rapid advances in cellular, molecular and developmental
neurobiology will be the future driving forces to accelerate development of
more clinically relevant human iPSC models and new treatments for people
with neurological disorders.
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Figure 1.
Schematic representation of induced pluripotent stem cell (iPSC) generation and application.

Many somatic cells (e.g., skin fibroblasts, blood cells, and urine cells) can reprogram into
iPSCs, and differentiated into neuronal cell types of interest in both a 2-dimensional (2D)
monolayer culture and 3-dimensional (3D) brain organoids, which can be used for modeling
human brain disease, elucidating underlying molecular and genetic mechanisms, high-
throughput drug screening, precision medicine, and tissue regeneration. Scale bar cale bars
without labels: 20 pm.
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In Vivo

Transwell

Microfluidic
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Cell Aggregate

Modeling the blood-brain barrier (BBB). iPSCs can be differentiated into several cell types
of the BBB, including brain microvascular endothelial cells (BMECs), neurons, astrocytes,
and pericytes. In vivo, the BBB is comprised of BMECs that form the walls of the blood
vessels and are supported by pericytes, astrocytes, neurons, and additional cell types.
Current approaches utilized to model the BBB include transwell models, microfluidic and
tissue engineering approaches and potentially cell aggregates.
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The summarized reported various brain cells generated from iPSCs in 2-dimensional
monolayer cultures and their application in the brain physiology and disease modeling.
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Pax6/MAP2/Nuclei

Figure 4.
Tissue sections of 8-week old cerebral organoid generated from human iPSCs. (A) In this

whole section of cerebral organoid, red signals represent microtubule associated protein 2
(MAP2)-positive neurons, green are pax6-positive neuroepithelial progenitor cells, and
nuclei are blue. Scale bar: 500 um. In the area indicated by the yellow arrow, neural stem
cells (green) are located in apical side and neurons located in the basal side, suggesting that
neurons are differentiated from neural stem cells and migrate from the basal toward the
apical side. (B) The red signal represents MAP2-positive neurons, the green signal
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represents Synapsinl-positive synapses between neurons and the blue marks cell nuclei.
Scale bar: 50 um. (C) S100B-positive astrocytes are shown in green interspersed between
MAP2-positive neurons in red. Scale bar: 5 pm. Blue indicates cell nuclei.
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Table 1

Current protocols to generate non-neuronal iPSC-derived neural cells
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Sequence of major induction

Cell Type factors Characterization Reference
1. RA and N2 « Expression of Nestin and Sox2 Yuan et al, 2013
2. EGF, bFGF, and B27 « Able to differentiate into neurons and astrocytes (489)
« Expression of Pax6, Nestin, Sox2 and Sox1
1. FGF-2 and EGF « Able to form neural rosettes and differentiate into EElb?’esr)t etal, 2013
Neural stem cells different neural lineages
1. N2, B27 and DMH1 « High expression of Nestin and Pax6 Wren et al 2015
2. NEAA, bFGF and EGF « Ability to differentiate into Tuj1 positive neurons (471)
1. DMH1 and SB431542I « Expression of Sox1, Nestin and Pax6 Sugai et al 2016
2. N2, SHH and bFGF « Able to differentiate into DA neurons (424)

Astrocytes

N

bFGF and B27
CNTF and BMP

* GFAP and S100p positive cells
« Able to transport glutamate and enhance synapse
formation of neurons

Shaltouki et al, 2013
(390)

W

Dual SMAD inhibition
EGF + FGF2 + LIF
CNTF + RA + PM

« Expression of GFAP and S1008

« Uptake of L-glutamate

« Promoted synaptogenesis

« Propagate calcium waves following stimulation or
application of ATP

Serio et al, 2013
(403)

« Expression of GFAP and S1008

Oligodendrocytes

%' ?:T\ﬁ'i:%hl/\llw « Uptake of L-glutamate (SAP(?EI:)OUKI el 2015
: » Enhanced synapse formation in neurons
« Expression of S100B, GFAP, CX43, Aldolase-C, and
EAAT1
1. Dual SMAD inhibition « Exhibited basal level Na+-dependent glutamate
2. CNTF + FBS transport (Ra%t)’on et al, 2013
3. RA + SHH « Propagate calcium waves following adjacent astrocytes
« Expressed BDNF and GDNF and enhanced survival
and neurite outgrowth in motor neurons
1. Dual SMAD inhibition « Expression of Vimentin, S1008, GFAP, AQP4, and
EAAT2 Palm et al, 2015
2. EGF + FGF2 + LIF + FBS ke of L-ql
3. CHIR99021 + SHH * Uptake of L-glutamate (348)
« High activity of pyruvate carboxylase
1. bFGF and PM * OLIG2 and NKX2.2 positive cells Wang et al, 2014
2. PDGF-AA, NT3, and IGF « Able to myelinate brains of immunodeficient mice (459)

N

Dual SMAD inhibition
PDGF, IGF-1 and cAMP

* OLIG2 positive cells

Douvaras et al, 2014
(129)

Microglia

®wN e

BMP4

. bFGF, SCF, and VEGF

. IL-3, thrombopoietin, M-CSF,
nd FIt3I

« Expression of known microglia markers

« Highly motile processes, constantly scanning the
microenvironment

« Similar gene expression to human microglia (via RNA-
seq)

Douvaras et al, 2017
(128)

1
2

. VEGF, FGF-2
. CSF1, IL-34 and TGFp-1

« Active cytokine secretion
 Migration and phagocytosis of CNS substrates

Abud et al, 2017 (1)

Brain microvascular
endothelial cells

1. Unconditioned Medium

* TEER (Q x cm2) ~ 250 (monoculture); 3,000 (RA);
5,400 (co-culture with pericytes, neurons, and
astrocytes)

Lippmann et al

2. bFGF + PDS « Expression of tight junction proteins (occludin, 2012,2014 (256,
3.RA claudin-5, ZO-1) 258)

« Active efflux transporters (P-gp, BCRP, MRP-1)

 Nutrient transporters (TFR, LAT-1, Glut-1, MCT-1)

* TEER (Q x cm2) ~ 4700 (RA); 6,640 (co-culture with
1. E6 Medium pericytes and astrocytes)
2. bFGF + PDS « Expression of tight junction proteins (occludin and ?g{ﬂiggft al,
3.RA claudin-5)

« Active efflux transporters (P-gp and MRP-1)
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Sequence of major induction

Cell Type factors Characterization Reference
* TEER (Q x cm2) ~ 500 (monoculture); 1,100 (co-
culture with astrocyte conditioned medium) : . A
%' E'%EFB +PDS « Expression of tight junction proteins g{tlgleczcglgu(t?’k;g\)/vlcz
: « Expression of efflux transporters (P-gp and MRP-1) '
« Nutrient transporters (TFR, LAT-1, Glut-1, MCT-1)
1. BMP4, VEGF « Expression of PDGFRB, NG2, and CD146 Orlova et al. 2013
2. Activin A and GSK3 beta * Able to form vascular plexus when cocultures with (345) '
kinase inhibitor endothelial cells
Pericytes 1. bFGF +SB431542 + Noggin * Expression of TAGLN, ACTA2, CNN1, and PDGFRB 0 1y ot a1, 2014

« Contractile abilities following angiotensin |1

2. PDGF-BB + TGFB1 stimulation

1. bFGF + EGF
2. FBS + TGFB1

Wang et al, 2012

« Expression of SMA, Calponin 1, SM22a, SM-MHC (455)

Abbreviations: bFGF: basic fibroblast growth factor, PDS: platelet-poor plasma-derived serum, BMP4: bone morphogenetic protein 4, Flt3l: FMS-
like tyrosine kinase 3 ligand, CNTF: ciliary neurotrophic factor, PM: purmorphamine, PGDF: platelet-Derived Growth Factor, NT3:
Neurotrophin-3, VEGF: vascular endothelial growth factor, EGF: Epidermal growth factor, RA: retinoic acid, TGFfil: transforming growth factor-
betal, TEER: trans-endothelial electrical resistance, SMA: smooth muscle actin, M-CSF: macrophage colony stimulating factor, SM-MHC: smooth
muscle myosin heavy chain, FBS: fetal bovine serum, MRP: multidrug resistance protein. BCRP: breast cancer resistance protein, ZO-1: zona
occludens-1, P-gp: permeability glycoprotein, TFR: transferrin receptor, LAT-1: L-type amino acid transporter 1, Glut-1: glucose transporter 1,
MCT-1: monocarboxylate transporter 1, LIF: Leukemia inhibitory factor, CAMP: cyclic adenosine monophosphate, Sox2: SRY Box 2, Sox1: SRY
Box, Pax6: Paired box protein 6, Olig2: Oligodendrocyte transcription factor 2, CNS: Central Nervous System, CD146; cluster of differentiation
146, TAGLN: transgelin, ACTA2: Alpha actin 2, CNN1: Calponinl, SM22a: Smooth muscle 22 protein alpha, SHH: sonic hedge hog, IGF: insulin-
like growth factor, I1L-3: interleukin 3, FGF-2: basic fibroblast growth factor, GFAP: glial fibrillary acidic protein, ATP: adenosine triphosphate,
NKX2.2: Homeobox protein Nkx2.2, CSF: Cerebrospinal fluid, GSK3: glycogen synthase kinase 3, BMP: bone morphogenetic protein,
S100pB:5100 calcium-binding protein B, SCF: stem cell factor, 1L-34: Interleukin 34, Cx43: connexin 43, EAAT2: excitatory amino acid transporter
2.
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Table 2

Current protocols to generate iPSC-derived neuronal cells
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Cell Type Sequence of major induction factors Characterization Reference

1. All-trans RA . Sareen et al, 2012

2 PM ChAT positive neurons (389)

1. Dual SMAD Inhibition « ChAT positive neurons

2. SAG, FGF-2 and RA « Axon response to guidance cues Maury et al, 2015 (293)
Motor neuron i i .

1. Activin Inhibitor and DMH1 « Hb9-positive neurons :

2. FGF and RA « Induced and spontaneous APs Devlin etal. 2015 (121)

3. SB4315421, DMH1 * ChAT positive neurons

4. CHIR99021 « ACh receptors in myotubes cocultures, Du et al. 2015 (131)

5. RA and PM overlapping with ChAT+ positive neurons

6. SB431542 and Noggin, « TH positive neurons capable of dopamine Nguyen et al, 2011

7. Shh, FGF-8, and RA release (327)

Dopaminergic
neuron

Dual SMAD Inhibition and PM
CHIR99021 and FGF-8

N

« TH positive neurons
* GIRK2 positive neurons

Kriks et al, 2011(233)

Dual SMAD Inhibition
FGF-8, RA
. N2, BDNF, GDNF, dCAMP

wn e

« EN1, FoxA2 and NURRL positive neurons
« Induced dopamine released

Hartfield et al. 2014
(175)

* CORIN,EN1, FoxAZ2 positive cells

1. Dual SMAD Inhibition h
« Induced dopamine released :
E'BBDNF’ GDNF, dCAMP and L M511- « Ability to be transplanted in vivo and maintain Doi et al. 2014 (126)
DA markers
1.B27
2. 5 factors
a. ROCK Inhibitor - : :
GABAergic neuron b. SB431542] *« VGAT ar_1d GABA pos_ltlv_e neurons, with Nicholas et al, 2013
GABAergic output and inhibitory APs (329)
c. BMPRIA
d. Dkk1
e.PM
1. SB4315421 * PSD-95, and Synaptophysin positive neurons,
2. Noggin with mature Na+ and K+ channels, and excitatory ~ Shi et al, 2012 (413)
3. FGF-2 (AMPA) action potentials.

Cortical neuron

1. Dual SMAD Inhibition (with
XAV939)
2. PD0325901, SU5402 and DAPT

* FOXP2 (layer V-VI), and SATB2 (layer Il-111,
V) positive cells
« Induced and spontaneous APs

Qi etal 2017 (362)

Serotonergic

1. SB4315421, DMH1, and CHIR99021

* TPH-2 (Tryptophan Hydroxylase 2) positive

Lu et al, 2016 (260)

neuron 2. Shhand FGF-4 neurons, capable of serotoninergic release

Hippocampal i 354513#1?:5" Noggin, DkK1, and * PROX1 and TBR1 (dentate gyrus markers) Yu et al, 2014 (487)
neuron 2yWnpt3a and BDNF positive neurons, and mature APs. !

Nociceptor 1. SB4315421, LDN-193189 « ISL1 positive cells, responsive to capsaicin Chambers et al, 2012

2. SU5402, CHIR99021, and DAPT

treatment

(78)

Abbreviations: RA: retinoic acid, PM: purmorphamine, Shh: Sonic hedgehog, AP: action potential, FGF: fibroblast growth factor, GIRK2: G-
protein-regulated inward-rectifier potassium channel 2, BMPRIA: bone morphogenetic protein receptor, BDNF: brain-derived neurotrophic factor,
ChAT: choline acetyltransferase, TH: tyrosine hydroxylase, TPH-2: tryptophan hydroxylase 2, SAG: smoothened agonist, FGF-2: basic fibroblast
growth factor, FGF-8, fibroblast growth factor 8, ROCK: Rho-associated, coiled-coil containing protein kinase, DKK1: Dickkopf-related protein 1,
DMH1: dorsomorphin homolog 1, FGF-4: fibroblast growth factor 4, WNT3a: Wnt family member 3a, VGAT: Vesicular GABA Transporter,
GABA: gamma-Aminobutyric acid, PSD-95: postsynaptic density protein 95, AMPA: a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid,
PROX1: prospero homeobox protein 1, TBR1: T-box brain 1, ISL1: Insulin gene enhancer protein 1. BDNF: brain derived neurotrophic factor,
GFNF: glial derived neurotrophic factor, AQP4: Aquaporin 4.
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