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Abstract

Preference for mates with similar phenotypes, assortative mating (AM), is widely observed in 

humans1–5 and has evolutionary consequences6–8. Under Fisher’s classical theory6, AM is 

predicted to induce a signature in the genome at trait-associated loci that can be detected and 

quantified. Here, we develop and apply a method to quantify AM on a specific trait by estimating 

the correlation (θ) between genetic predictors of the trait from SNPs on odd- versus even-

numbered chromosomes. We show by theory and simulation that the effect of AM can be 

quantified in the presence of population stratification. We applied this approach to 32 complex 

traits and diseases using SNP data from ~400,000 unrelated individuals of European ancestry. We 

found significant evidence of AM for height (θ=3.2%) and educational attainment (θ=2.7%), both 
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consistent with theoretical predictions. Overall, our results imply that AM involves multiple traits, 

affects the genomic architecture of loci that are associated with these traits and that the 

consequence of mate choice can be detected from a random sample of genomes.
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Non-random mating in natural populations has short and long-term evolutionary 

consequences. In many species, including humans, mate choice is often associated with 

phenotypic similarities between mates9,10. Such phenotypic similarities have multiple 

sources, for example social homogamy, the preference for a mate from the same 

environment, or because of primary assortment on certain traits observable at the time of 

mate choice. In humans, AM involves multiple complex traits1–5 and can sometimes lead to 

similar susceptibility to diseases11–14. The genetic effects of AM were first studied in the 

seminal articles of Fisher (1918)6 and Wright (1921)7. Those two founding contributions, 

further complemented by Crow & Kimura (1970)8 and others15–17 have set the basis of the 

theory of AM on complex traits. AM theory predicts three main genetic consequences of a 

positive correlation between the phenotypes of mates in a population: (i) an increase of the 

genetic variance in the population, (ii) an increase in the correlation between relatives and 

(iii) an increase of homozygosity (deviation from Hardy-Weinberg Equilibrium; HWE), in 

particular at causal loci. These seemingly distinct consequences are nonetheless explained 

by the same cause: directional correlation between trait-increasing alleles (TIA), also 

referred to as gametic phase disequilibrium (GPD), induced both within and between loci 

(Fig. 1). AM-induced GPD implies correlations between physically distant loci (between 

chromosomes for example) and is thus distinct from local linkage disequilibrium. AM 

therefore leads to a genomic signature of trait-associated loci that can be quantified by 

estimating GPD.

Previous studies18–20 have been successful at detecting GPD by direct quantification of 

increased homozygosity at ancestry-associated loci. Beyond ancestry, such endeavour is 

particularly challenging for polygenic traits as theory8 predicts an increase of homozygosity 

due to AM inversely proportional to the number M of causal variants8,21. For a highly 

polygenic trait like height with an estimated M~100,000 for common variants22, the 

expected increase in homozygosity would be of the order of 1/2M = 5 × 10−6, i.e. negligible 

(Supplementary Notes). Extremely large studies would therefore be required to quantify 

systematic deviation from HWE at height-associated single-nucleotide polymorphism (SNP) 

as shown in a recent study18 that failed to detect such an effect. Another study23 in ~6,800 

participants of European ancestry, reported evidence of deviation from HWE at height 

associated loci. This study however did not account for within-sample population 

stratification and therefore their reported estimates are likely inflated for this reason. 

Overall, study designs using deviation from HWE for quantifying GPD can be successful for 

detecting ancestry-based AM (ancestral endogamy) because the number of loci 

distinguishing ancestries is relatively small24, and ancestral endogamy is strong18, but are 
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less powerful to detect trait-specific AM. In contrast to HWE-based estimation strategies, 

quantifying GPD on the basis of pairwise correlations between TIAs is much more tractable 

as the number of pairs of loci involved, of the order of ~M2, compensates for the magnitude 

of the expected covariance for each pair, 1/2M. The number of pairwise covariance terms is 

much larger than the number of causal loci, and thus the vast majority of the increases in 

genetic variance in a population from AM is due to between-locus covariance (GPD) rather 

than within-locus covariance (increased homozygosity) 8,21.

GPD due to AM causes individuals that carry TIAs at one locus to be more likely to carry 

TIAs at other loci than expected under gametic phase equilibrium. Consequently, individuals 

with many TIAs on even chromosomes are likely to have more than average TIAs on odd 

chromosomes. We quantify this effect by calculating genetic predictors for a trait from the 

SNPs on odd chromosomes and from the SNPs on even chromosomes and then calculating 

the correlation (θ) between these two predictors. We chose to group SNPs according to the 

parity of their chromosomes number because it divides the genome in two approximately 

equally sized fractions. To calculate these predictors we use estimates of the effect of each 

SNP on a trait from publicly available summary statistics from genome-wide association 

studies (GWAS) of large sample size. We apply these estimated SNP effects to individuals in 

a separate sample who have SNP genotypes available. We can calculate the trait predictor 

based on odd and even chromosomes separately and estimate the correlation between them 

(i.e. θ). Our method measures the effect on the genome due to AM in previous generations 

and thus does not require observed phenotypes or the use of mate pairs. Under the null 

hypothesis of random mating, the correlation between alleles on different chromosomes is 

expected to be 0 as a consequence of the independent segregation of chromosomes. 

However, population stratification can induce spurious correlations between alleles, even at 

distant loci. Intuitively, if θ is estimated from a mixture of two sub-populations with distinct 

allele frequencies, then having TIAs more frequent in one of the sub-populations (even by 

chance) would result in an apparent correlation between TIAs even when such correlation is 

absent in each sub-population (Supplementary Notes). We show through simulations how 

the effect of population stratification can be corrected with our method. We then applied our 

method to estimate AM-induced GPD for 32 traits and diseases in samples of unrelated 

genomes from three independent cohorts: ~350,000 participants of the UK Biobank (UKB), 

~54,000 participants of the Genetic Epidemiology Research on Adult Health and Aging 

(GERA) cohort and ~8,500 participants of the US Health and Retirement Study (HRS). We 

find evidence of AM for a number of complex traits, including height and educational 

attainment.

We derived (Supplementary Notes) the expected value of the correlation across individuals 

between the trait predictors from SNPs on odd (So) and even (Se) chromosomes as a 

function of the phenotypic correlation between mates (r), the equilibrium heritability of the 

trait (heq
2 ), the fraction of that heritability captured by SNPs f eq , the sample size (N) of the 

reference GWAS in which effect sizes are estimated using classical linear regression, one 

SNP at a time; and the number of causal loci M  contributing to the trait (which differs from 

the number of statistically associated loci). The main result is that for a large number of trait 

loci,
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θ =
ρ f 0

2 − ρ 2 − f 0
1 + M 1 − ρ

Nheq
2 1 +

ρ f 0
2 1 − ρ

−3 −1
(1)

with ρ = rheq
2  being the correlation between additive genetic values of mates expected under 

AM17 and f 0 ≈ f eq/ 1 − ρ , the fraction of heritability captured by SNPs in the base 

population (Supplementary Notes). These parameters do not need to be known or estimated, 

but can be used to provide a priori expectation of θ or a posteriori rationalisation. Hence, 

quantification of GPD can be directly obtained from estimates of θ using empirical data. For 

the sake of simplicity, we hereafter refer to estimates of θ as estimates of GPD. Equation (1) 

implies that the expected correlation θ between So and Se increases with N, i.e. with better 

estimation of SNP effects from the reference GWAS, and with f eq, i.e. with better tagging of 

causal variants underlying the full narrow sense heritability.

We derived (Supplementary Notes) that estimates of θ from the regression of So on Se can 

be inflated by population stratification, especially when TIAs are highly differentiated 

between sub-populations. We performed a number of simulations (Supplementary Notes) to 

validate the impact of population stratification on our estimator of GPD and show how to 

adjust for it using genotypic principal components (PCs) derived separately for odd and even 

chromosomes (Supplementary Figures 1 and 2, Supplementary Notes). More specifically, 

Supplementary Figures 1 and 2 show that in the presence of population stratification akin to 

that observable within Europe, GPD estimates can be seriously upwardly biased and that 

adjusting for at least 10 PCs as covariates is effective at correcting this bias. Our simulations 

also revealed that correcting GPD estimates using PCs calculated from SNPs from both odd- 

and even-numbered chromosomes induces downward biases in GPD estimates 

(Supplementary Figures 1 and 2). We demonstrated in Supplementary Notes (Equation. 2.5) 

that the latter result is expected and we therefore recommend, when estimating θ from the 

regression of So onto Se (or Se onto So), to adjust GPD estimates for PCs calculated from 

SNPs on even- (or odd-) numbered chromosomes only (Methods). We used this approach to 

quantify GPD in real data, and conservatively adjusted all GPD estimates for 20 PCs to 

correct within sample population stratification (Methods). We observed that estimates 

obtained from the regression of Se onto So are very similar to those obtained from regression 

of So and Se (Supplementary Figure 3). Therefore, using one or the other approach has little 

impact on the outcome of our analyses. Also, given that most GPD estimates are small, all 

GPD estimates (correlations) reported below are expressed as percentages (e.g. 3% instead 

of 0.03).

We first analysed height and educational attainment (EA), two reference traits with long-

standing evidence of a positive correlation between mates. For height, we used estimated 

effect sizes, from summary statistics of the latest GWAS meta-analysis of the GIANT 

consortium (Wood et al. 2014)25, of 9,447 near independent HapMap3 (HM3) SNPs selected 

using the LD clumping algorithm implemented in the software PLINK26 (linkage 

disequilibrium (LD) r2<0.1 for SNPs < 1 Mb apart and association p-value < 0.005). We 
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thus selected these SNPs to be enriched for true association with height. We estimated in 

UKB participants the correlation between height increasing alleles on odd versus even 

chromosomes to be θheight=3.0% (s.e. 0.2%; Fig. 2) and replicated this finding in GERA 

(θheight=4.1%, s.e. 0.4%; Fig. 2) and HRS (θheight=4.4%, s.e. 1.1%; Fig. 2). A meta-analysis 

of these three estimates yields a combined GPD among height-increasing alleles of 3.2% 

(s.e. 0.2%, p=6.5×10−89). To dismiss possible biases due to cryptic sample overlap or 

residual population stratification in summary statistics from the Wood et al. study, we re-

estimated θheight using summary statistics of a family-based GWAS that provide stringent 

control for population stratification27. We therefore meta-analysed summary statistics from 

the Robinson et al. (2015) study27 in 17,500 quasi-independent sib pairs with that from a 

similar analysis performed in 21,783 quasi-independent sib-pairs identified in the UKB 

(Methods). Using effect sizes of the 9,447 selected SNPs, re-estimated in the combined 

family-based GWAS, we found consistent GPD estimates between UKB not including sib-

pairs (θheight=2.1%, s.e. 0.2%; p=8.4×10−36), GERA (θheight=2.1%, s.e. 0.4%; p=1.4×10−6) 

and HRS (θheight=2.5%, s.e. 1.1%; p=0.02). The meta-analysis of these three estimates 

yields θheight=2.1% (s.e. 0.2%; p=4.7×10−42). Note that lower estimates (2.1% vs 3.2%) are 

expected here because of the smaller sample size (N=39,283) of this family-based GWAS, as 

predicted by equation (1).

For EA, we used estimated effect sizes, from the summary statistics of a large GWAS meta-

analysis of the number of years of education (Okbay et al. 2016)28, of 4,618 near 

independent HM3 SNPs selected using the same LD clumping procedure described above. 

Using genotypes of 238,193 UKB participants not included in the Okbay et al. study 

(Methods), we found that θEA=2.9% (s.e. 0.2%; Fig. 2) and replicated this finding in GERA 

(θEA=1.8%, s.e. 0.4%; Fig. 2). We also attempted replication in HRS but the estimate we 

found (θEA=8.9%, s.e. 1.1%; Fig. 2) was likely inflated given that HRS was part of the 

Okbay et al. meta-analysis (Supplementary notes). We therefore only meta-analysed GPD 

estimates from UKB and GERA and found the average correlation between EA increasing 

alleles on odd versus even chromosomes to be θEA=2.7% (s.e. 0.3%, p=6×10−46; Fig. 2). We 

also re-estimated the effect sizes of the 4,618 selected SNPs on EA, using the same within-

family procedure described above. We found GPD estimates of ~0.4% (s.e. 0.4%) in GERA 

and ~0.3% (s.e. 0.1%) in UKB participants unrelated with any of the 21,783 sib-pairs used 

to estimate effect sizes. The meta-analysis of the latter two estimates is θEA=0.31% (s.e. 

0.16%; p=0.05). As shown below, this lower estimate is expected as the consequence of the 

smaller sample size used to estimate SNPs effects.

We performed a series of sensitivity analyses (Supplementary Notes; Supplementary Figures 

4) to assess the robustness to population stratification of our estimates of GPD in height- and 

EA-increasing alleles. In particular, we re-estimated θheight and θEA adjusting for different 

numbers of PCs (from 1 to 30) and also adjusting for both within-sample and projected PCs 

(i.e. based on SNPs loading from an external dataset; see Methods). We also assessed the 

robustness of our estimates to alternative choices to split the genome in two equally sized 

fractions. We furthermore assess the impact of using a different imputation accuracy 

threshold to select SNPs for analysis by re-estimating GPD using SNPs with an imputation 

quality score >0.95. We finally re-estimated standard errors using a block-jackknife 

approach (Supplementary Figures 5). Altogether, these sensitivity analyses confirm that our 
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GPD estimates are robust to population stratification and that our regression-based standard 

errors are appropriate to quantify the statistical significance of our estimates.

We next compared GPD estimates with theoretical predictions of θ from equation (1). 

Equation (1) predicts θ from the sample size of the reference GWAS (N=253,288 for height 

and 293,723 for EA), the correlation between mates, the equilibrium heritability (here 

assumed to be 80% and 40% for height and EA respectively29), the number of causal 

variants SNPs (here assumed to be between M~10,000 and M~100,000 for both traits) and 

the heritability captured by SNPs used to estimate θ. Using ~1,000 unrelated trios (two 

parents and one offspring) from UKB30 we estimated the correlation between mates for 

height and EA to be 0.24 (s.e. 0.03) and 0.35 (s.e. 0.03), respectively. We estimated the SNP 

heritability captured by each set of SNPs used to estimate θ in HRS using the software 

GCTA31, resulting in estimates of hheight
2 = 27.3% (s.e. 1.7%) and hEA

2 = 15.1% (s.e. 1.3%). 

With these five input parameters, equation (1) predicts θ to be between ~3.2% and ~4.2% 

versus 3.2% observed for height and between ~1.9% and ~3.0% versus 2.7% observed for 

EA. We recall here that predictions from equation (1) depend on the sample size of the 

GWAS from which SNP effects are estimated. In a smaller GWAS, estimated SNPs effects 

are less precise (i.e. prone to errors) and therefore, equation (1) would predict a smaller 

value of θ. Using estimated effective sample sizes of within-family GWAS (Neff = 39,283 

for height and 15,559 for EA; see Methods), equation (1) predicts θ to be between ~1.3% 

and ~3.6% versus 2.1% observed for height and between ~0.2% and ~1.4% versus 0.3% 

observed for EA. Overall, our estimates of GPD among trait-associated (θheight=3.2%, s.e. 

0.2; θEA=2.7%, s.e. 0.3%) are therefore consistent with these predictions. Everything held 

constant, equation (1) also predicts that with a much larger sample size of the discovery 

GWAS, for instance >1,000,000 participants, θheight would be between ~4.0% and ~4.3% 

and θEA between ~2.7% and ~2.9%.

We extended our primary analysis of height and EA to detect GPD in 30 additional complex 

traits and diseases (Supplementary Table 1) using the same strategy. Among these traits, we 

analysed bone mineral density (BMD)32 as a null trait given that non-significant mate 

correlation was previously reported33. As expected, we did not find significant GPD 

associated with BMD (meta-analysis of UKB, GERA and HRS: θBMD=0.09%, s.e. 0.2%; 

p=0.64). After Bonferroni correction applied to the meta-analysis of UKB, GERA and HRS 

(p<0.05/32≈1.56×10−3), we did not detect significant GPD for any of these other traits. We 

believe that this observation is likely explained by lack of statistical power, in particular 

resulting from the smaller sizes of GWAS used for these traits (on average ~73,000 

participants compared to ~273,000 on average for height and EA) or from smaller variance 

explained by SNPs (using GCTA) selected to calculate genetic predictors of these traits. As 

an example, although the GWAS of body mass index (BMI) used in this study is similar in 

size with that of height (Supplementary Table 2), our estimation in HRS participants of the 

phenotypic variance explained by the 2,362 BMI-associated SNPs selected (Supplementary 

Table 1) is only ~6.2% (s.e. 0.9%) versus ~27.3% (s.e. 1.7%) for height. A much larger 

GWAS would therefore be required to detect any GPD among BMI-associated alleles using 

our method.
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Another independent approach to quantify the genetic effect of AM on a particular trait 

consists of estimating the correlation of genetic predictors of this trait between mates33–35. 

Compared to θ which measures AM in the parental generation, the correlation (rm) of 

genetic predictors between mates quantifies AM in the current population. We derived 

(Supplementary notes) that if the population has reached an equilibrium after multiple 

generations of AM, then rm ≈ 2θ (Supplementary notes, equation 4.20). We quantified rm for 

all 32 traits (Supplementary Table 3) using 18,984 unrelated couples identified in the UKB 

(Methods). We found significant correlations between mates for genetic predictors of height 

(rm=5.9%, s.e. 0.8%, p=9.2×10−14) and EA (rm=6.1%, s.e. 0.9%, p=7.3×10−11). Across all 

traits, we estimated the regression slope of rm estimates onto θ estimates to be 1.8 (s.e. 0.2) 

(Fig. 3), which is consistent with our derivation predicting the expected mate correlation of 

genetic predictors to be approximately twice the expected value of θ.

In summary, we have shown in this study that the genomic signature of AM can be detected 

and quantified using SNP data in a random sample of genomes from the population, even in 

the absence of data on mate pairs. This is an important aspect of our method since large 

datasets on mate pairs are rare and may be absent in natural populations. We confirm the 

genetic basis for AM for height and EA, consistent with the assumption of primary 

assortment on these traits. We showed that our estimates of GPD from real data are 

consistent with theoretical predictions made under simplifying assumptions such as equal 

SNP effect sizes, population being at equilibrium and that the number of common causal 

variants of the order of ~100,000 (Supplementary Notes). We did not however detect 

significant GPD for the other traits and diseases analysed in this study. Beyond true 

negatives such as bone mineral density, we believe that the relatively smaller size of GWAS 

used in our inference has reduced the power to detect the genetic signature of AM in more 

traits and diseases. We cannot therefore draw firm conclusion from our observations on the 

importance of primary assortment (as opposed to environmental correlation) to the 

resemblance between mates for some of these traits such as smoking habits36, alcohol 

consumption36 or susceptibility to psychiatric disorders14. Overall, our methodology is 

straightforward and can be applied to a wider variety of traits and in other species, provided 

that summaries of trait-variant associations are available. AM is multi-dimensional in 

essence as mate choice depends on multiple physical and behavioural traits which may or 

may not share a common genetic basis2,37. Studying networks of traits and genes driving 

AM is one of the challenges to meet for improving our understanding of the genetic 

consequences of AM in a population. As a step in this direction, our method can be for 

example applied to quantify consequences of AM on gene expression or at any other 

molecular level, through the use of SNP predictors of these endogenous traits.

Our study has a number of limitations. The first one is that certain aspects of our approach 

are very conservative. We have attempted to quantify GPD induced by AM while applying 

stringent correction for population stratification. Although such strategy is expected in 

theory to yield unbiased estimates, it still faces the difficulty of distinguishing ancestry-

based AM from AM based on traits that are genetically correlated with ancestry. Height is a 

typical example. AM on height occurs but, in addition, people tend to marry within 

geographical sub-populations (countries for example) which differ in mean height27. 

Correcting for population stratification using PCs would consequently remove part of the 
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signal that we want to detect. We have nevertheless been able to detect GPD among height 

increasing alleles as a consequence of the large sample size of the discovery GWAS, the 

strength of assortment of mates, and the high heritability of this trait. Finally, we note that 

correction for population stratification using PCs may reveal additional challenges in 

admixed populations, although this is beyond the focus of our study, which was conducted in 

relatively homogeneous populations.

The second limitation relates to our strategy for SNP selection. We have included in our 

analyses SNPs using a low and arbitrary threshold (p<0.005) on the significance of 

association with the trait. Although this strategy is not expected to bias the covariance 

between Se and So, it may increase both their variances and thus potentially induces 

downward biases in GPD estimates. We chose nonetheless this strategy to maximize the 

fraction of heritability captured by SNPs, which influences the expected correlation between 

Se and So as derived in equation (1). As an example, if GPD is inferred using genome-wide 

significant SNPs from Okbay et al. (2016), which explain ~3% of the variance of EA, the 

expected correlation between Se and So would only be ~0.45% under assumptions made 

above. Such small correlation is nearly undetectable in cohorts with less than 300,000 

participants (Methods). Another SNP selection strategy could have been used to reach a 

better trade-off between bias and power but this would generally require observed 

phenotypes to optimize genetic predictors33,34 (find the best p-value threshold or shrinkage 

parameter).

In conclusion, our study provides empirical quantification of GPD induced among trait-

associated alleles, a phenomenon predicted by theory exactly a century ago by Fisher 

(1918)6. The human genome has a pattern of trait-associated loci that is shaped by human 

behaviour (mate choice), as well as natural selection33,38–40. The imprint of assortative 

mating on the contemporary human genome reflects mate choice in the 1930–1970s and in 

generations prior to that. Although there is much more mobility within and between human 

populations in the 21st century, preference for similarly statured and similarly educated 

mates remains stable13,35, and we may expect to continue to see its effect in the genome. 

Our findings have multiple implications for genetic studies. One is that they predict, for 

traits affected by AM, that estimates of SNP effects from within-family experimental 

designs tend to be smaller than those from a population sample, even in the absence of 

population stratification (Lee et al.; 2018).41 A second implication is that a genetic predictor 

generated from a population sample will explain less variation than expected when applied 

to a population not undergoing AM. A third implication is that previously published 

heritability estimates using, e.g., twin designs might be biased to the degree that AM occurs 

on the trait in question.42 A final health-related implication is that AM for liability to disease 

is expected to increase the prevalence and the relative risk to relatives in the population 

relative to a population under random mating. Altogether, our study shows that AM leaves a 

signature on the genome and that accounting for this effect may improve power of genome-

wide association studies and accuracy of genetic predictions.
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Methods

Estimation of GPD from SNP data

Our inference of GPD in a given sample of genomes is based on the correlation θ between 

polygenic scores Se and So calculated from SNPs on even- and odd-numbered chromosomes 

respectively. For each individual from the study population, these scores are obtained as 

linear combinations of SNPs allele counts weighted by their estimated effect sizes from 

publicly available GWAS of complex traits and diseases (Supplementary Notes). We used 

publicly available summary statistics (regression coefficients for each tested SNP and p-

values) from large GWAS on 32 traits (Supplementary Table 2). Also URLs to download 

these summary statistics are given in Supplementary Notes. These include GWAS on 

cognitive traits (educational attainment, intelligence quotient), anthropometric traits (height, 

body mass index, waist-to-hip ratio), psychiatric disorders (attention deficit hyperactivity 

disorder, autism spectrum disorder, bipolar disorder, anxiety, major depressive disorder, 

post-traumatic stress disorder and schizophrenia), other common diseases (coronary artery 

disease, type 2 diabetes, Crohn’s disease and rheumatoid arthritis), blood pressure, 

reproductive traits, personality traits, alcohol and smoking, and bone mineral density as a 

null trait. It is important that the sample of people whose genotypes were used was 

independent of the sample of people used to estimate SNP effects on each trait. Otherwise 

large biases can be expected as shown in Supplementary Notes. We applied LD score 

regression (LDSC) for quality control and only kept summary statistics with a corresponding 

ratio statistic (ratio = (LDSC intercept – 1) /(mean chi-square statistic over all SNPs - 1)) 

non-significant from 0 (i.e. estimate / standard error < 2) or < 0.2 (Supplementary Table 2). 

Significance of the GPD estimates was assessed using p-values from Wald-tests, with the 

null hypothesis “H0: θ = 0” versus the alternative “H1: θ ≠ 0”.

Correction of population structure

We used genotypic principal components to correct for population stratification. We 

calculated 20 principal components from 70,531 near independent HM3 SNPs (35,301 on 

odd chromosomes and 35,230 on even chromosomes) selected using the LD pruning 

algorithm implemented in PLINK (r2<0.1 for SNPs < 1Mb apart). We denote these principal 

components as PCO for SNPs on odd chromosomes and PCE for SNPs on even 

chromosomes. When θ is estimated from the regression of Se onto So, the effect of 

population stratification is corrected by adjusting the regression for PCOs (and vice versa). 

This can be summarised using the following regression equations: 

Se = θSo + PCO1 + … + PCO20 or So = θSe + PCE1 + … + PCE20. Since Se and So may not 

have exactly the same variance as a result of SNPs sampling, we chose to estimate θ from 

the regression onto the genetic predictor with the larger variance. We observed nonetheless 

that estimates obtained from the regression of Se onto So are very similar to those obtained 

from regression of So and Se (Supplementary Figure 3). In the simulation studies 

(Supplementary Notes) we also considered the case where principal components are 

calculated from all SNPs available (odd and even chromosomes) and showed that downward 

biases are expected in this case. In our simulations, principal components were calculated 
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using R version 3.1.2, while in real data principal components were calculated using the fast 

PCA approach43 implemented in PLINK version 2.0.

Statistical power

Theory underlying statistical power to detect correlation is well established44. We used 

equation (2) derived from Ref.44 to determine the smallest correlation detectable with at 

least 1 − β = 80% of statistical power at a significance level of α = 5%:

log 1 + θ
1 − θ =

2| zα/2 + zβ|
n − 3 (2)

In equation (2), n represents the size of the sample used to estimate θ, and zα/2 and zβ are the 

α/2- and β-upper quantiles of the standard normal distribution (mean 0 and variance 1). With 

α = 5% and β = 20%, zα/2 ≈ 1.96 and zβ ≈ 0.84. We can therefore detect GPD as small as 1.2% 

and 0.5% in GERA and UKB respectively, and 0.4% for the meta-analysis of UKB and 

GERA. For the analysis of mate-pairs we can detect correlation as small as 1.5%.

SNP Genotyping

UK Biobank data—We used genotyped and imputed allele counts at 16,652,994 SNPs 

imputed to the Haplotype Reference Consortium45 imputation reference panel, in 487,409 

participants of the UKBiobank30,46 (UKB). We restricted our analysis to 1,312,100 HM3 

SNPs, as HM3 SNPs were optimized to capture common genetic variation47. Extensive 

description of data can be found here27. We restricted the analysis to participants of 

European ancestry and SNPs with imputation quality ≥0.3, minor allele frequency (MAF) 

≥1% and Hardy-Weinberg equilibrium test p-value > 10−6. Ancestry assignment was 

performed as follows. We calculated the first two principal components from 2,504 

participants of the 1,000 Genomes Project48 with known ancestries. We then projected UKB 

participants onto those principal components using SNP loadings of each principal 

component. We assigned each individual to one of five super-populations in the 1,000 

Genomes data: European, African, East Asian, South Asian and Admixed. Our algorithm 

calculated, for each participant, the probability of membership to the European super-

population conditional on their principal components coordinates. The 456,426 out of the 

original 487,409 participants who had a probability of membership > 0.9 for the European 

cluster were assigned to the European super-population. Next, to obtain a sample of 

conventionally unrelated individuals, we estimated the genetic relationship matrix (GRM) 

for individuals in the subsample of Europeans using GCTA31 version 1.9. We iteratively 

dropped one member from each pair of individuals whose estimated relationship coefficient 

exceeded 0.05, until no pairs of individuals with a relationship coefficient above 0.05 

remained in the sample. This restriction resulted in a sample of 348,502 conventionally 

unrelated Europeans. In total, we included 348,502 participants in this analysis and 

1,124,803 SNPs. The North West Multi-centre Research Ethics Committee (MREC) 

approved the study and all participants in the UKB study analyzed here provided written 

informed consent.
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Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort 
data—We analyzed 60,586 participants of the GERA cohort using genotype data only. 

Ancestry was assigned using a procedure similar to that described for UKB. Genotype 

quality control involved standard filters (exclusion of SNPs with missing rate ≥ 0.02, Hardy-

Weinberg equilibrium test p-value > 10−6 or minor allele count < 1, and removing 

individuals with missing rate ≥ 0.02). We imputed genotypes data to the 1,000 Genomes 

reference panel using IMPUTE2 software. We used GCTA to estimate the GRM of all 

participants using HM3 SNPs (MAF ≥ 0.01 and imputation INFO score ≥ 0.3). We finally 

include in the analysis 53,991 unrelated (GRM < 0.05) European participants with 

genotypes at 1,163,290 HM3 SNPs.

Health and Retirement Study (HRS) data—We analysed 8,552 unrelated (GRM < 

0.05) participants of the HRS cohort. GRM was calculated from 1,118,526 SNPs HM3 

imputed to the 1,000 Genomes reference panel using IMPUTE2 software. SNP and samples 

quality control was similar to what described above for GERA.

SNP selection—We used the LD clumping algorithm implemented in PLINK to identify 

for each trait near independent SNPs (LD threshold r2<0.1 for SNPs < 1 Mb apart and 

association p-value < 0.005). LD clumping was performed using genotypes from HRS 

participants. We restricted the analysis to 1,060,523 HM3 SNPs that passed all quality 

controls in UKB, GERA and HRS datasets.

Sample overlap

The Okbay et al. (2016) GWAS of educational attainment, the Sniekers et al. (2017) GWAS 

of intelligence quotient al. (2017) and the Kemp et al. (2017) GWAS of bone mineral 

density, included ~150,000 participants of the UKB (first release of genotypes). To avoid 

bias due to sample overlap, analyses performed in UKB for these traits were restricted to 

238,193 unrelated participants (UKB release 2 only), who also were not related to any of the 

participants included in those studies (UKB release 1). Participants of the HRS cohort were 

included in the Okbay et al. (2016) study as well as in the Day et al. (2015) GWAS of the 

onset of menopause. For the other GWAS considered in this study, no sample overlap with 

UKB, GERA or HRS was reported.

Sib pairs analyses

Selection—We used 21,783 sib pairs of European ancestry previously identified in the 

UKB30 using identity-by-descent sharing estimated from SNP data. We applied the within-

family QFAM procedure of PLINK, as in Robinson et al. (2015)27, to assess the association 

between HM3 SNPs and height and EA. When applied to sib pairs, this procedure is 

equivalent to regressing the difference of height or EA between sibs onto the difference of 

allele counts. These estimates are therefore robust to population stratification. For height, we 

moreover performed a sample size weighted meta-analysis of estimates from the Robinson 

et al. (2015) study in 17,500 quasi-independent sib pairs, with those obtained in the UKB 

and used these newly estimated effect sizes to re-estimate GPD in UKB (not including any 

of the sib-pairs), GERA and HRS. In total we used 21,783 sib-pairs for EA and 39,283 sib-

pairs for height.
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Effective sample size—We defined the effective sample size (Neff) of within-family 

GWAS using N pairs independent sib pairs as the sample size of a standard GWAS (where 

SNP effect are estimated from simple linear regression) such that the estimated SNP effects 

from the within-family GWAS have the same expected sampling variance as the estimated 

SNP effects from standard GWAS. This leads to the following equation (derived in 

Supplementary Notes)

Ne f f = N pairs/[2(1 − rpairs] (3)

In equation (3), rpairs represents the phenotypic correlation between sibs. We observed 

between sibs identified in UKB a correlation ~0.5 for height and ~0.3 for educational 

attainment. Therefore, the corresponding effective sample sizes for the within-family GWAS 

of height and EA are 39,283/(2×(1–0.5)) = 39,283 and 21,283/(2×(1–0.3)) = 15,559.

Mate pairs analyses

We first used 999 unique mate pairs from 1,065 trios composed of both parents and one 

child, identified among UKB participants using identity-by-descent sharing estimated from 

SNP data. Details about software and algorithms used to identify those trios are given in Ref.
30 To increase power, we also used household sharing information to identify putative 

spouse pairs among UKB participants with European ancestry. We therefore selected 18,984 

(including 117 from the trios) sex-discordant pairs of participants, recruited from the same 

centre, who reported living with their spouse or partner in the same type of accommodation, 

at the same location (east and north coordinates rounded to 1 kilometre), for the same 

amount of time, with the same number of people in the household, with the same household 

income, with the same number of smoker in the household, with the same Townsend 

deprivation index and with a genetic relationship < 0.05.

Data availability

We used genotypic data from the Resource for Genetic Epidemiology Research on Adult 

Health and Aging (GERA: dbGaP phs000674.v2.p2), genotypic and phenotypic from the 

Health and Retirement Study (HRS: dbGaP phs000428.v1.p1), as well as genotypic and 

phenotypic data from the UK Biobank under project 12505.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic illustration of the effect of assortative mating (AM) on the correlation between 

trait-associated alleles. Each line represents a chromosome of an individual in the population 

and each coloured bead represents an allele (orange: trait-increasing alleles (TIA); blue: 

trait-decreasing alleles) at a particular locus on that chromosome. Under random mating, the 

distribution of alleles between odd and even chromosomes are uncorrelated (no-consistent 

pattern between chromosomes). Under AM, the distributions of alleles are correlated 

between chromosomes, such that the number of TIAs on odd chromosomes predicts the 

number of TIAs on even chromosomes.
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Figure 2. 
Estimate of assortative mating (AM) induced gametic phase disequilibrium (GPD) among 

trait increasing alleles in three independent cohorts: UKB (N=348,502), GERA (N=53,991) 

and HRS (N=8,552). GPD is estimated as the correlation between trait-specific genetic 

predictors from SNPs on odd chromosomes versus even chromosomes. Bone mineral 

density was selected as a trait on which AM does not occur (negative control). Estimates are 

adjusted for 20 genotypic principal components from SNPs on either odd or even 

chromosomes to correct the effect of population stratification. *The HRS cohort was not 

included in the meta-analysis of GPD estimates among educational attainment increasing 

alleles, as HRS was included in the Okbay et al. study. Theoretical predictions are obtained 

from equation (1) assuming the number of causal variants for each trait to be of the order of 

~100,000.
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Figure 3. 
Correlation of genetic predictors in 18,984 mates pairs (y-axis; values from Supplementary 

Table 3) as a function of within-individual estimates of gametic phase disequilibrium (GPD: 

x-axis) for 32 complex traits and diseases (meta-analysis from Supplementary Table 1 in 

N=411,045 participants). Theory derived in Supplementary Notes predicts a regression slope 

equal to 2. Estimated linear regression intercept and slope are 0.002 (standard error, s.e. 

0.002) and 1.8 (s.e. 0.23) respectively.
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