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Abstract

FOXM1 transcription factor network is activated in over 84% of cases in high-grade serous 

ovarian cancer (HGSOC), and FOXM1 upregulates the expression of genes involved in the 

homologous recombination (HR) DNA damage and repair (DDR) pathway. However, the role of 

FOXM1 in PARP inhibitor response has not yet been studied. This study demonstrates that PARP 

inhibitor (PARPi), olaparib, induces the expression and nuclear localization of FOXM1. On the 

basis of ChIP-qPCR, olaparib enhances the binding of FOXM1 to genes involved in HR repair. 

FOXM1 knockdown by RNAi or inhibition by thiostrepton decreases FOXM1 expression, 

decreases the expression of HR repair genes, such as BRCA1 and RAD51, and enhances 

sensitivity to olaparib. Comet and PARP trapping assays revealed increases in DNA damage and 

PARP trapping in FOXM1-inhibited cells treated with olaparib. Finally, thiostrepton decreases the 

expression of BRCA1 in rucaparib-resistant cells and enhances sensitivity to rucaparib. 

Collectively, these results identify that FOXM1 plays an important role in the adaptive response 
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induced by olaparib and FOXM1 inhibition by thiostrepton induces “BRCAness” and enhances 

sensitivity to PARP inhibitors.

Implications: FOXM1 inhibition represents an effective strategy to overcome resistance to 

PARPi, and targeting FOXM1-mediated adaptive pathways may produce better therapeutic effects 

for PARP inhibitors.

Introduction

The primary cause of cancer-related mortality is the treatment failure resulting from intrinsic 

or acquired resistance to chemotherapy (1–3). In epithelial ovarian cancer, although most 

patients initially respond to chemotherapy, they experience recurrences and the acquired 

resistance to chemotherapy (4). Consequently, epithelial ovarian cancer is the most lethal 

gynecologic malignancies in the United States (5). Although overall survival from ovarian 

cancer has improved slowly over the past three decades (6), recent advances in PARP 

inhibitors as maintenance therapies are having positive impacts on the overall survival of 

patients with ovarian cancer (7). Nonetheless, acquired resistance to PARP inhibitors are 

being reported (8,9), and it is important to understand molecular mechanisms that contribute 

to acquired resistance to chemotherapeutic agents.

Intrinsic and acquired resistance to chemotherapeutic agents can be explained by the 

Darwinian selection of fitness-conferring genetictraits under drug treatment (10). Under this 

principle, cells with preexisting mutations that confer fitness under drug treatment are 

selected, thereby contribute to the development of resistance to treatment. Consistent with 

this principle, low-level revertant mutations in BRCA1 and BRCA2 are found in ovarian 

carcinoma samples prior to platinum-based chemotherapy, and these rare mutations become 

enriched in carcinoma samples from the corresponding patients during relapse (11), 

suggesting the selection of preexisting fitness-conferring somatic mutations by 

chemotherapy. Although this principle explains intrinsic resistance, it cannot fully explain 

the acquired resistance.

With respect to the acquired resistance in ovarian cancer, patients generally respond to 

platinum-based chemotherapy even after relapse from prior platinum-based chemotherapy 

(4). Recent evidence suggests that adaptive cellular response may provide a transitional state 

that allows cells to acquire fitness-conferring genetic mutations after several rounds of 

treatment with chemotherapeutic agents (12). A nongenetic Lamarckian mechanism of drug-

induced adaptive response has been proposed as a possible mechanism for the acquisition of 

resistance (13). The “transient adaptive resistance” allows cells to be in “chemotherapy-

tolerant state,” thereby producing “persisters” (12, 14). Extracellular matrix and tumor 

microenvironment have been shown to provide such transient adaptive resistance to cancer 

cells (15). These “persisters” subsequently acquire fitness-conferring genetic and epigenetic 

alterations that promote resistance to chemotherapy (16). Consistent with this concept, 

recent studies indicate that in vitro selection with PARP inhibitor rucaparib in MDA-

MB-436 breast cancer cells resulted in resistant clones that overexpressed mutant BRCA1 at 

higher levels than in drug-sensitive parental MDA-MB-436 (9). In this model, epigenetic 

rather than genetic alterations contribute to the acquired resistance to rucaparib. In the 

Fang et al. Page 2

Mol Cancer Res. Author manuscript; available in PMC 2019 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



population of cells without preexisting genetic alterations that confer fitness under drug 

treatment, the adaptive cellular response may represent a critical step prior to the acquisition 

of acquired resistance. Therefore, adaptive cellular responses may be targeted to overcome 

acquired resistance to chemotherapeutic agents.

A critical step in the development of effective combination therapies to extend the efficacy 

of existing chemotherapeutic agents is to understand the molecular mechanisms regulating 

the adaptive cellular responses to existing chemotherapeutic agents. According to the 

landmark study by the Cancer Genome Atlas (TCGA), the FOXM1 pathway is activated in 

approximately 84% of high-grade serous ovarian carcinomas (17). FOXM1 regulates the 

expression of DNA repair genes (18) as well as genes involved in adaptive response to 

cellular stress induced by oxidative stress and oncogenic stress (19). However, the extent to 

which FOXM1 pathway contributes to the adaptive cellular response to chemotherapy and 

the extent to which it represents an important epigenetic molecular mechanism regulating 

the adaptive cellular response to chemotherapy are not yet characterized.

In this study, we identified FOXM1 pathway as a component of the adaptive cellular 

response to PARP inhibitor olaparib. We found that olaparib induced FOXM1 expression 

that regulates several genes involved in homology recombination repair pathway. RNAi or 

FOXM1 inhibitor thiostrepton decreased FOXM1 expression and attenuated the adaptive 

cellular response leading to enhanced sensitivity to olaparib and carboplatin. Finally, our 

results showed that FOXM1 inhibitor thiostrepton decreases the expression of BRCA1 and 

BRCA2, produces “BRCAness,” and enhances sensitivity to olaparib. Our results support an 

emerging paradigm that adaptive cellular responses may be targeted to prevent acquired 

resistance to chemotherapeutic agents and indicate that FOXM1 pathway may be targeted to 

prevent acquired resistance to PARP inhibitors.

Materials and Methods

Cell lines and cell culture

ES-2, OVCAR3, and A2780 cells were maintained inMCDB105 and M199 (1:1; Sigma, 

USA) containing 5% FBS (Sigma), OV90 cells were maintained in MCDB105 and M199 

(1:1) with 15% FBS. OVCA420* cells were cultured in DMEM (Sigma and Caisson Labs) 

supplemented with 10% FBS. ONCO-DG1 cells were grown in RPMI1640 (Sigma and 

Caisson Labs) with 10% FBS. MDA-MB-436 and its derivative rucaparib-resistant cells 

RR-1, RR-2, RR-3 were kind gifts from Dr. Neil Johnson laboratory at Fox Chase Cancer 

Center (Philadelphia, PA; ref. 9) and were maintained in RPMI1640 (Sigma and Caisson 

Labs) supplemented with 10% FBS. All the media were supplemented with 100 U/MI 

penicillin and 100 mg/mL streptomycin. ES-2, OVCAR3, OVCA420*, and OV90 cells were 

gifts from Dr. Viji Shridhar (Mayo Clinic, Rochester, MN). A2780 cell was from Dr. 

Andrew Godwin (The University of Kansas Medical Center, Kansas City, KS). ONCO-DG1 

was purchased from Leibniz Institute DSMZ-German Collection of Microorganisms and 

Cell Cultures. All cell lines were subjected to cell line identity confirmation. All 

experiments performed on cells that were passaged less than 20 times. Mycoplasma testing 

was performed during the studies, and cell cultures were free of mycoplasma. Cell line 

identification was performed at the end of experiments. OV90 and ONCO-DG1 showed 
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100% short tandem repeat (STR) profiles matching to corresponding cell lines reported in 

ATCC or ExPASy. STR profiles for ES-2 and OVCAR3 were performed in 2014 as a 

supplement to our recent publication (20). STR profiles for OVCA420* does not match with 

any reported cell lines in ATCC, ExPASy, DSMZ, or CLIMA, and therefore we placed an 

asterisk to differentiate it from the original cell line.

Antibodies and compounds

Rabbit polyclonal anti-FOXM1 antibody (C-20, sc-502), rabbit polyclonal anti-BRCA1 

antibody (C-20, sc-642), mouse monoclonal anti-FANCF antibody (D-2, sc-271952) were 

purchased from Santa Cruz Biotechnology. Rabbit polyclonal anti-Histone H3 antibody 

(ab1791) and rabbit monoclonal anti-b-Tubulin antibody (ab108342) were obtained from 

Abcam. Mouse monoclonal anti-RAD51 antibody (5B3/6, GTX23638), rabbit polyclonal 

anti-Histone H3 antibody (GTX122148), and rabbit polyclonal anti-BRCC3 antibody 

(GTX31765) were from GeneTex. Rabbit polyclonal anti-PARP antibody (9542S) and rabbit 

monoclonal anti-caspase-3 antibodies (9665S) were purchased from Cell Signaling 

Technology. Mouse monoclonal anti-Poly (ADP-ribose) antibody (PAR, 10H, ALX-804–

220-R100) was obtained from Enzo Life Sciences (Alexis). Mouse monoclonal anti-β-actin 

antibody (A1978) was from Sigma-Aldrich. For secondary antibodies, horse anti-mouse 

IgG-HRP antibody (7076S) was purchased from Cell Signaling Technology, goat anti-rabbit 

IgG-HRP antibody (sc-2030) was from Santa Cruz Biotechnology.

Olaparib (AZD2281, Ku-0059436) was purchased from Selleckchem. Olaparib stock 

solutions were made with DMSO at 50 mmol/L and stored at –80°C. Thiostrepton powder 

was purchased from Santa Cruz Biotechnology (sc-203412A) and formulated as micelle-

encapsulated thiostrepton (see Supplementary Information; Supplementary Figs. S9 and 

S10; Supplementary Table S1) by Dr. Laird Forrest (School of Pharmacy, University of 

Kansas, Lawrence, KS).

Immunoblotting

Cells were washed at least twice with PBS at the end of treatments if applicable and then 

lysed with an appropriate volume of 1 × electrophoresis sample buffer (Bio-Rad 

Laboratories) with 5% β-mercaptoethanol (Sigma-Aldrich). The cell lysates were then 

boiled at 95°C for 5 minutes before using. Immunoblotting procedures were performed as 

described previously (20). For apoptosis marker check, cells were collected at the end of 

treatments, and total proteins were extracted using RIPA buffer (1% NP-40, 0.5% sodium 

deoxycholate and 0.1% SDS in 1 × PBS) containing protease/phosphatase inhibitor cocktail 

(Roche). BCA protein assay reagent kit (Pierce) was used to determine protein 

concentrations. Equal amounts of total proteins were loaded for SDS-PAGE and transferred 

onto polyvinylidene difluoride membranes (GE Healthcare). For nuclear fractionation 

assays, cell pellets were collected and lysed with cytoplasmic extraction buffer (CEB) in 

Subcellular Protein Fractionation Kit (78840, Thermo Scientific) and then centrifuged at 500 

× g for 5 minutes, the supernatant was labeled as the cytoplasmic extract, while the pellets 

were further lysed in RIPA buffer. Protein concentration was determined by the BCA assay 

and equal amounts of proteins were loaded for Western blot analysis. The densitometric 

analysis was performed with Image J software (NIH, Bethesda, MD).
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PARP trapping assay

A total of 4.5 × 105 cells were treated with the appropriate drug(s) for 4 hours before 

collection. The cell pellets were fractionated using Subcellular Protein Fractionation Kit 

according to the manufacturer’s instructions and subjected to immunoblotting.

ChIP-qPCR

Chromatin immunoprecipitation (ChIP) was carried out as described before (21). Briefly, 

after20 μmol/L olaparib treatment for 12 hours or 24 hours, cells were crosslinked with 1% 

formaldehyde (Electron Microscopy Sciences) for 10 minutes and quenched by cross-linking 

by glycine. The chromatin was sonicated with a BioruptorTwin (Diagenode) at maximum 

setting for 12 minutes. The sonicated chromatin with incubated with 1.0 μg FOXM1 

antibody (C-20, sc-502, Santa Cruz Biotechnology) at 4°C for 2–4 hours before purification 

with 100 μL Protein A/G magnetic beads (88803, Pierce Biotechnology). The beads were 

washed 5 times with LiCl wash buffer [100 mmol/LTris pH 7.5, 500 mmol/L LiCl, 1% 

NP-40, 1% sodium deoxycholate before washing with 1 × TE buffer (10 mmol/L Tris-HCl 

pH7.5 and 0.1 mmol/L Na2EDTA)] and eluted with Elution Buffer (1% SDS and 0.1 mol/L 

NaHCO3). After reverse-crosslinking, the DNA was purified with the QIAQuick PCR 

Cleanup Kit (Qiagen) and used for qPCR, which was performed on a CFX384 Touch Real-

Time PCR Detection System (Bio-Rad) using RT2 SYBR Green qPCR Mastermix (Qiagen).

Real-time quantitative PCR

The total RNA was extracted with the TRIzol reagent (15596–028, Invitrogen) according to 

the manufacturer’s manual. The cDNA was synthesized using SuperScript II reverse 

transcriptase (180604014, Invitrogen) with 1 μg of total RNA in a 20 μL reaction. The 

resulting cDNA was diluted 1:20 in nuclease-free water and 1 μL was used per qPCR 

reaction with triplicates. qPCR was carried out using Power SYBR Green PCR Master Mix 

(4367659, Thermo Fisher Scientific) on aCFX384 Real-Time PCR Detection System (Bio-

Rad) including a nontemplate negative control. Amplification of GAPDH or 18S rRNA was 

used to normalize the level of mRNA expression. The sequences of the primer pairs were 

listed in Supplementary Table S2.

siRNA transfection

FOXM1 -specific siRNAs and scrambled negative control siRNAs were synthesized by 

Integrated DNA Technologies. A total of 3.5 × 105 cells/well were seeded in 6-well plates 

and incubated at 37° C overnight. Next day, 20 nmol/L of each siRNA was transfected into 

the cells with Oligofectamine Transfection Reagent (12252011, Invitrogen) according to the 

manufacturer’s instructions. Culture media was added 6–8 hours after transfection without 

washing cells. Forty-eight hours after transfection, the transfected cells were trypsinized and 

seeded on 96-well plates (for cytotoxicity assay) or 6-well plates (for colony formation 

assay). Drugs were added around 12 hours after seeding. For cytotoxicity assay, cells were 

incubated with drug for 3 days before measurement of cell viability using Sulforhodamine B 

assay. For colony formation assay, cells were exposed to drugs for 3 days and then changed 

to fresh media without drug until colonies formed and stained with Sulforhodamine B for 

imaging. To check the downregulation of FOXM1 expression, the transfected cells were 
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collected to extract total RNA for qRT-PCR or proteins for Western blot analysis 72 hours 

after transfection. The sequences of siRNAs used are listed below:

FOXM1 siRNA#1: sense rGrUrGrCrCrArArCrCrGrCrUrArCrUr-UrGrArCrArUrUrGGA, 

antisense rUrCrCrArArUrGrUrCrArArGrUr-ArGrCrGrGrUrUrGrGrCrArCrUrG;

FOXM1 siRNA#2: sense rGrCrGrCrUrArUrUrArGrArUrGrUr-UrUrCrUrCrUrGrArUAA, 

antisense rUrUrArUrCrArGrArGrArAr-ArCrArUrCrUrArArUrArGrCrGrCrArC.

Cytotoxicity assay using Sulforhodamine B (SRB) and drug synergy 
studies: SRB assays were performed as described previously (22, 23) with modifications 

shown below. For OVCA420*, OV90, ES-2, ONCO-DG1, and OVCAR3 cells, 3,000 cells/

well were seeded in 96-well plates and treated with drugs at least 12 hours after seeding. 

Then, the cells were incubated for another 3 days. For MDA-MB-436 rucaparib-resistant 

cells RR-1, RR-2, and RR-3, 5,000 cells were seeded and incubated for 5 days after drug 

treatment. Dose-response curves were fitted and the IC50 for each drug was determined 

using GraphPad Prism 6 four parameters. All curves were constrained with 100% on top. 

Synergy was determined by calculating the combination index (CI) obtained from the plate 

reading. CI was calculated on the basis of dividing the expected effect by the observed 

effect.

Colony formation assay

For OVCA420*, OV90, and ES-2, 1,000 cells were seeded in 6-well plates. For MDA-

MB-436 rucaparib-resistant cells RR-1 and RR-2, 2,000 or 3,000 cells were seeded per well 

in 6-well plates. The cells were treated with drugs at least 12 hours after seeding and further 

incubated for another 3 days before changing to fresh media. The medium was changed 

every 2–3 days to allow colonies to form. At the end of experiments, SRB assay was 

performed to stain the colonies which were imaged with Molecular Imager ChemiDoc MP 

System (Bio-Rad). The colonies were further dissolved and measured with a plate reader. 

Analysis of colonies was performed in GraphPad Prism 6.

Caspase-3 activity assay

Caspase-3 activity assay was performed as described previously (23). Briefly, 4 × 105 cells/

well were seeded in 6-well plates and incubated overnight. The next day, cells were treated 

with appropriated drugs and incubated for 30 hours. Cells were then collected using a cell 

lifter and lysed in caspase buffer [pH 7.2, 20 mmol/L PIPES, 100 mmol/L NaCl, 1 mmol/L 

EDTA (pH 8.0), 0.1% (w/v) CHAPS, 10% sucrose and 10 mmol/L DTT] and quantified 

with BCA assay. Twenty micrograms of total protein were used to combine with 2 μL of 2 

mmol/L DEVD-Afc (Millipore) in 96-well flat-bottom plates and added 200 μL/well caspase 

buffer. The plate was covered and incubated war 37°C for 2 hours before measuring 

fluorescence at excitation of 400 nm and emission of 510 nm. Measurements were analyzed 

using Graph-Pad Prism 6.

Fang et al. Page 6

Mol Cancer Res. Author manuscript; available in PMC 2019 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Alkaline comet assay

We used the CometChip Electrophoresis Starter Kit (TREVI-GEN, 4260–096-ESK) to 

perform alkaline comet assay according to the manufacturer’s instructions. For thiostrepton 

and olaparib combination experiment, cells were treated with vehicle or thiostrepton for 4 

hours before seeding onto equilibrated 96-well CometChip. Then 100 μL/well of fresh 

culture media containing appropriate concentrations of both thiostrepton and olaparib was 

added to CometChip followed by another 4-hour incubation at 37°C, and alkaline comet 

assay was performed following the product instruction. For FOXM1 siRNA transient 

knockdown experiment, cells were transfected with scrambled siRNA or FOXM1 siRNA 

and waited 72 hours before seeding onto CometChip. Cells were then incubated with vehicle 

or olaparib for 4 hours at 37° C before alkaline comet assay. Comets were analyzed with 

Trevigen Comet Analysis Software after imaging under a 4× fluorescent microscope.

cDNA microarray analysis

cDNA microarray data from MCF7 cells treated with or without thiostrepton for 6 hours was 

downloaded from the Connectivity Map project and analyzed with BRB-ArrayTools (ver. 

4.5.1; ref. 24). A total of 12 datasets, representing two batches of treatments, were 

downloaded (Supplementary Table S3). After normalization with JustRMA protocol within 

BRB-ArrayTools, 5813 genes passed filtering criteria, such as minimum fold change (<20% 

of expression values have at least a 1.5-fold change in either direction from gene’s median 

value), and percent missing (exceeds 50%). Subsequently, the class comparison between 

paired groups of arrays was performed to identify differentially expressed genes between 

two groups (thiostrepton vs. DMSO). A total of 716 genes were significantly changed 

between two groups. A cluster of 716 genes was performed using Dynamic Heatmap Viewer 

within BRB-ArrayTools, and select genes involved in DNA repair and apoptosis were 

highlighted. Functional annotation and enrichment analysis were performed using 

Metascape and DAVID bioinformatics tools (25, 26).

Statistical analysis

All data were analyzed using GraphPad Prism 6. Results were expressed as means ± SEM. 

Differences between treatment regimens were analyzed by one-way ANOVA or two-tailed 

Student t test. P ≤ 0.05 was considered to be statistically significant.

Results

Olaparib induces the expression of FOXM1 and HR repair genes

To establish the potential role of FOXM1 in the adaptive cellular response induced by 

olaparib, we treated ovarian cancer cells ES-2 and OVCA420* with olaparib and determined 

the expression of FOXM1, BRCA1, and RAD51 at different time points. We observed 

induction of FOXM1 expression by olaparib within 6 hours of treatment (Fig. 1A). In 

addition to the upregulation of FOXM1 expression, the increased nuclear location of 

FOXM1 is observed within 3 hours of olaparib treatment (Fig. 1B), indicative ofFOXM1 

pathway activation. Concomitant with FOXM1 pathway activation, we observed increased 

expression of BRCA1 andRAD51 in these cells (Fig. 1C; Supplementary Fig. S1). 
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Consistent with the increase in FOXM1 nuclear localization, FOXM1 binding to promoter 

regions of its target genes, such as BRCA1, RAD51, FANCF, RAD51D, and FANCD2, 
increased at 12 hours and 24 hours after olaparib treatment (Fig. 1D). These data suggest 

that FOXM1 plays an important role in adaptive cellular response to olaparib treatment in 

ovarian cancer cells.

FOXM1 expression is higher in cancer cells that are less responsive to olaparib

To determine the extent to which FOXM1 expression may be correlated with olaparib 

sensitivity, we assessed FOXM1 expression by qRT-PCR, the Western blot analysis, and 

olaparib sensitivity by SRB assay. Although all three forms of FOXM1 transcripts are 

expressed (Fig. 1E; Supplementary Fig. S2A), protein expression is reflected better by the 

levels of a FOXM1C transcript (Fig. 1F). Consistent with these results, analysis of the 

Cancer Genome Atlas ovarian cancer dataset indicates FOXM1C transcript is the most 

abundant among the three isoforms (Supplementary Fig. S2B), which is consistent with a 

report from Tassi and colleagues (18). The dose-response curves for olaparib sensitivity in 

these cell lines indicate that OVCA420* and OV90 with high expression of FOXM1 are less 

responsive to olaparib (Fig. 1G). Taken together, these results suggest a potential role of 

FOXM1 in olaparib sensitivity in ovarian cancer cells.

FOXM1 knockdown results in enhanced sensitivity to olaparib

To determine the extent to which FOXM1 expression contributes to olaparib sensitivity, we 

used two different siRNAs to downregulate FOXM1 expression. Although both siRNAs 

down-regulate all three isoforms of FOXM1 transcripts, FOXM1B was affected more by 

these siRNAs (Fig. 2A). Interestingly, FOXM1 expression was markedly decreased at 

protein levels, indicating that these siRNAs also affected the translation of FOXM1 protein 

(Fig. 2B), consistent with the translational repression of certain siRNAs (27). SRB assays 

indicate that cells with decreased FOXM1 expression are significantly more sensitive to 

olaparib (Fig. 2C; Supplementary Fig. S3A and S3B). Similarly, we observed a significant 

decrease in clonogenic survival in FOXM1 knocked-down cells treated with 4, 10, and 25 

μmol/L olaparib compared with scrambled control siRNA (scr siRNA; Fig. 2D). Next, we 

used pharmacologic means to inhibit FOXM1 expression and determined the extent to which 

FOXM1 inhibition results in enhanced sensitivity to olaparib. Thiostrepton is a FOXM1 

inhibitor, and it downregulates FOXM1 expression (20, 28). In three different ovarian cancer 

cell lines, we observed synergistic interactions between thiostrepton and olaparib at the 

concentrations tested in clonogenic assays (Fig. 2E and F) and mild synergistic activity in 

SRB assays (Supplementary Fig. S3C). Similarly, we observed synergistic interactions 

between thiostrepton and olaparib or carboplatin in other cancer cell lines (Supplementary 

Fig. S3D–S3F). Collectively, these results indicate FOXM1 inhibition enhances sensitivity to 

olaparib and carboplatin.

Thiostrepton decreases the expression of DNA repair genes and increases the expression 
of proapoptotic genes

To better characterize the effect of thiostrepton and define the molecular pathways affected 

by thiostrepton, we analyzed the publicly available dataset from the Connectivity Map 

project where cancer cells were treated with thiostrepton for 6 hours and drug-perturbed 
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transcriptomes were profiled with array-based gene expression analysis (29). The Metascape 

analysis (25) of genes that are downregulated by thiostrepton at P ≤ 0.001 indicates these 

genes are associated with mitotic cell cycle, G1–S phase transition, and FOXM1 pathway 

(Supplementary Fig. S4A). On the other hand, the Metascape analysis of genes that are 

upregulated by thiostrepton at P ≤ 0.001 indicates these genes are associated with unfolded 

protein response, ER-associated degradation, and cellular redox homeostasis 

(Supplementary Fig. S4B). At p ≤ 0.005, we observed 716 genes that are differentially 

expressed between DMSO- and thiostrepton-treated cells. The classification of gene 

function through DAVID bioinformatics resources (26) indicates one of the pathways 

enriched by these genes is DNA damage and repair pathway (Supplementary Fig. S4C and 

S4D). Genes involved in DNA damage and repair, such as MLH3, FANCF, and BRCC3 
were downregulated while proapoptotic genes such as DDIT4, DDIT3, and GADD45A were 

upregulated (Fig. 3A). We confirmed these observations by qRT-PCR in A2780 ovarian 

cancer cells treated with thiostrepton for different time points (Fig. 3B). At the same time, 

we also observed that thiostrepton downregulated mRNA expression of BRCA2, which is 

known to be regulated by FOXM1. These results indicate that select DNA repair genes were 

down-regulated while proapoptotic genes were upregulated by thiostrepton (Fig. 3B).

Thiostrepton downregulates FOXM1 target genes

To further characterize the effect of thiostrepton on the expression of FOXM1 target genes, 

we analyzed ENCODE dataset and focused on DNA repair genes identified from the 

FOXM1 ChIP-sequencing. This analysis indicates several DNA repair genes could be 

potentially regulated by FOXM1 (Supplementary Fig. S5). We focused on genes involved in 

HR repair pathway, and we analyzed the expression of FOXM1, FANCF, BRCA1, BRCC3, 
BRIP1, NBS1, Skp2, and Csk1. In three different cell lines, 5 μmol/L (OVCA420* and 

OV90) and 2.5 mmol/L (ES-2) thiostrepton downregulate the expression of FOXM1 target 

genes (Fig. 4A–C). Similarly, these genes were downregulated by thiostrepton in another 

ovarian cancer cell line A2780 (Supplementary Fig. S6A). Interestingly, thiostrepton 

variably upregulates FOXM1a and FOXM1b in ovarian cancer cells, while consistently 

down-regulating FOXM1c and its canonical target gene CCNB1 in these cells 

(Supplementary Fig. S6B–S6D).

At protein levels, BRCA1, BRCA2, and FOXM1 were consistently downregulated by 

thiostrepton (Fig. 4D–F; Supplementary Fig. S6E and S6F). However, we did not observe 

consistent downregulation of BRCC3 and FANCF. To resolve the inconsistency between 

mRNA and protein expression, we analyzed the stability of these proteins in question. 

Following the inhibition of protein synthesis by cycloheximide, we observed a decrease in 

BRCA1 and FOXM1. The half-life of BRCA1 and FOXM1 was less than 60 minutes in 

OVCA420* (Supplementary Fig. S6G and S6H). In contrast, the half-life for BRCC3 and 

FANCF was longer than 24 hours (Supplementary Fig. S6G and S6H). Similarly, the half-

life for BRCC3 and FANCF was longer than 24 hours in OV90 (Supplementary Fig. S6I and 

S6J). The longer half-life of BRCC3 and FANCF may explain why a substantial decrease in 

mRNA does not correspond with a decrease in protein levels. Expression of DNA repair 

genes including BRCA1 is known to be cell-cycle-dependent, and changes in expression of 

these genes may be secondary to cell-cycle changes induced by thiostrepton. However, we 
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did not observe a marked change in cell-cycle profile at 4 hours, in two different cell lines, 

when BRCA1 is downregulated by thiostrepton in these cells (Supplementary Fig. S6K, Fig. 

4D–F), suggesting that changes of expression of these genes including BRCA1 were due to 

FOXM1 inhibition. These data suggest that thiostrepton inhibits FOXM1 expression and its 

target HR genes, and thus induces “BRCAness” in ovarian cancer cells.

Thiostrepton induces the expression of proapoptotic genes and decreases the expression 
of antiapoptotic genes

In addition to genes involved in DNA repair pathway, the analysis of microarray dataset 

from the Connectivity Map project also indicates that thiostrepton affects the expression of 

genes involved in apoptosis. Therefore, we sought to confirm the expression of pro- and 

antiapoptotic genes affected by thiostrepton. qRT-PCR analysis indicates that thiostrepton 

upregulates DDIT3, GADD45A while it downregulates antiapoptotic gene BCL-2 (Fig. 5A 

and B). Consistent with these results, thiostrepton induces PARP1 and caspase-3 cleavages 

in two different cell lines (Fig. 5C and D). Finally, results from the caspase-3 activity assay 

indicate higher caspase-3 activity in cells treated with thiostrepton alone or in combination 

with olaparib (Fig. 5E and F).

Thiostrepton enhances DNA damage and PARP1 trapping in cells treated with olaparib

Because thiostrepton downregulates FOXM1 and its target genes involved in DNA repair 

pathway, we tested the extent to which thiostrepton enhances DNA damage in cells treated 

with olaparib. The results from comet assay indicate that thiostrepton alone increases DNA 

damage (Fig. 6A). In addition, higher levels of DNA in comet tail were observed in cells 

treated with 10 ≤ μmol/L olaparib and thiostrepton. Similar results were observed in two 

additional cell lines with thiostrepton and olaparib or carboplatin (Supplementary Fig. S7A 

and S7B). The increase in DNA damage following thiostrepton treatment may be explained 

in part by the downregulation of FOXM1 because FOXM1 knockdown by siRNA produces a 

similar increase in DNA damage (Fig. 6B). Meanwhile, increased level of phospho-H2AX 

(γH2AX) was seen with thiostrepton treatment and the increase was enhanced when 

combined with olaparib (Supplementary Fig. S7C and S7D). These results are consistent 

with a critical role of FOXM1 in regulating DNA repair genes, and a decreased expression 

of FOXM1 may compromise DNA repair function by downregulating several target genes 

involved in DNA repair. Consistent with an increase in DNA damage following FOXM1 

inhibition, we also observed an increase in trapped PARP1 in cells treated with both 5 or 10 

μmol/L thiostrepton, and 40 μmol/L olaparib (Fig. 6C). This observation provides an 

additional mechanism to explain the enhanced sensitivity to olaparib in ovarian cancer cells 

as PARP trapping onto chromatin after PARP inhibitor treatment is considered to be more 

cytotoxic than inhibition of enzymatic activity of PARP (30).

Thiostrepton sensitizes resistant cells to rucaparib by downregulating stabilized mutant 
BRCA1

Previous studies reported an enhanced expression of mutant BRCA1 as an epigenetic 

mechanism associated with acquired resistance to rucaparib (9). Although parental MDA-

MB-436 cells are sensitive to rucaparib due to the presence of a BRCA1 mutation in these 

cells, the resistant clones derived from these cells expressed high levels of mutant BRCA1 
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that partially restore BRCA1 function and confer resistance to rucaparib. We used these 

resistant clones to test the extent to which thiostrepton restores sensitivity to rucaparib in 

these cells. Thiostrepton downregulates the expression of FOXM1 as well as mutant BRCA1 

(Fig. 7A). Consistent with this downregulation, we observed an increase in sensitivity to 

rucaparib in thiostrepton-treated cells (Fig. 7B and C; Supplementary Fig. S8A and S8B). In 

addition, mild synergistic interactions between thiostrepton and rucaparib were observed at 

different combinations. Clonogenic assays further corroborated these synergistic interactions 

between the two drugs (Fig. 7D and E). This enhanced sensitivity to rucaparib was also 

observed in resistant cells following the FOXM1 knockdown by siRNA (Fig. 7F and G), 

indicating that enhanced sensitivity to rucaparib by thiostrepton could be explained in part 

by its effect on FOXM1 expression. These data suggest that inhibition of FOXM1 with 

thiostrepton can be an effective way to overcome acquired resistance to PARP inhibitors.

Discussion

In this study, we identified FOXM1 as a component of the adaptive cellular pathway 

responsive to olaparib. Olaparib induces the expression of FOXM1 and activates the FOXM1 

pathway as evidenced by the enhanced nuclear localization of FOXM1 and the increased 

binding of FOXM1 to its target genes. The disruption of FOXM1 pathway either by RNAi or 

chemical inhibition with thiostrepton decreases the levels of FOXM1 expression and 

sensitizes the cancer cells to olaparib and carboplatin. Furthermore, thiostrepton decreases 

the levels of DNA repair genes involved in HR pathway and induces “BRCAness” in ovarian 

cancer cells, thereby resensitizing the rucaparib-resistant breast cancer cells to rucaparib. 

During preparation of this article, a study from Tassi and colleagues, reported that FOXM1 

expression is significantly associated with chemotherapy resistance, and FOXM1 

knockdown enhances the cytotoxic effects of chemotherapeutic agents including olaparib in 

nonserous epithelial cancer cells (18), which is consistent with our observations described in 

this article.

Previous studies indicate that FOXM1 regulates the expression of BRIP1 and DNA damage 

repair pathway following epirubicin treatment (31). In addition, a spontaneous increase in 

γH2AX foci has been reported in cancer cells following the depletion of FOXM1 by RNAi 

(32). Consistent with these results, our studies provided additional supporting evidence that 

FOXM1 knockdown and thiostrepton treatment increase the γH2AX level, enhance DNA 

damage, and PARP1 trapping to the damaged DNA in the presence of olaparib. Olaparib has 

been shown to produce moderate levels of PARP trapping (30). The increase of PARP 

trapping in thiostrepton and olaparib treatment may be a result of increased DNA damage 

induced by thiostrepton, which leads to the recruitment of DNA repair machinery to the 

damage sites, including PARP1 which is responsible for the base excision repair (BER). A 

significant increase in γH2AX foci either by RNAi or thiostrepton underlies the important 

role FOXM1 plays in regulating DNA repair genes and maintaining DNA repair efficacy 

(33). Accordingly, FOXM1 is described as an “emerging master regulator of DNA damage 

response” (33). Therefore, our results indicating that FOXM1 is induced by olaparib and that 

its enhanced expression regulates the adaptive cellular response to DNA damage signal 

provide an important biological basis for targeting FOXM1 pathway to overcome resistance 

to olaparib and carboplatin.
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It is important to note that previous studies have also shown that FOXM1 is stabilized by 

DNA-damaging agents, such as ionizing radiation, etoposide, and UV (32, 34). Tan and 

colleagues reported that FOXM1 is phosphorylated by Chk2 at S361, leading to the stability 

of FOXM1 (32). They reported that FOXM1 regulates BRCA2 and XRCC1. In addition, 

Monteiro and colleagues reported that FOXM1 is required for HR pathway but 

indispensable for NHEJ (31). Finally, Zhang and colleagues reported that FOXM1 regulates 

RAD51 expression (35). Consistent with these results, we observed FOXM1 occupancy to 

DNA repair genes, such as BRCA1, RAD51, FANCF, RAD51D, and FANCD2, in response 

to olaparib. In addition, inhibition of FOXM1 by thiostrepton decreases the expression of 

DNA repair genes, such as BRCA1 and BRCA2, thereby disrupting an adaptive response 

mediated by FOXM1.

Considering that adaptive responses to chemotherapy provide transient resistance to 

chemotherapy and may facilitate the eventual acquisition of more stable traits associated 

with chemotherapy resistance, our study provides an important insight into a potential role 

of the FOXM1 pathway in the adaptive response to olaparib. Our studies also suggest the 

potential use of thiostrepton as a chemotherapeutic agent to disrupt FOXM1 pathway and to 

enhance sensitivity to olaparib and carboplatin. Although thiostrepton was initially isolated 

from Streptomyces azureus and used as a topical antibiotic (36), its current use in human is 

limited by the low solubility and bioavailability. However, recent studies have shown that 

micelle-formulated thiostrepton has better solubility and pharmacodynamic effect on the 

tumor in xenograft models (37). Also, several studies have tested the in vivo efficacy of 

thiostrepton in xenograft models of other cancers, including ovarian cancer, leukemia, and 

laryngeal squamous cell carcinoma (20, 38, 39). In addition to thiostrepton, siomycin A is 

another cyclic oligopeptide isolated from Streptomyces sioyanesis and shows inhibitory 

effects on FOXM1 transcriptional activity and expression (40). Finally, another inhibitor 

FDI-6 is a small-molecule FOXM1 inhibitor that blocks FOXM1 binding to DNA (41). 

Although micromolar concentrations of FDI-6 is required to inhibit FOXM1, further 

development of this compound may result in therapeutics that can effectively target FOXM1 

and enhance sensitivity to existing chemotherapeutics, such as olaparib and carboplatin.

Our studies show that FOXM1 plays an important role in an adaptive response to PARP 

inhibitors. FOXM1 expression levels inversely correlate with olaparib sensitivity, and 

knockdown of FOXM1 sensitizes ovarian cancer cells to olaparib and decreases the number 

of persisting cells that can produce colonies. FOXM1 inhibitor, thiostrepton, induces 

“BRCAness” by downregulating homologous recombination repair genes, increases 

apoptosis, and enhances therapeutic effects of olaparib and carboplatin in ovarian cancer 

cells. In addition, thiostrepton treatment overcomes resistance to rucaparib by 

downregulating FOXM1 and the stabilized mutant BRCA1 in resistant breast cancer cells. 

Inhibition of FOXM1 represents an effective strategy to overcome PARP inhibitor resistance 

and that disrupting FOXM1-mediated adaptive pathway may produce better therapeutic 

effects for PARP inhibitors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Olaparib increases FOXM1 expression and FOXM1 levels inversely correlate with olaparib 

sensitivity. A, Olaparib induces FOXM1 expression. The ES-2 and OVCA420* cells were 

treated with 10 μmol/L olaparib for 0,1,3, 6,12, or 24 hours and subjected to immunoblotting 

with the FOXM1 antibody. β-Actin immunoblot is used as a loading control. B, Olaparib 

enhances nuclear localization of FOXM1. Cells were treated with 10 μmol/L olaparib for 

0,1, 3, 6, 8, or 12 hours before subcellular fractionation followed by Western blot analysis of 

FOXM1 in nuclear and cytoplasmic fractions. β-Tubulin and Histone H3 were used as 
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loading controls for cytoplasmic and nuclear protein, respectively. C, Olaparib increases the 

expression of BRCA1 and RAD51. The whole-cell lysates were prepared from both cell 

lines after exposure of 10 μmol/L olaparib for 0,1, 3, 6,12, or 24 hours and blotted with 

BRCA1 or RAD51 antibodies. D, Olaparib increases FOXM1 occupancy at promoter 

regions of its target genes. OVCA420* cells were treated with 20 μmol/L olaparib for 12 

hours or 24 hours before ChIP analysis using FOXM1 antibody. Results are representative of 

at least three experiments (A–D). E, Quantification of FOXM1 mRNA and its isoforms 

(isoform b and c) in multiple ovarian cancer cell lines by qRT-PCR. Data were shown as 

mean ± SEM. F, Measurement of FOXM1 protein levels by immunoblotting in different 

ovarian cancer cells. The whole-cell lysates were used for immunoblotting with the FOXM1 

antibody. The Densitometry analysis was performed to quantify FOXM1 protein levels. Data 

was shown from a representative experiment. G, Measurement of olaparib sensitivity in 

ovarian cancer cells by Sulforhodamine B (SRB) cell viability assay. A total of 3,000 cells 

were seeded in 96-well plates and treated with increasing concentrations of olaparib for 72 

hours before SRB assay. Data were shown as mean ± SEM (n = 3–4). Results were average 

of 3–4 independent experiments with triplicates. The table shows estimated IC50 values for 

olaparib in ovarian cancer cell lines. IC50 values were extrapolated from the curve using 

GraphPad Prism 6 software. The cells baring curves that cannot accurately extrapolate IC50 

values are shown as “not predictable.” The statistics analysis was performed with two-tail 

Student t test: *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001; ****, P ≤ 0.0001.
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Figure 2. 
FOXM1 inhibition by either siRNA or thiostrepton sensitizes cancer cells to olaparib and 

decreases the number of persisting clones. A and B, Verification of FOXM1 knockdown by 

two different siRNAs. ES-2 cells were transfected with scrambled (scr) siRNA, FOXM1 

siRNA1 (si#1), or siRNA2 (si#2) and RT-qPCR (A) and immunoblotting (B) were 

performed after 72 hours. **, P ≤ 0.01. Data were representatives from three independent 

experiments. C, Estimated IC50 values of olaparib in ES-2 cells after FOXM1 depletion. The 

IC50 values from SRB cell viability assays were extrapolated using Prism 6 software, and 
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the data were shown as mean ± SEM. ***, P ≤ 0.001. Results were derived from triplicates 

of representative experiments. D, FOXM1 knockdown decreases persisting clones in ES-2 

following olaparib treatment. Forty-eight hours after siRNA transfection, cells were seeded 

in 6-well plates and treated with different concentrations of olaparib for 3 days. Colonies 

produced by persisting cells were stained with SRB and solubilized after imaging. 

Percentage of colony formation relative to the vehicle was shown in a bar graph. *, P ≤0.05; 

**, P ≤0.01. E and F, Thiostrepton synergizes with olaparib in inhibiting the colony 

formation of OVCA420*, OV90, and ES-2 cells. Cells were treated with thiostrepton and 

olaparib alone or in combination for three days followed by colony formation around 2 

weeks. Colonies were stained with SRB and imaged before solubilized in Tris buffer to 

measure fluorescence intensity. Relative colony formation from E was quantified, and the 

combination indexes (CI) were calculated. Results represent experiments performed in 

duplicates (D-F).
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Figure 3. 
Thiostrepton decreases the expression of antiapoptotic genes and increases the expression of 

proapoptotic genes. A, Heatmap showing changes in gene expression profile after 

thiostrepton treatment. B, qRT-PCR analysis of altered genes after thiostrepton treatment in 

A2780 ovarian cancer cells. A2780 cells were treated with 5 μmol/L of thiostrepton for 0, 

6,8, 9, and 10 hours before total RNA extraction for RT-PCR. Data are shown as mean ± 

SEM in log2. Results represent experiments performed in triplicates.
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Figure 4. 
Thiostrepton downregulates FOXM1 and FOXM1 target genes involved in the homologous 

recombination repair. A-C, qRT-PCR of FOXM1 and its target genes involved in the 

homologous recombination after thiostrepton treatment. 0VCA420* (A) and OV90 (B) cells 

were seeded in 6-well plates and treated with vehicle, 2.5 μmol/L, or 5.0 μmol/L of 

thiostrepton for 24 hours before total RNA extraction. ES-2 cells (C) were treated with 

vehicle, 1.0 μmol/L or 2.5 μmol/L of thiostrepton for 24 hours. Statistical analysis was 

performed by two-tailed Student t test. *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001; ****, P ≤ 

0.0001. Results represent experiments performed in triplicates. D-F, Immunoblot analysis of 
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FOXM1 and its target genes after thiostrepton treatment. 0VCA420* (D), 0V90 (E), and 

ES-2 (F) cells were treated with 5.0 μmol/L thiostrepton for 0, 2, 4, 6, 8,10,12,18, or 24 

hours before immunoblotting.
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Figure 5. 
Thiostrepton induces apoptosis in ovarian cancer cells. A and B, Thiostrepton increases 

proapoptotic genes DDIT3 and GADD45A and decreases anti apoptotic gene BCL-2. ES-2 

cells (A) and OV90 cells (B) were treated with vehicle or thiostrepton at the indicated 

concentration for 24 hours. C and D, Thiostrepton cooperates with olaparib in increasing 

PARP1 and caspase-3 cleavage. ES-2 (C) or OV90 (D) cells were treated with vehicle, 

thiostrepton alone, olaparib alone, or combination of thiostrepton and olaparib for 30 hours 

before checking for PARP1 and caspase-3 cleavage. E and F, Thiostrepton and olaparib 
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increase caspase-3activities inovarian cancer cells. The significant analysis was performed 

with two-tail Student t test. *, P≤ 0.05; **, P ≤ 0.01; ***, P≤ 0.001; ****, P≤ 0.0001; #, P ≤ 

0.05; ##, P < 0.01. Results represent experiments performed in duplicates.
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Figure 6. 
Thiostrepton enhances DNA damage and increases PARP1 trapping onto chromatin after 

olaparib treatment. A, Thiostrepton and olaparib increase DNA damage in OVCA420* cells. 

OVCA420* cells were pretreated with vehicle, 7.5 μmol/L, or 10 μmol/L thiostrepton for 4 

hours in 6-well plates before trypsinizing and seeding onto CometChip. Then cells were 

treated with vehicle, 7.5 μmol/L, or 10 μmol/L thiostrepton and olaparib (10 μmol/L) for 

another 4 hours. Comets were analyzed with Trevigen Comet Analysis Software after 

imaging under a 4 x fluorescent microscope. Data were shown as percent of DNA in comet 

tail. Representative comet images were shown on the right. The significance analysis was 

performed with one-way ANOVA. *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001; ****, P ≤ 

0.0001. Results represent experiments performed in triplicates. B, FOXM1 knockdown with 

siRNA increases DNA damages in Comet assay. Seventy-two hours after the FOXM1 

knockdown, OVCA420* cells were trypsinized and seeded for comet assay using Trevigen 

CometChip Kit. Representative images were shown on the right. C, Thiostrepton increases 

PARP1 trapping onto chromatin. OVCA420* cells were treated with indicated 

concentrations of PARP inhibitors, olaparib or BMN673, alone or in combination with 

thiostrepton for 4 hours and fractionated as nuclear soluble and chromatin-bound fractions. 
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The lysates were blotted first with PARP1 antibody and secondly with PARP antibody. ** 

shown as nonspecific bands. Results were from a representative of two independent 

experiments.
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Figure 7. 
Thiostrepton sensitizes rucaparib-resistant cells by downregulating FOXM1 and mutant 

BRCA1. A, FOXM1 and mutant BRCA1 (mtBRCA1) decrease by thiostrepton treatment. 

Three rucaparib-resistant cells (RR-1, RR-2, and RR-3) were treated with 5 μmol/L 

thiostrepton for 0,12, or 24 hours and the FOXM1 and mutant BRCA1 protein levels were 

measured by immunoblotting. B and C, Synergistic effects of thiostrepton and rucaparib in 

rucaparib-resistant cells RR-1 (A) and RR-3 (B). Rucaparib-resistant cells were derived 

from MDA-MB-436 cells after long time exposure of rucaparib (9). 5000 cells were seeded 

in 96-well plates and treated with thiostrepton or olaparib alone or combinations of both 

drugs for 3 days before SRB assay. Cell survival curves were generated in the presence of 

vehicle (set as 100% of survival) or thiostrepton following increasing concentrations of 

rucaparib. Data were shown as mean ± SEM in a line graph. The statistics analysis was 

fulfilled with two-tailed Student t test. *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001; ****, P ≤ 

0.0001. Results represent experiments with four replicates. D and E, Colony formation assay 

of rucaparib-resistant cells RR-1 and RR-2 with thiostrepton and rucaparib. RR-1 and RR-2 
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cells were seeded in 6-well plates and treated with vehicle or rucaparib with or without 

thiostrepton. The colony formation results were shown in (D) and quantified in E, data 

shown as mean ± SEM. Combination index (CI) for each combination was shown 

underneath. F and G, Colony formation assay after FOXM1 knockdown with siRNA. F, 

RR-1 and RR-2 cells were transfected with scr siRNA or FOXM1 siRNA and waited 48 

hours before seeding for clonogenic assay. Cells were treated with increasing concentrations 

of rucaparib for 3 days and allow colonies to form for 18 days. Colonies were stained with 

SRB and imaged. Cell lysates were collected around 72 hours after siRNA transfection and 

subjected to Western blot analysis to check FOXM1 knockdown efficiency. G, 

Quantification of relative colony formation. Stained colonies from F were solubilized in Tris 

buffer and measured fluorescent intensity. Data are shown as mean ± SEM of the percentage 

of colony formation relative to the vehicle of scr siRNA or FOXM1 siRNA, respectively. 

Results represent experiments performed in duplicates (D-G).
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