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Rumination is a form of thought characterized by repetitive focus on discomforting emotions or stimuli. In chronic pain disorders,
rumination can impede treatment efficacy. The brain mechanisms underlying rumination about chronic pain are not understood.
Interestingly, a link between rumination and functional connectivity (FC) of the brain’s default mode network (DMN) has been identified
within the context of mood disorders. We, and others, have also found DMN dysfunction in chronic pain populations. The medial
prefrontal cortex (mPFC) is a key node of the DMN that is anatomically connected with the descending pain modulatory system.
Therefore, we tested the hypothesis that in patients with chronic pain, the mPFC exhibits abnormal FC related to the patient’s degree of
rumination about their pain. Seventeen patients with idiopathic temporomandibular disorder (TMD) and 17 age- and sex-matched
healthy controls underwent resting state functional MRI, and rumination about pain was assessed through the rumination subscale of the
Pain Catastrophizing Scale. Compared with healthy controls, we found that TMD patients exhibited enhanced mPFC FC with other DMN
regions, including the posterior cingulate cortex (PCC)/precuneus (PCu) and retrosplenial cortex. We also found that individual differ-
ences in pain rumination in the chronic pain patients (but not in healthy controls) were positively correlated to mPFC FC with the
PCC/PCu, retrosplenial cortex, medial thalamus, and periaqueductal/periventricular gray. These data implicate communication within
the DMN and of the DMN with the descending modulatory system as a mechanism underlying the degree to which patients ruminate
about their chronic pain.
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Introduction
Pain rumination, or perseverative negative thinking about pain
and its possible causes and consequences, has been linked with
higher pain levels and poorer clinical outcomes in multiple

chronic pain populations (Sullivan et al., 2002; Van Damme et al.,
2002; Buenaver et al., 2012). Pain rumination is similar to but
partially distinct from emotionally negative thinking patterns
that occur in psychiatric disorders, such as depression (Nolen-
Hoeksema, 2000; Sansone and Sansone, 2012). Whereas rumina-
tion always involves excessive attention to distressing thoughts
and stimuli, the specific focus on pain could uniquely affect brain
networks associated with attention, pain perception, and pain
modulation.

There is a link between rumination and the brain’s default
mode network (DMN) within the context of mood in healthy
individuals and in major depressive disorder patients (Kross et
al., 2009; Zhu et al., 2012). The DMN is active when people are
not engaged with any specific task or stimulus but is suppressed
when attention shifts to a task or stimulus (Raichle and Snyder,
2007). DMN regions, including the medial prefrontal cortex
(mPFC), posterior cingulate cortex (PCC), and lateral parietal
cortices, exhibit functional connectivity (FC) during a stimuli-/
task-independent (“resting”) state and during task states in that
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their activity fluctuations are correlated with one another
(Greicius et al., 2003). DMN activation increases correspond
to attention lapses (Weissman et al., 2006), autobiographical
recall/planning (Andrews-Hanna et al., 2010), and mind-
wandering (Christoff et al., 2009; Kucyi et al., 2013), suggest-
ing that this network supports attention toward introspective
thoughts.

Acute pain, an intrinsically salient experience, would be ex-
pected to deactivate the DMN. However, there are individual
differences in tendencies to attend to pain and increases in DMN
activity during routine mind-wandering away from pain (Kucyi
et al., 2013). In chronic pain, rumination about ongoing pain
may be represented in FC within the DMN or between the DMN
and pain-related networks. Several studies have reported aber-
rant DMN FC in chronic pain (Baliki et al., 2008, 2011; Napadow
et al., 2010; Loggia et al., 2013), but it is unknown whether these
abnormalities relate to pain rumination.

Chronic pain populations also exhibit brain abnormalities in
the descending pain modulatory system, most notably in the
periaqueductal gray (PAG), and this may relate to dysfunctional
pain regulation (Rocca et al., 2006; Mainero et al., 2011; Desouza
et al., 2013). We demonstrated that in healthy individuals, DMN-
PAG FC is enhanced during attentional fluctuations away from
pain (Kucyi et al., 2013). Furthermore, mPFC-PAG structural
and functional connectivity relate to individual differences in
tendencies to attend to pain. Therefore, the mPFC is well posi-
tioned to mediate changes of functional interactions between the
DMN and descending pain modulatory system in chronic pain,
possibly driven by pain rumination.

Here we tested the hypothesis that the mPFC exhibits abnor-
mal resting state FC in chronic pain and that this abnormality
relates to a patient’s degree of pain rumination. We first com-
pared mPFC FC in patients with idiopathic temporomandibular
disorder with that of age-matched healthy individuals. We then
related mPFC FC with individual differences in pain rumination.

Materials and Methods
Participants. Seventeen right-handed females with idiopathic temporo-
mandibular disorder (TMD; mean age � SD, 33.1 � 11.9 years) and 17
age-matched healthy right-handed females (mean age � SD, 32.2 � 10.2
years) were recruited and provided informed written consent for proce-
dures approved by the University Health Network and Mount Sinai Hos-
pital Research Ethics Boards. Data from the same cohort regarding brain
structural and functional abnormalities, that are distinct from the data
used in this study, were previously reported (Moayedi et al., 2011,
2012a,b; Weissman-Fogel et al., 2011; Salomons et al., 2012). Dentists,
who are TMD specialists in the Pain Unit of the Mount Sinai Hospital
Dental Clinic, examined and diagnosed patients as having TMD using
standard clinical diagnostic criteria from this institution. Criteria in-
cluded the involvement of myofascial and/or temporomandibular joint,
based on clinical examination. Inclusion criteria included: (1) nontrau-
matic TMD; (2) musculoligamentous pain in the temporomandibular
area; (3) pain in the muscles of mastication rated verbally as at least 4/10
for at least 3 months at the time of evaluation, or pain that is aggravated
by mandibular function; and (4) moderate (�2 of 4-point Likert scale of
0 � “no pain” to 3 � “severe pain” to palpation and/or pain persisting
postexamination in at least three muscle sites and/or moderate pain to
palpation of the temporomandibular joint and/or limited mandibular
movement (opening �40 mm). Exclusion criteria for all subjects in-
cluded: (1) left-handedness; (2) self-report of metabolic, rheumatoid or
vascular diseases/disorders, or any other serious diseases; (3) self-report
of commonly comorbid functional chronic pain disorders (irritable
bowel syndrome and fibromyalgia); (4) self-report of psychiatric disor-
ders (e.g., depression, schizophrenia); (5) self-report history of an abnor-
mal neurological examination; (6) contraindication to MRI scanning;

and (7) self-report of substance abuse. Additionally, healthy controls
were excluded if they had a history of chronic pain. Patients verbally
reported their average pain intensity over the last month on a scale from
0 to 10 (0 � “no pain,” 10 � “the worst pain imaginable”; mean � 4.3,
SD � 1.8).

Assessment of pain rumination. Pain rumination was assessed with the
rumination subscale of the Pain Catastrophizing Scale (PCS; Sullivan et
al., 1995), a well validated measure of maladaptive thinking patterns
related to pain. Subjects completed the full PCS, which consists of 13
items measured on a five-point Likert scale (0 � “not at all,” 4 � “all the
time”). The rumination subscale consists of four items measuring the
degree to which individuals focus on their pain (sample item: “I can’t
stop thinking about how much it hurts”). A two-tailed independent
samples t test revealed no significant differences in pain rumination
scores between patients (mean � 6.8, SD � 3.94) and controls (mean �
6.4, SD � 4.06; p � 0.77). Within the patient group, there was no signif-
icant correlation between pain rumination and average pain intensity
(r � �0.26, p � 0.31).

MRI acquisition. Brain imaging was performed with a 3T GE Signa
HDx MRI system fitted with an eight-channel phased array head coil.
Before the resting state BOLD fMRI scan, subjects were given the follow-
ing instructions: “Close your eyes, stay calm, and do not think of any-
thing in particular. Do not fall asleep.” Scans were then acquired during
a 5 min 8 s period using T2*-weighted echo-planar imaging (TR � 2000
ms, TE � 40 ms, flip angle � 45°; 28 axial slices per volume, 64 � 64
matrix, 3.125 � 3.125 � 4 mm 3 voxels). High-resolution whole brain
T1-weighted anatomical scans were also acquired with a three-
dimensional IR-FSPGR sequence (TR � 12 ms, TE � 5 ms, TI � 300 ms,
flip angle � 20°; 128 axial slices, 256 � 256 matrix, field-of-view 24 � 24
cm, 0.94 � 0.94 � 1.5 mm 3 voxels).

Data preprocessing. Preprocessing procedures were performed with
FSL v5.0 (Jenkinson et al., 2012), MATLAB v7.12.0 (MathWorks), and
fMRISTAT (Worsley et al., 2002), and were in line with our previous
studies (Kucyi et al., 2012, 2013). The following steps were first per-
formed using FSL’s FEAT: deletion of the first four volumes, motion
correction (MCFLIRT), brain extraction (BET), and linear registration
(FLIRT) among fMRI, T1-weighted anatomical, and standard MNI152
space (2 mm 3 resolution) images. To remove physiological/scanner-
related noise from fMRI data, we implemented aCompCor procedures
(Behzadi et al., 2007; Chai et al., 2012). The T1-weighted images were
segmented into gray matter, white matter (WM), and CSF using FSL’s
FAST. The WM and CSF partial volume estimate maps were transformed
to fMRI space using the previously computed linear transform. These
maps were thresholded to retain only the top 198 cm 3 (WM) and top
20 cm 3 (CSF) with highest probability of being a given tissue type (Chai
et al., 2012) to avoid the inclusion of voxels with partial volumes of
different tissue types. The thresholded images were then multiplied by
the 4-D data, and principal components analysis was performed sepa-
rately within WM and CSF. The top five WM components, top five CSF
components, and six motion parameters obtained with MCFLIRT were
regressed out of the fMRI data. Spatial smoothing (6 mm full-width
half-maximum kernel) and bandpass temporal filtering (0.01– 0.1 Hz)
were then performed.

mPFC seed definition. The seed region was based on peak MNI coor-
dinates from our previous study in which we found greater mPFC acti-
vation (along with other DMN regions) during attention away from pain
compared with attention toward pain (Kucyi et al., 2013). A 6-mm-
diameter sphere was drawn surrounding these reported mPFC coordi-
nates (xyz � �2, 58, �6; Fig. 1A). The standard space mPFC image was
linearly transformed to fMRI space, and the mean time course across all
voxels in the seed was extracted.

Statistical analyses. A first-level general linear model (GLM) was per-
formed within-subjects using FEAT with FILM prewhitening. The mean
mPFC time course was entered as a regressor to identify voxels through-
out the whole brain that were functionally connected with this seed.
Resulting statistical images were entered into a second (group-level)
mixed-effects GLM using FLAME 1 � 2. Statistical contrasts were per-
formed to identify (1) mPFC FC within the healthy control group, (2)
mPFC FC within the TMD group, (3) regions with greater mPFC FC for
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controls compared with patients, and (4) regions with greater mPFC for
patients compared with controls. All contrasts were thresholded at the
whole-brain FWE-corrected level (Z � 2.3; cluster p � 0.05).

In addition to the analysis of group differences, we conducted a mixed-
effects group-level GLM (FLAME 1 � 2) within the patient group. Here

we entered demeaned pain rumination scores
as a regressor to identify brain regions with ei-
ther positive or negative associations with
mPFC FC. Additionally, to determine whether
relationships between mPFC FC and pain rumi-
nation were specific to the patient group, we con-
ducted a two-group with continuous covariate
interaction analysis with mPFC FC maps from
both control and patient groups inputted and
pain rumination scores (mean from whole sam-
ple subtracted out) from each group entered as
separate regressors. Contrasts were set up to iden-
tify voxels where the relationship between mPFC
FC and pain rumination was greater in patients
than in controls and vice versa. For these analyses,
results were thresholded as done for the group
differences analysis.

Additional analyses. We conducted addi-
tional analyses to confirm the validity and
specificity of our results. Although we per-
formed fMRI preprocessing procedures to re-
duce the impact of head motion on FC, head
motion may influence FC even after standard
preprocessing (Power et al., 2012; Van Dijk et
al., 2012). We therefore calculated mean head
motion (defined as mean absolute displace-
ment of each volume compared with the pre-

viously acquired volume) within each subject and tested (1) whether
controls and patients differed in terms of mean head motion (indepen-
dent samples t test), (2) whether group differences identified in
mPFC-PCC/precuneus (PCu) FC were influenced by mean head mo-
tion (ANCOVA), and (3) whether the relationship between mPFC-
PCC/PCu FC and pain rumination in the TMD group was influenced
by mean head motion (partial correlation).

Additionally, we examined whether our results were specific to FC of
the mPFC with the DMN, or indicative of a general association of en-
hanced DMN FC in TMD associated with pain rumination. To do this,
we performed an analysis that used another core node within the DMN as
the seed region, the PCC. We defined the PCC as a 6 mm-diameter sphere
surrounding MNI coordinates (xyz � �8, �50, 28) reported in our
previous study from the contrast of brain activation during attention
away from pain compared with attention toward pain (Kucyi et al.,
2013), as done for the mPFC seed analysis (see Fig. 4). We used the same
procedures as we did for the mPFC analysis to identify any possible group
differences or associations with pain rumination for PCC FC.

Results
Group differences in mPFC FC
In both healthy control and TMD groups, there was statistically
significant FC of the mPFC with the PCC/PCu, retrosplenial cor-
tex (RSC) and medial temporal lobe (Fig. 1B; Table 1). The pa-
tients, but not controls, additionally showed significant FC of
mPFC with the bilateral inferior parietal lobule (IPL) and lateral
temporal cortex (Fig. 1B; Table 1). The group difference contrast
revealed that the TMD patients had significantly enhanced mPFC
FC with the PCC/PCu, RSC and areas within visual cortex com-
pared with the control group (Fig. 1C; Table 1). There were no
regions with significantly greater mPFC FC in controls compared
with patients.

Relationship between pain rumination and mPFC FC
In the TMD group, there were significant positive relation-
ships between pain rumination and mPFC FC with clusters
including peak voxels in the PCC, medial thalamus (medi-
odorsal nucleus), left PCC/PCu, medial thalamus (lateral dor-
sal nucleus), midbrain, anterior thalamus (ventral anterior
nucleus), right PCC/PCu, and RSC, and voxels within the

A B C

Figure 1. mPFC FC in healthy controls versus TMD patients. A, Location of the mPFC seed region in standard MNI152 space. B,
Brain regions exhibiting resting state FC with the mPFC in healthy controls (HC) (n � 17) and TMD patients (n � 17). C, Brain
regions exhibiting enhanced resting state FC with the mPFC in TMD patients compared with healthy controls. All statistical images
are thresholded at whole-brain FWE-corrected Z � 2.3; cluster-based p � 0.05. LTC, Lateral temporal cortex; MTL, medial
temporal lobe; FC, functional connectivity; HC, healthy controls.

Table 1. Peak MNI coordinates for regions with significant mPFC resting state
functional connectivity in TMD patients and healthy controls, and significantly
enhanced mPFC functional connectivity in TMD patients compared with healthy
controls (FWE-corrected at Z > 2.3, cluster-based threshold of p < 0.05)

Region Z-max

Peak voxel (MNI coordinates, mm)

x y z

mPFC functional connectivity
Controls

mPFC 9.0 0 58 �8
R precuneus 3.66 8 �64 36
R parahippocampal gyrus 4.5 30 �10 �34
R middle frontal gyrus 3.38 26 32 34
L parahippocampal gyrus 3.17 �34 �10 �34
R superior frontal gyrus 2.82 28 36 54
PCC 2.74 2 �14 30
L superior frontal gyrus 2.74 �4 32 62
R temporal pole 2.69 50 8 �30
Retrosplenial cortex 2.72 �8 �52 8

TMD
mPFC 7.72 �2 58 �4
L inferior parietal lobule 4.76 �38 �78 36
R inferior parietal lobule 5.12 50 �68 26
R lateral temporal cortex 4.69 60 �12 �20
L lateral temporal cortex 4.15 �64 �18 �14
Visual cortex 3.66 4 �90 2
R orbitofrontal cortex 3.98 36 32 �18
L posterior thalamus 3.65 �8 �30 �2
R parahippocampal gyrus 2.86 12 4 �20
R orbitofrontal cortex 2.55 �18 22 �22

TMD � controls
Lingual gyrus 3.74 6 �66 6
Occipital pole 3.17 �2 �88 �2
R PCC/precuneus (ventral) 3.15 22 �62 12
Precuneus (dorsal) 3.11 0 �78 42
R retrosplenial cortex 3.07 8 �50 �8

The image was thresholded at Z � 3 to obtain peak coordinates.
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periventricular gray (PVG)/PAG (Fig. 2A; Table 2). There
were no regions with significant negative associations between
pain rumination and mPFC FC.

A group interaction analysis revealed that largely the same
brain regions exhibited a significantly stronger relationship be-
tween mPFC FC and pain rumination in the TMD compared
with control group. These regions included the PCC/PCu, RSC,
medial thalamus and areas within the midbrain (Fig. 2B). There
were no regions with a significantly stronger relationship be-
tween mPFC and pain rumination in controls compared with
patients.

Enhanced mPFC FC related to pain rumination in
TMD patients
To determine whether any brain regions exhibited both en-
hanced mPFC FC and significant correlation with pain rumina-
tion in TMD, we overlaid the significant z maps from the two
analyses on one another (Fig. 3). A cluster of 108 voxels in the
PCC/PCu was found to have overlap between the two z-maps

(Fig. 3). This suggests that individuals who are higher in pain
rumination most strongly drive enhanced mPFC-PCC/PCu FC
in TMD.

Effects of head motion
There was no significant group difference in mean head motion
(p � 0.31; controls: mean � SD � 0.16 � 0.086 mm; patients:
0.13 � 0.070 mm). When correcting for mean head motion,
mPFC FC with the PCC/PCu (108 voxels as described above)
remained enhanced in patients (p � 0.001). Furthermore, the
positive correlation between pain rumination and mPFC FC with
the same PCC/PCu cluster in TMD remained significant when
accounting for mean head motion (r � 0.75, p � 0.001).

PCC as an alternative seed region
When the PCC was used as a seed region, canonical DMN maps
were identified in both healthy control and patient groups (Fig.
4). In both groups, the PCC exhibited FC with the ventromedial/
dorsomedial PFC, lateral temporal cortex, and bilateral IPL. No
group differences were identified in PCC FC with any brain re-
gion, and no significant relationships between pain rumination
and PCC FC with any brain region were found within the TMD
group (whole-brain FWE-corrected Z � 2.3; cluster-based p �
0.05).

Discussion
This study is the first to link DMN abnormalities in chronic pain
with a pain-related cognitive factor. We demonstrate that pa-
tients with chronic pain exhibit abnormal resting state FC of the
mPFC with areas of the DMN that reflects their individual degree
of pain rumination, with individuals high in rumination having
particularly enhanced mPFC-PCC/PCu FC. Additionally, we
found that pain rumination in TMD relates to mPFC FC with the
medial thalamus, an area associated with the affective and emo-
tional aspects of pain (Treede et al., 2000), and with areas of the
descending pain modulatory system (PAG/PVG) in patients. To-
gether, our data suggest that in chronic pain, enhanced mPFC
interactions with the DMN and the descending modulatory sys-
tem play a prominent role in representing pain rumination.

The mPFC is well positioned, anatomically, to mediate DMN
interactions with the descending pain modulatory system. Diffu-
sion MRI studies of humans have revealed structural connectivity
of the mPFC with the PAG (Hadjipavlou et al., 2006; Stein et al.,

A

B

Figure 2. A, Relationship between resting state mPFC FC and pain rumination. A, Brain
regions exhibiting a significant positive relationship between pain rumination and mPFC FC in
TMD patients (n � 17; FWE-corrected Z � 2.3; cluster-based p � 0.05). Correlation plots for
mPFC FC with the mThal and PAG/PVG show pain rumination versus contrast of parameter
estimate values extracted from the MNI coordinates listed in Table 2. B, Results of group inter-
action analysis showing regions with stronger relationship between mPFC FC and pain rumina-
tion in patients compared with control subjects, largely similar to regions shown in A (FWE-
corrected Z � 2.3; cluster-based p � 0.05). Correlation plot shows pain rumination versus
contrast of parameter estimate values extracted from PCC/PCu peak coordinates for patients
(red, circles) and controls (blue, diamonds). The interaction of pain rumination with group is
significant in the regions shown ( p � 0.0068 in peak voxel on the map). mThal, Medial
thalamus.

Table 2. Peak MNI coordinates for regions showing a significant positive
correlation between mPFC functional connectivity and pain rumination in TMD
patients (FWE-corrected at Z > 2.3, cluster-based threshold of p < 0.05)

Region Z-max

Peak voxel
(MNI coordinates, mm)

r px y z

Positive correlation between
mPFC FC and pain
rumination in TMD

PCC 3.23 2 �36 10 0.70 0.002
R medial thalamus 3.39 4 �16 8 0.75 0.0006
L PCC/precuneus 3.54 �6 �52 18 0.77 0.0003
R medial thalamus 3.49 10 �24 8 0.71 0.001
Midbrain 3.6 2 �30 �2 0.76 0.0004
L anterior thalamus 3.7 �2 �6 0 0.75 0.0005
R PCC/precuneus 3.04 4 �50 18 0.70 0.002
R retrosplenial cortex 3.13 6 �52 8 0.70 0.002
PVG/PAG 2.55 2 �30 �6 0.61 0.009

The image was thresholded at Z � 3 to obtain peak coordinates (with exception of PVG/PAG where peak voxel at
level of z ��6 is shown). Pearson’s correlation coefficient values were extracted from voxels at listed coordinates.
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2012; Kucyi et al., 2013) and PCC (Greicius et al., 2009). We
recently showed that DMN activation and PAG-DMN FC in-
crease during spontaneous attentional fluctuations away from
pain (Kucyi et al., 2013). Furthermore, we found associations of
mPFC-PAG structural and resting FC with individual differences
in the tendency to attend to pain (Kucyi et al., 2013). In chronic
pain, rumination in daily life likely affects interactions between
similar brain regions and is represented in resting state FC as
identified here.

Structural abnormalities of the mPFC have been identified in
multiple chronic pain populations (May, 2011) including TMD
(Moayedi et al., 2011). Abnormal task-related DMN deactivation
has been found in chronic back pain (Baliki et al., 2008) and TMD
(Weissman-Fogel et al., 2011). Additionally, abnormalities in
resting state FC of the DMN have been found in fibromyalgia
(Napadow et al., 2010), chronic back pain (Baliki et al., 2011;
Loggia et al., 2013), migraine (Xue et al., 2012), and complex
regional pain syndrome (Bolwerk et al., 2013). The reported
brain regions exhibiting changes in DMN FC are varied across

studies, possibly due to differences among chronic pain condi-
tions. In some cases, DMN FC with pain-related brain regions
(e.g., insula) has been shown to correlate with clinical pain inten-
sity (Napadow et al., 2010; Loggia et al., 2013). Longitudinal stud-
ies have revealed that FC of the mPFC with limbic regions during
subacute back pain predicts the development of chronic pain
(Baliki et al., 2012) and that improvements in clinical pain in
fibromyalgia are associated with changes in DMN-insula FC (Na-
padow et al., 2012). Our study builds on this growing literature of
mPFC/DMN abnormalities in chronic pain by showing for the
first time aberrant resting state DMN FC in TMD and an associ-
ation between resting state DMN FC and pain rumination.

Interestingly, our finding of enhanced mPFC-DMN FC in
patients with chronic pain is in line with results from an arterial
spin-labeling (ASL) study in chronic low back pain patients (Log-
gia et al., 2013). However, in that study, an independent compo-
nents analysis coupled with dual regression revealed a negative
correlation between mPFC-DMN FC and clinical pain intensity.
Loggia et al. (2013) suggested that enhanced FC of this circuitry
could be a compensatory mechanism wherein FC may be en-
hanced in patients to lower their pain levels. Here, our BOLD
fMRI and seed-based connectivity analysis showed a positive cor-
relation between mPFC-DMN FC and pain rumination, and no-
tably pain rumination was not related to clinical pain intensity.
Furthermore, we correlated average pain intensity in TMD pa-
tients to mPFC FC with the 108-voxel PCC/PCu cluster shown in
Figure 3 and found no significant relationship (r � �0.23; p �
0.37). Therefore, although enhanced mPFC-DMN FC may be
generalized to chronic pain arising from different etiologies, the
relationship of FC with clinical pain intensity may be dependent
upon specific type of pain, modality of acquired data (ASL vs
BOLD), and/or analysis approach.

In addition to abnormalities in mPFC FC with the DMN, we
found enhanced mPFC FC with visual areas within occipital cor-
tex in TMD patients relative to healthy controls. We are not aware
of any other studies showing abnormal FC of the DMN with

Figure 3. Top, Overlay of regions exhibiting significantly enhanced mPFC FC in TMD patients
compared with healthy controls (green) and regions exhibiting a significant positive relation-
ship between pain rumination and mPFC FC in TMD patients (blue). A cluster of 108 voxels in the
PCC/PCu displayed overlap between the two statistical images. Middle, Mean contrast of pa-
rameter estimate values within the 108-voxel overlapping PCC/PCu cluster for mPFC FC plotted
for individuals in healthy control and patient groups. Bottom, Pain rumination scores within the
TMD group plotted against mean contrast of parameter estimate values within the 108-voxel
overlapping PCC/PCu cluster for mPFC FC.

A B

Figure 4. PCC FC in healthy controls and TMD patients. A, Location of the PCC seed region in
standard MNI152 space. B, Brain regions exhibiting resting state FC with the PCC in healthy
controls (n � 17) and TMD patients (n � 17). All statistical images are thresholded at whole-
brain FWE-corrected Z � 2.3; cluster-based p � 0.05. IPL, Inferior parietal lobule; LTC, lateral
temporal cortex.
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visual regions in chronic pain. However, there is some evidence
for aberrant resting state FC of visual regions with areas involved
in pain affect in patients with chronic migraine (Schwedt et al.,
2013). As we found no significant correlations between pain ru-
mination and mPFC FC with visual areas, the behavioral signifi-
cance of the enhanced FC is a topic of future endeavor.

Beyond studies of chronic pain, resting state DMN FC has
been shown to be disrupted in psychiatric populations (Whitfield-
Gabrieli and Ford, 2012). For example, in major depressive disorder,
enhanced mPFC-DMN FC has been associated with rumination
about negative events (Zhu et al., 2012), similar to the association we
found here with pain rumination. This raises the possibility of com-
mon effects on the DMN due to repetitive and distressing thoughts
and feelings. One possibility is that rumination sustains the commu-
nication between the mPFC and DMN. This can be thought of as a
system that is “stuck in a rut” with little flexibility for interactions
with other networks, leading to enhanced overall mPFC-DMN FC.
Future studies could identify changes in short time-scale network
dynamics related to rumination with newer approaches such as
those available with longer fMRI scan durations (Hutchison et al.,
2013) or with higher temporal resolution such as that offered by
magnetoencephalography.

A link between pain rumination and mPFC connectivity with
the PVG/PAG may be unique to people with chronic pain, pos-
sibly reflecting individual differences in pain modulation. Nota-
bly, although a role of the PAG in descending pain inhibition is
well established (Millan, 2002), there is also evidence from ani-
mal studies for pronociceptive effects of the PAG under certain
contexts such as stress (Fields, 2004; Lovick, 2008). As we found
positive correlations of mPFC FC with pain rumination for both
the mediodorsal thalamus (a likely pronociceptive region) and
PAG, it is plausible that the mPFC FC with the PAG reflects a
pronociceptive pathway coupled with the thalamus. However, it
remains unknown how ongoing PAG activity in human chronic
pain populations represents antinociceptive versus pronocicep-
tive functions. Human imaging studies of acute pain in healthy
individuals largely focus on an antinociceptive function of the
PAG (Tracey and Mantyh, 2007), but activation of the PAG dur-
ing pain anticipation may promote hyperalgesia (Fairhurst et al.,
2007). To explore the functional significance of mPFC-PAG FC
and its link with pain rumination in more detail, future studies
could employ continuous online ratings of pain and percept-
related fMRI (Davis et al., 2002; Kwan et al., 2005) in patients
with chronic pain.

Given that the mediodorsal thalamus plays a role in the affec-
tive dimension of pain (Treede et al., 2000), the link between pain
rumination and the mPFC-mediodorsal thalamus FC could
reflect persistent attempts to regulate pain. Altered mPFC-
mediodorsal thalamus FC has been shown to be related to cogni-
tive impairments in rats with inflammatory pain (Cardoso-Cruz
et al., 2013). Pain rumination may thus be involved with such
cognitive deficits and their association with affect, leading to en-
hanced mPFC-mediodorsal thalamus FC in chronic pain as iden-
tified here. It is notable that the healthy controls did not show a
significant correlation between pain rumination and mPFC-thal-
amus/PAG FC. This suggests that the degree to which chronic
pain states alter normal function of these circuits depends on how
much a given patient ruminates.
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