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Circuit-Wide Structural and Functional Measures Predict
Ventromedial Prefrontal Cortex Fear Generalization:
Implications for Generalized Anxiety Disorder
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The ventromedial prefrontal cortex (vmPFC) plays a critical role in a number of evaluative processes, including risk assessment. Impaired
discrimination between threat and safety is considered a hallmark of clinical anxiety. Here, we investigated the circuit-wide structural
and functional mechanisms underlying vmPFC threat-safety assessment in humans. We tested patients with generalized anxiety disor-
der (GAD; n = 32, female) and healthy controls (n = 25, age-matched female) on a task that assessed the generalization of conditioned
threat during fMRI scanning. The task consisted of seven rectangles of graded widths presented on a screen; only the midsize one was
paired with mild electric shock [conditioned stimulus (CS)], while the others, safety cues, systematically varied in width by *20, 40, and
60% [generalization stimuli (GS)] compared with the CS. We derived an index reflecting vmPFC functioning from the BOLD reactivity on
acontinuum of threat (CS) to safety (GS least similar to CS); patients with GAD showed less discrimination between threat and safety cues,
compared with healthy controls (Greenberg et al., 2013b). Using structural, functional (i.e., resting-state), and diffusion MRI, we mea-
sured vmPFC thickness, vmPFC functional connectivity, and vmPFC structural connectivity within the corticolimbic systems. The results
demonstrate that all three factors predict individual variability of vmPFC threat assessment in an independent fashion. Moreover,
these neural features are also linked to GAD, most likely via an vimPFC fear generalization. Our results strongly suggest that vmPFC
threat processing is closely associated with broader corticolimbic circuit anomalies, which may synergistically contribute to

clinical anxiety.
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Introduction

Anxiety disorders are the most widespread class of psychiatric
disorders, with a lifetime prevalence of 28.8% (Kessler et al.,
2005). Previous research has linked various fear-learning pro-
cesses to anxiety, including fear generalization (Kheirbek et al.,
2012; Lissek, 2012) and impaired regulation of conditioned fear,
extinction learning, and learning recall (Milad and Quirk, 2012).
The ventromedial prefrontal cortex (vmPFC) is frequently impli-
cated in impaired fear learning in anxiety disorder (Milad and
Rauch, 2007). Indeed, individuals with clinical anxiety show a less
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discriminate vmPFC response to a continuum of threat and
safety cues (Greenberg et al., 2013b).

The vinPFC integrates cognitive and affective processes, via an
extensive convergence of corticolimbic afferents, in computing
affective value and mediating adaptive behavior (Damasio, 1996;
Roy et al., 2012). During threat processing, in particular, the
vmPFC interacts with the corticolimbic system to mediate a
number of coordinated responses, including the prefrontal atten-
tional network (Bishop et al., 2004; Hare et al., 2009), the hip-
pocampus/parahippocampal gyrus (Kalisch et al., 2006; Milad et
al., 2007; Sierra-Mercado etal., 2011), the thalamus for fear learn-
ing (Mitchell and Gaffan, 2008; Cross et al., 2012; Parnaudeau et
al., 2013), and the amygdala for regulating the fear response
(Phelps et al., 2004; Sierra-Mercado et al., 2011). VmPFC func-
tion thus appears to depend upon the dynamics of a larger circuit.

Anatomical studies provide further support for the integrative
role of the vmPFC (Price, 2007; Lehman et al., 2011). VmPFC
morphometric variability, measured via thickness, appears to
contribute to vmPFC function. Previous research reports that
individuals with thicker vmPFCs show greater fear extinction
memory as per physiological responses (Milad et al., 2005; Hart-
ley et al., 2011); however, to our best knowledge, a direct link
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variability has yet to be shown.

Based on this literature, we hypothe-
sized that an individual’s efficiency at
vmPFC threat processing is explained by
the vmPFC gray matter structure and the
vmPFC connectivity pattern with the cor-
ticolimbic system. To that end, we tested
patients with generalized anxiety disorder
(GAD) and healthy controls on a task that
assesses threat generalization in response
to cues that vary in perceptual similarity
to an electric shock conditioned stimulus
(CS) during fMRI scanning. We derived
an index of threat—safety discrimination
based on the vmPFC BOLD reactivity
during the threat generalization task, of
which GAD patients showed less discrim-
ination between threat and safety cues as
compared to controls (Greenberg et al,,
2013b). Then, using structural MRI,
diffusion-weighted imaging tractography,
and resting-state functional connectivity
mapping, we measured vmPFC thickness
and vmPFC structural and functional connectivity with corticolimbic
systems. We found, first, that individual differences of vmPFC
functioning during fear generation task are associated with the
circuit-wide neural features and, second, that these neural factors
are associated with clinical anxiety, an effect most likely to be
mediated by vimPFC fear generalization. Altogether, our results
support a brain connectivity-based multivariate etiological
model of pathophysiology of anxiety.

60% -40% -20% CS

Figure 1.

Materials and Methods

Participants. We recruited 57 participants (all female; age-matched;
mean age, 22.3 = 4.5 years). This study was approved by the Stony Brook
University Institutional Review Board; all subjects provided written in-
formed consent. To reflect the higher prevalence of anxiety disorders in
females and to minimize sample heterogeneity, we included only females
in the study. Psychiatric diagnoses were based on the Diagnostic and
Statistical Manual of Mental Disorders, Fourth Edition (DSM-1V),
through both an informal clinical interview and structured clinical inter-
view for DSM-IV Axis I disorders. This procedure confirmed the diag-
noses of GAD in the patient group (n = 32) and absence of Axis I
diagnoses in the control group (n = 25). Of the 32 patients, 17 had
comorbid major depressive disorder. All controls were free of any current
or past psychiatric conditions. To avoid medication-related confounds,
patients were free from psychiatric medication for =6 months before the
time of the experiment. All 57 participants underwent four MR scans:
fMRI during the fear generalization task, resting-state MRI, diffusion
MRI (dMRI), and structural MRI.

Procedure. The fear generalization task consisted of a prescan fear-
conditioning phase and a fear generalization fMRI phase (Greenberg et al.,
2013a). Before the acquisition phase, we adjusted amplitude of electric shock
(in milliamperes) to a level that was “uncomfortable but not painful” for
each subject. We then instructed participants that only one of the visual
stimuli (i.e., a midsized red rectangle) would be paired with the shock (500
ms long; delivered 1500 ms after the cue onset). We administered the acqui-
sition phase after the participants were positioned in a scanner. Each cue was
presented for 2 s. CS was presented (five times in total) with electric shocks
(100% delivery chance) and six rectangles with varying widths [generaliza-
tion stimuli (GS)] were presented once each without shock in a pseudoran-
dom order. Trials were separated by jittered fixation screens. After fear
conditioning, we immediately initiated fear generalization.

Task: fear generalization. The experimental paradigm has been previ-
ously published (Greenberg et al., 2013a). The task consisted of 120 trials
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Fear generalization paradigm. 4, Fear generalization paradigm. Red rectangle stimuli with systematic length varia-
tion of =60, =40, =20% from (S were used as GS. Before MRI scanning, Participants underwent a brief conditioning session
consisting of a single 2 s presentation of each of the GSs and five of the (Ss paired with a pretitrated electrical shock in a
pseudorandom order. A 410 s interstimulus interval was used. For the generalization phase, in a pseudorandom order, we
presented each stimulus 30 times with a 50% chance of shock with the (S+. B, Group differences in the vmPFC activity gradient
across stimuli. Patients showed less discriminating vmPFC activity revealed by a decrease in the slope of the linear fit. These data
have been previously reported (Greenberg etal., 2013a) and the slope of the linear fit was used to index vmPFC functioning during
the fear generalization task in this study. Shaded areas represent = one SE.

(15 trials X 8 conditions; 6 GS, CS with shocks, and CS without shocks).
The stimuli were seven red rectangles with identical height (56 pixels)
and varying widths (112—448 pixels). The midsized rectangle (280 pixels)
served as the CS. The six remaining rectangles differed by +20, *40, or
*60% in width from the CS and served as the GS (Fig. 1A). Each stimulus
was presented pseudorandomly for 2 s with a jittered interstimulus
interval ranging from 4 to 10 s, during which a white fixation cross
was shown on a black background. The duration of the task was 15
min and 24 s.

MRI data acquisition. Participants were scanned with a 3T Siemens
Trio scanner at the Stony Brook University Social, Cognitive and Affec-
tive Neuroscience center. We acquired 440 T2*-weighted echo planar
images for the fear-generalization task and 143 T2*-weighted echo planar
images for the resting-state task. These were acquired with an oblique
coronal angle and with the following parameters: TR, 2100 ms; TE, 23
ms; flip angle, 83° matrix, 96 X 96; FOV, 224 X 224 mm; 37 slices; slice
thickness, 3.5 mm. For structural scans, T1-weighted images were ac-
quired with the following parameters: TR, 1900 ms; TE, 2.53 ms; flip
angle, 9% FOV, 176 X 250 X 250 mm; matrix, 176 X 256 X 256; voxel
size, 1 X 0.98 X 0.98 mm. dMRIs and resting-state fMRIs were collected
in separate sessions. We collected dMRIs using the following parameters:
TR, 5500 ms; TE, 93 ms; FOV, 220 X 220 mm; matrix, 120 X 220 X 220;
voxel size, 1.7 X 1.7 X 3.0 mm; EPI factor, 128; 40 slices; slice thickness,
3 mm; bandwidth, 1396 Hz/pixel; Generalized Autocalibrating Partially
Parallel Acquisition acceleration factor, 2; the series included two initial
images acquired without diffusion weighting and with diffusion weight-
ing along 40 noncollinear directions (b = 800 s/m ~*). We collected
resting-state fMRIs, each over 5 min and consisting of 143 volumes, using
the same scanning parameters as those for the fear generalization task.

fMRI analyses: generalization task. We used the same fear generaliza-
tion data here as in our previous report (Greenbergetal., 2013b). We also
used the same measure as Greenberg et al. to index vmPFC function: the
slope of linear fit of the vmPFC BOLD activity gradient across each
stimulus (Fig. 1B). This provides an easily interpretable index on the
generalization effect (Table 1).

We performed standard preprocessing procedures, including motion
correction, normalization, and smoothing with a 6 mm Gaussian kernel
in SPM 8 (www.fil.ion.ucl.ac.uk/spm). For the first-level model, we en-
tered five regressors (i.e., onsets of GS = 60%, GS = 40%, GS * 20%, CS
with shocks, CS without shocks) and six motion parameters. Serial auto-
correlations were modeled using a first-order autoregressive process and
canonical HRF was used for the basis function in model estimation. For
the fear generalization gradient in the vmPFC, we first tested whether the
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Table 1. Logistic regression results reveal linear fit of vmPFC activation gradient best predicting group status

Model summary

Variables in the model

—2Log likelihood X Ax Significance Variable B SE df Significance
Step 1 70.74 741 0.19 60—-40% 14.59 58,526.455 1 1
— — 40-20% 18.92 78,035.273 1 1
20-C5% 14.33 58,526.455 1 1
60%-fixation —0.97 1.052 1 0.36
Linear fit (60 ~ (S) 48.54 195,088.183 1 1
Step 2 71.48 6.68 0.15 60—-40% 0.30 0.519 1 0.57
—0.74 0.39 20-C5% 0.28 0.438 1 0.52
60%-— baseline —0.68 0.963 1 0.48
Linear fit (60 ~ (S) 1.85 1.732 1 0.29
Step 3 71.81 6.35 0.09 20%—-CS% 0.39 0.396 1 0.32
—033 0.56 60%-— baseline —0.30 0.698 1 0.67
Linear fit (60 ~ (S) 2.23 1.634 1 0.17
Step 4 71.99 6.16 0.04 20-C5% 0.47 0.355 1 0.18
—0.18 0.66 Linear fit (60 ~ (S) 2.73 1.181 1 0.02
Step 5 73.88 4.28 0.03 Linear fit (60 ~ CS) 1.87 0.947 1 0.05
—1.88 0.17

B, parameter estimates; linear fit (60~ CS), a linear fit of the all four conditions (GS 60, 40, 20, and CS), which was previously reported (Greenberg et al., 2013a).

vmPFC showed significant activation across the stimuli, by conducting a
region of interest (ROI) analysis for effects of interest at corrected p <
0.05. We then extracted the first eigenvariate within a 6-mm-radius
sphere centered on the local maxima (p < 0.05, FWE corrected) for each
of the “CS (unpaired with shock)—baseline,” “GS 20%-—Dbaseline,” “GS
40%-—Dbaseline,” and “GS 60%-—baseline” contrasts across all participants.
Mean values for each of the four contrasts were plotted as a four-point
gradient. We calculated a slope of a linear fit of these values in each
participant.

fMRI: resting-state intrinsic functional connectivity. We collected
resting-state fMRIs in a separate session. Participants were instructed to
view a white fixation crosshair centrally presented on black background
for 5 min. We conducted resting-state functional connectivity analyses
using the Functional Connectivity Toolbox (http://www.nitrc.org/
projects/conn/). This approach uses a robust correction method for
non-neural noise correlations to minimize spurious negative correla-
tions often resulting from regressing out a global signal (Behzadi et al.,
2007). We applied standard preprocessing procedures in SPM 8, includ-
ing realignment, smoothing with a 6 mm FWHM, and normalization.
Preprocessed images were filtered between 0.01 and 0.1 Hz. After pre-
processing, we conducted vmPFC-seeded connectivity mapping in each
subject (i.e., first-level analysis). We derived the vmPFC mask from the
fear generalization fMRI result: a 6-mm-radius sphere centered on the
group maxima in effects of interest. The vmPFC-seeded correlation maps
(i.e., Fisher-transformed Pearson’s correlation coefficients) were entered
into a second-level random-effect model. To examine the association
between functional coupling and the vimPFC fear generalization gradi-
ent, we entered mean-centered (by each group) vmPFC fear generaliza-
tion gradients (i.e., slopes of linear fit; Fig. 1B) as a covariate, and group
as a between-subject factor.

We investigated correlational effects in several ROIs. Bilateral ROI
masks were derived from the Automated Anatomical Labeling atlas
(http://www.sph.sc.edu/comd/rorden/template.html). Based on the well
established corticolimbic fear circuit, we chose the following subcortical
ROIs: the amygdala (Phelps et al., 2004; Sierra-Mercado et al., 2011),
hippocampus/parahippocampal gyrus (Kalisch et al., 2006; Milad et al.,
2007; Sierra-Mercado et al., 2011), and thalamus (Mitchell and Gaffan,
2008; Cross et al., 2012; Parnaudeau et al., 2013), as well as the PFC (S.
Bishop et al., 2004; Hare et al., 2009). For exploratory purposes, we
examined the pallidal and striatal regions, in which no significant asso-
ciation with the vimPFC fear generalization gradient was found. We di-
vided the PFC mask into two subregions: dorsal [middle frontal gyrus
(MFG)] and ventral [inferior frontal gyrus (IFG)]. In each ROI, we
identified significant clusters at corrected a of 0.05 using Analysis of
Functional NeuroImage software’s 3dClustSim (http://afni.nimh.nih.
gov/pub/dist/doc/program_help/3dClustSim.html). We estimated ROI-
specific minimum cluster sizes with a peak p threshold of 0.005, which

correspond to an « of =0.05, using Monte Carlo simulations with 10,000
iterations. VmPFC-seeded amygdala connectivity failed to reach a signif-
icance of p < 0.05. Given the well established importance of the ymPFC—
amygdala connectivity in fear conditioning (Phelps et al., 2004; Price,
2007; Hartley etal., 2011; Milad and Quirk, 2012; Roy et al., 2012; Sotres-
Bayon et al., 2012), we also conducted an amygdala-seeded connectivity
analysis. We used separate masks for the left and right amygdala, based
on lateralization of amygdalar responses (Baas et al., 2004). For this
analysis, we used the SPM small-volume correction with a 6-mm-radius
sphere search limit centered on the a priori coordinates of the vmPFC
(MNI: *4, 40, —20), which was based on group maxima for the F con-
trast of effects-of-interest during the fear generalization fMRI task. For
scatter plots and post hoc correlation analyses, we extracted coefficients in
each ROI by applying a 6-mm-radius sphere centered on the peak
coordinates.

Structural MRI analyses: cortical thickness. We performed cortical par-
cellation and morphometric analyses using Freesurfer (http://surfer.
nmr.mgh.harvard.edu/). This automated analysis pipeline includes
segmentation, tessellation, and topological correction of the recon-
structed surface. After the surface reconstruction, mean vmPFC
thickness values were measured in each hemisphere according to the
Desikan—Killiany cortical atlas in Freesurfer. We used an atlas for the
medial orbital frontal cortex that includes the a priori coordinate of
vmPFC fear generalization gradient. For a vertex-wise analysis, the indi-
vidual data were smoothed with 10 mm FWHM kernel. We used a gen-
eral linear model to examine the relationship between the thickness and
the vinPFC fear generalization gradient, using the mean-centered (by
group) vimPFC fear generalization gradients as a covariate and group as a
between-subject factor.

dAMRI: probabilistic tractography and Tract-Based Spatial Statistics. We
used dMRI to evaluate the structural connectivity between the vmPFC
and the fear circuit, including the anterior thalamic radiation (ATR), the
cingulum cingulate gyrus (CCG), and the uncinate fasciculus (UF). We
first stripped the skull in the diffusion-weighted images and then per-
formed eddy-current and head-motion correction by registering them to
reference volumes, which are standard dMRI preprocessing steps as im-
plemented in the Functional MRI of the Brain Software Library (FSL)
package (www.fmrib.ox.ac.uk/fsl). Fractional anisotropy (FA) values
were calculated for each voxel by fitting a tensor model in FSL.

We used a global tractography approach, Tracula (Yendiki et al.,
2011), to reconstruct the entirety of our a priori white matter tracts. This
approach has several advantages: (1) it eschews local uncertainty issues
caused by noise or partial volume effects that may deviate tracts in step-
by-step local tractography, (2) it increases sensitivity and robustness of
the results by informing the tractography algorithms of surrounding
anatomy of a given tract, and (3) it minimizes biases caused by the need
for manual intervention, as is the case of local tractography (i.e., drawing
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ROIs or setting up an arbitrary threshold for angle or length). This ap-
proach was particularly suited to the current study in that it provides a
useful single variable (i.e., mean FA) per subject and per tract, which
could be used in a multiple-regression model with other neural indices.
We performed this global tractography procedure for all participants and
visually inspected the reconstructed tracts. For four participants who
showed unsuccessful tracts, we ran the procedure again with new initial-
ization points for the Markov Chain Monte Carlo algorithm for each
tract. We then extracted mean FA from the estimated posterior distribu-
tion map of the tracts of interest.

To complement this tract-wise approach, we conducted voxelwise
analyses on FA maps using Tract-Based Spatial Statistics as a part of the
FSL package. We aligned FA images into a standard MNI space using
nonlinear registration in FSL. A mean FA image was created and thinned
to create an FA skeleton representing centers of all tracts common to the
group. We then projected each aligned FA image onto this skeleton. We
determined the effects of group, the vmPFC fear generalization gradient
and the group X fear generalization gradient interaction on FA maps,
while including age and total white matter volume as regressors of no
interest by means of randomization method (10,000 permutations). We
used a combination of threshold-free cluster enhancement and FWE
method to correct for multiple comparisons (corrected p < 0.05).

Correlation and regression. To evaluate correlations between the fear
generalization gradient and the neural features, we conducted Pearson’s
partial correlation analyses, controlling for effects of group and age. In-
tracranial volume was included as an additional covariate for the vmPFC
thickness analyses. We diagnosed outliers at a threshold of Cook’s dis-
tance of one. Additionally, we performed robust linear regression analy-
ses: models included fear generalization gradient as the dependent
variable; group and each neural feature as the independent variables; and
age, intracranial volume (in case of thickness), and whole-brain FA (in
case of FA) as confounding variables. We examined the impact of clinical
anxiety on FA values using a general linear model where group was
entered as factor, while age and whole-brain FA were entered as covari-
ates. We also included depressive symptom scales for confounding
(Mood and Anxiety Symptom Questionnaire: general distress depression
and anhedonic depression; Clark and Watson, 1991).

For the hierarchical regression model, we extracted the coupling esti-
mates from the resting-state fMRI analyses from all the voxels within a
6-mm-radius sphere centered on group maximum in each ROI. We
examined whether this statistically nonindependent approach (i.e., se-
lecting a peak voxel in each subject based on the group results) caused a
bias (Kriegeskorte et al., 2009). We first reran group correlation analyses
using a leave-one-out (LOO) method and extracted peak voxel coordi-
nates within the anatomical ROIs iteratively. We then calculated Euclid-
ian distances in each ROI between a peak voxel of the LOO models and
the all-subjects model iteratively. As a result, mean distances were <1
voxel apart: for the IFG, 2.0 = 0.37 (SE) mm; the thalamus, 2.5 = 0.07
mm; the parahippocampal gyrus (PHG), 1.0 = 0.05 mm; and the
amygdala, 1.7 * 0.02 mm. Given the 6 mm FWHM for spatial smoothing
applied to the fMRI data, the potential bias due to nonindependent
method may be tolerable.

We tested five models with different block entry order. We observed
that a model with the intrinsic coupling entered first showed reduced
AR? of subsequent blocks [intrinsic functional connectivity-FA-cortical
thickness (IC-FA-CT) model: ICAR?, 0.479 (p < 0.001); FAAR?, 0.071
(p = 0.107); CTAR? 0.064 (p = 0.014); IC-CT-FA model: CTAR?,
0.038 (p = 0.074); FAAR?, 0.097 (p = 0.028)]. A confirmatory regres-
sion analysis without the block terms was performed. This analysis
checked all the possible models and selected a best subset. Neither outli-
ers (Cook’s distances, <0.18) nor multicollinearity (tolerances, >0.70)
was observed.

Structural equation modeling. Using structural equation modeling in
Amos 18 (SPSS), we tested whether the neural correlates of the vmPFC
fear generalization impact clinical anxiety. We included all neural corre-
lates of the vmPFC generalization gradient. We then introduced a latent
variable to estimate collective effects of FA values (of the tracts) on func-
tional connectivity measures (of the regions). Once specifying an initial
model, we modified it referencing modification indices in every iteration
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Table 2. Partial correlations of neural metrics and the vmPFC generalization
gradient

GEN vmPFC

Both groups Controls GAD

R p r p r p
, —046™*  5X10°*  —045% 004  —047%  0.008
Ty, —-0.Mm 0.42 —0.15 049  —0.12 0.53
FAATR,, —0.38** 0.006 —0.48% 0.02 —031 0.10
FAATR,, 0.05 0.71 —0.17 0.41 0.05 0.79
FACCG, — —037**  0.008 —0.4* 005 —034 0.07
FA CCGy, —0.34* 0.01 —0.41% 0.05 —0.30 0.11
FAUF,, —0.39* 0.04 —0.62**  0.002 —0.05 0.78
FAUF,, —0.19 0.18 —0.44 0.03 0.01 0.95
ICAm 047%% X 10* 0.54**  0.009 0.41* 0.03
ICTh —0.50"  2X10°* —024 012 —060%* 2x10*
ICPh 0.43**  0.002 0.31 0.16 0.58**  0.002
ICMFG —0497  4X107*  —042* 0.05 —0.55%* 0.003
ICINS 0.02 091 —0.58**  0.005 0.59**  0.001
ICAm-PH 0.34% 0.02 043*  0.04 0.29 0.14

Control variables included group (for “Both groups”) and age (cortical thickness and FA). Am, amygdala; CT, cortical
thickness; GEN, generalization gradient; IC, intrinsic functional coupling; INS, insula; Ih, left hemisphere; PH, para-
hippocampal gyrus; rh, right hemisphere; Th, thalamus. *p << 0.05; **p << 0.01; ***p << 0.005.

of estimation to improve model fits, using the maximum likelihood
method. This step involved modeling correlations between variables:
ATR and vimPFC-PHG, ATR and CCG, CCG and vmPFC-PHG, vmPFC
thickness and vmPFC-IFG, vimPFC—thalamus and vmPFC-PHG, and
vmPFC-thalamus and vmPFC—-amygdala.

Results

Characterization of the vinPFC fear generalization response
During fear generalization, vmPFC activation showed a signifi-
cant group difference as a function of perceptual similarity of
cues to the CS. Patients with GAD showed a less discriminating
vmPFC response during safety versus threat, compared with
healthy controls (for group difference results, see Greenberg et
al., 2013b). We then identified the contrast for which vmPFC
BOLD estimates best predicted clinical anxiety: we conducted a
logistic binary regression analysis using group as the dependent
variable and 10 potentially meaningful contrasts among the four
conditions. Indeed, we found that the slope of linear fit on all
stimuli was the best predictor [control, —0.33 = 0.06 (SE); GAD,
—0.18 £ 0.06; Table 1]. Therefore, we used the slope of vimPFC
gradient as an index of vmPFC functioning in the following
analyses.

Thickness predicts the vimPFC fear generalization response

We assessed whether mean thickness of the vmPFC was associ-
ated with vimPFC reactivity during fear generalization. We found
that a reduction in left vmPFC thickness correlated with a less
discriminate vmPFC response (r(s;) = —0.46, p = 0.001, two-
tailed; partial correlation controlling for group, age, and intracra-
nial volume; Table 2; Fig. 2). No association was observed in the
right vmPFC (p > 0.42). We confirmed this with a vertex-based,
whole-brain surface approach. Peak correlation between cortical
thickness and the fear generalization gradient occurred in the left
vmPFC (peak vertex: p = 0.0004; MNI: —11, 39, —11; size of
cluster, 45.52 mm? at uncorrected p of 0.001). Of note, the peak
coordinate was proximal (11 mm apart; Euclidean distance) to
the coordinate of the peak vmPFC fear generalization gradient
effect (MNIL: —4, 40, —20; Greenberg et al., 2013b). Given this
strong correlation, we hypothesized that patients with GAD
would show vimPFC thinning. We found no significant effects of
group on vimPFC thickness (p > 0.44; General Linear Modeling
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whole-brain and posterior tracts did not
correlate with the vimPFC generalization
gradient ( p values > 0.16; by comparison,
we observed a correlation at a trend level
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Red, Anfericr Thalamic Radiation;
Blue, Cingulum Cingulate Gyrus;
Yellow, Uncinate Fasciculus

Movie 1. Reconstructed major white matter pathways using diffusion tractography. Three
tracts of interest in the left hemisphere are shown: the ATR (red), the (CG (blue), and the UF
(yellow). The tracts were first spatially normalized to the MNI space, then averaged across all
subjects for the purpose of presentation.

containing age, intracranial volume, and self-reported depressive
symptoms as controlling variables). These results strongly sup-
port a positive association between gray matter structural integ-
rity and vmPFC function in generalizing threat.

White matter microstructure of prefrontal-subcortical
pathway predicts the vimPFC fear generalization response

We then tested whether vmPFC structural connectivity with
other components of the fear circuit would affect the vmPFC fear
generalization gradient. To do this, we reconstructed three major
white matter pathways converging in the mPFC (including the
ventral portion)—the ATR, CCG, and UF—using an anatomi-
cally informed probabilistic tractography approach (Yendiki et
al., 2011; Movie 1). We used the mean FA of each tract for corre-
lation analyses. We found that a lower FA significantly correlated
with a less discriminate vmPFC response in all the three tracts
(left ATR: 75,y = —0.38, p = 0.006, two-tailed, partial correlation
controlling for group and age; left CCG: r(5,) = —0.37, p = 0.008;
left UF: r(5,, = —0.39, p = 0.037; Table 2; Fig. 3A—C). FA of the

vmPFC cortical thickness correlates with the vmPFC fear generalization response. A, Anatomically defined vmPFCROI
for cortical thickness analyses shown in yellow; vmPFCROI for fear generalization gradient shown in red. B, Scatter plot of vmPFC
thickness and fear generalization, i.e., slopes of the linear fit. Participants with a greater vmPFC thickness showed a steeper slope
(thus were more discriminating) of the fear generalization gradient. See Table 2 for correlation coefficients and significances.

26 28 30 32 depressive symptoms as covariates. This

model revealed a trend between clinical
anxiety and decreased FA in the UF [Wald
x> = 3.21, p = 0.073; estimated mean dif-
ference (control minus GAD), 0.26 =
0.014], but not in the ATR or CCG (p
values > 0.2).

To examine the local features of the
effects within the tracts-of-interest and neighboring fear-circuit
components, we then used a voxelwise statistical approach:
Tract-Based Spatial Statistics (Smith et al., 2006). We confirmed
the above negative correlation between the vmPFC fear general-
ization gradient and widespread fiber integrity, at whole-brain
corrected p < 0.05 (Fig. 3D). Significant FA foci were found near
the vmPFC along with the majority of the UF, ATR, and anterior
portions of CCG and bordered key fear-circuit components, in-
cluding the accumbens, amygdala, hippocampus, thalamus, and
midbrain.

Intrinsic functional connectivity of vmPFC: fear circuit
predicts the vimPFC fear generalization response

We next examined whether the vmPFC fear generalization gra-
dient could be predicted by the extent to which the vmPFC was
intrinsically coupled within the fear circuit (i.e., resting-state
functional connectivity). Our regions of interest for the intrinsic
coupling analyses included the thalamus, amygdala, PHG, MFG,
and IFG. We observed significant associations between the
vmPFC fear generalization and vmPFC coupling with the thala-
mus (z = 3.38; peak p = 3 X 10 % cluster size, 77 voxels; MNI:
—6, —14, 10), PHG (z = 3.28; peak p = 0.001; cluster size, 14
voxels; MNI: 18, —2, —26), amygdala (z = 3.30; peak p = 4 X
10 ™% cluster size, 44 voxels; an amygdala-seeded, vmPFC-
targeted analysis), and IFG (z = 3.33; peak p = 4 X 10 % cluster
size, 40 voxels; MNIL: —42, 22, 18) at ROI corrected p < 0.05
(Table 3). The effects were robust after controlling for group and
age. The peak coordinate in the thalamus occurred within the
mediodorsal region showing 65% structural connectivity proba-
bility with the PFC (Thalamic Connectivity Atlas; http://www2.
fmrib.ox.ac.uk/connect/). Post hoc analyses on extracted
coupling estimates revealed that heightened vmPFC-amygdala
connectivity (r,g) = 0.47;p = 6 X 10 ~* two-sided, partial cor-
relation) and vmPFC-PHG coupling (r 4 = 0.43; p = 0.002)
predicted a more indiscriminate vmPFC fear generalization gra-
dient (Fig. 4). On the other hand, reduced vmPFC—thalamus
(r(4gy = —0.50; p = 2 X 10 ~*) and vmPFC-IFG coupling (r 45 =
0.49; p = 4 X 10 ~*) also predicted a less discriminate vmPFC fear
generalization gradient.

Impact of clinical anxiety on prefrontal and limbic connectivity
Based on previous literature implicating impaired (dorsal) pre-
frontal attention and executive system in anxiety (S. Bishop et al.,
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Figure 3. Integrity of the white matter fibers connecting the vmPFC with the fear circuit predicts the vmPFC fear generalization response. A-C, Scatter plots of the mean FA of the UF, the ATR,
and the CCG versus vmPF( fear generalization. A reduced FA in each tract predicted a closer-to-zero vmPFC generalization gradient, hence more indiscriminating. The mean FA of the ATR and the CCG
were correlated, r;s;, = 0.49, p = 0.0001, but other combinations were not (all p values > 0.11). A histogram of each metric with Kolmogorov—Smirnov test results indicates a continuous
distribution. D, Tract-Based Spatial Statistics revealed a similar pattern as the tractography results: lower FA values predicted a closer-to-zero vmPF( fear generalization gradient at corrected p <
0.05 (whole brain). Three reconstructed major tracts are shown in distinct colors. The vmPFCanatomical ROI (in yellow) and fear generalization (black circle) are also shown (middle, sagittal view).
Significant effects were observed along the majority of the UF and the ATR tracts projecting to the ventral and dorsal portions of the fear circuit, respectively (right, axial view). Similarly, the anterior
(CG projecting to the dorsal end of the vmPFC showed significant effects. Note that, along with the major tracts, local neighboring fibers adjacent to some of the fear circuit showed significant
associations: these include the hippocampus, midbrain, thalamus, amygdala, and insula (arrowheads). Tracts that do not directly project to the vicinity of the prefrontal cortex also showed
correlations: the putative, cortical spinal tract (around the midbrain region), and the longitudinal fasciculus.

Table 3. VmPFCintrinsic functional connectivity with fear circuit showing correlations with fear generalization or group differences

Peak MNI (mm)
Analysis and region Corrected p* Cluster extent (voxels) Flort) z p X y z
vmPFC-seeded connectivity
Correlation (with fear generalization gradient)
Thalamus <0.001 77 14.69 3.38 3x 1074 —6 —14 10
IFG (BA45) <0.001 40 14.24 333 410 —42 22 18
PHG <0.05 14 13.85 3.28 0.001 18 -2 —26
Mean difference (control > GAD)
MFG (BA46) <0.001 482 5.01° 4.49 3x10°° —36 Ly} 26
Amygdala (Rh)-seeded connectivity
Correlation (with fear generalization gradient)
vmPFC 0.024° 44 14.00 3.30 4x 1074 6 2 -20
Mean difference (GAD > control)
PHG <0.01 26 3.857 3.59 2x 1074 24 -2 -30
*(luster-extent correction in anatomical ROI (see Materials and Methods for details).
It Value.

SFWE small volume correction (peak value-wise) from a priori coordinates due to inaccuracy of 3dClustSim on a small mask. Rh, right hemisphere.
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would be closely related to vimPFC threat
processing or pathophysiology of anxiety.
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A

— — GAD
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Indeed, amygdala—PHG coupling was sig-
nificantly correlated with the vimPFC fear

generalization gradient, such that a higher
coupling predicted a less discriminate
vmPFC fear generalization gradient (r 4,
= 0.30, p < 0.04, two-tailed partial corre-
lation controlling for group). Further-
more, a voxelwise analysis showed that
GAD patients demonstrate significantly
increased connectivity compared with

vmPFC

Seed Region : vmPFC
fear generalizaion

K
intrinsic coupling (
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n

controls at a corrected p < 0.01 (Table 3,
Fig. 5). Together with the MFG results, these
findings suggest a strong association be-
tween clinical anxiety and prefrontal
(vmPFC-MFG) and limbic (amygdala—
PHG) connectivity.

Multiple neural measures predict the
vmPFC fear generalization gradient and

)

vmPFC
fear generalizaion

generalized anxiety disorder: multiple
linear regression and structural
equation modeling

We performed multiblock linear regression
analyses, taking the vmPFC gradient as the de-
pendent variable and its structural (gray and
white matter) and functional factors as
the independent variables, categorized
into three blocks: vmPFC thickness, fiber
integrity (i.e., FA of each of the three ma-

Amgydala
vmPFC
fear generalizaion

Seed Region :

'
N
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intrinsic coupling (})
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jor tracts), and functional connectivity
(i.e., vmPFC intrinsic coupling with the
amygdala, thalamus, PHG, and IFG re-
spectively). Group and age were initially
entered into the model. We found that all
three blocks independently accounted for
significant portions of the variance in the
vmPFC fear generalization gradient (Ta-
ble 4): volumetrics accounted for 15.6%

o IENElles 20

Figure 4.

generalization gradient.

2004; S. J. Bishop, 2009), we reasoned that abnormal intrinsic
connectivity between the dorsal and ventral PEC may be related
to clinical anxiety as well. Thus, we tested for a relationship
between clinical anxiety and vmPFC—frontal gyrus intrinsic func-
tional coupling. Patients with GAD showed reduced vmPFC—
MFG functional connectivity compared with controls (z = 4.49;
peak p = 3 X 10 % cluster size, 482; MNI, —36, 42, 26; Fig. 5).
Together with literature reporting significant amygdala—PHG
connectivity in both emotion processing (Stein et al., 2007) and
resting state (Robinson et al., 2010), and based on our results that
vmPFC—amygdala and vimPFC-PHG coupling correlate with fear
generalization, we next reasoned that amygdala—PHG coupling

-3
intrinsic coupling (r)

vmPFC resting-state functional connectivity to emotional circuitry predicts the vmPFC fear generalization
response. A, Whole-brain correlation results showing vmPFCintrinsic coupling derived from resting-state fMRI associated
with fear generalization. vmPFC coupling with the dIPFC, thalamus, PHG (vmPFC-seeded connectivity), and amygdala (amygdala-
seeded connectivity) showed significant correlations at corrected p << 0.05. B, Scatter plots of the intrinsic coupling estimates (r)
and the vmPFC fear generalization gradient. The vmPFC fear generalization gradient negatively correlated with vmPFC intrinsic
coupling to the dIPFC or the thalamus, and positively correlated with the coupling to the PHG and the amygdala. FGG, fear

of variance in the fear generalization (p <
0.003), fiber integrity 21.8% (p < 0.002),
and functional coupling 19.1% (p <
0.001). The resultant model had an ad-
justed R? of 0.60 (p < 0.001). Significant
individual predictors included vmPFC
cortical thickness (8 = —0.28, p < 0.01),
FA of ATR (B = —0.41, p < 0.001),
vmPFC-amygdala functional coupling
(B = 0.32, p < 0.01), and vmPFC-IFG
functional coupling (B = —0.24, p <
0.03), followed by a marginally significant vmPFC—thalamus
coupling (8 = —0.18, p < 0.09). We investigated relative predict-
ability among the factors by switching block entry order. In all
four alternative models, each factor significantly predicted a dis-
tinct proportion of the variance in the fear generalization (p val-
ues <0.05). Of note however, the AR? of each factor dropped
when entered last, compared with first (CT, 60.9%; FA, 31.7%;
1C, 48.2%). This indicates association between each factor and
indirect effects. Such an observation is indeed intuitive in that all
factors in part represent properties of a broad vmPFC network
and predict the vmPFC fear generalization gradient. A confirma-
tory regression model without block terms showed similar re-

-1 A
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Figure5.  Altered intrinsic functional coupling in GAD. A, Left, Amygdala—PHG coupling was

significantly different between groups. Right, Post hoc analyses revealed that the GAD group
showed greater coupling than controls (£.5,, = 3.58, p << 0.001, 2-sample t test), while both
showed mean positive values (p << 0.001). B, left, Voxelwise analyses showed significant group
difference in vmPFC-seeded intrinsic coupling with the dIPFCat corrected p << 0.001. Activation
maps were thresholded at uncorrected p << 0.001, cluster size > 20 voxels. Right, Bar graph
from coupling estimates extracted from the peak coordinate (within 6 mm radius) revealed
reduced and negative vmPFC—dIPFC coupling in GAD. Error bars are = 1 SE. MFG, Middle frontal
gyrus; PHG, parahippocampal gyrus.

sults: vmPFC thickness, FA of ATR, vmPFC-amygdala, and
vmPFC-IFG each significantly accounted for a portion of the
total variance in the vmPFC fear generalization (53.9%; ps
<0.01).

We then used structural equation modeling to investigate
whether each of these correlates of the vmPFC fear generalization
gradient would be associated with clinical anxiety. Two latent
variables were hypothesized to estimate the collective impacts of
axonal integrity and functional coupling, respectively (See Mate-
rials and Methods for details of model specification). The effects
of CCG fiber integrity and vmPFC-PHG coupling were not sig-
nificant. The model showed that the direct effects of structural
and functional neural substrates onto the latent variables, the
vmPFC fear generalization gradient, were significant. More im-
portantly, the indirect effects of the variables onto clinical anxi-
ety, via the vmPFC fear generalization gradient, were also
significant (Fig. 6). Together with the multiple regression model,
these results suggest that the structural and functional neural
features contribute to GAD via disruption of vmPFC threat
processing.

Discussion

In the present study, we demonstrate (1) that vmPFC threat pro-
cessing correlates with variability of gray matter structure and
vmPFC connectivity with distributed systems, (2) that this rela-
tionship is independent across the neural factors, and (3) that
variability in factors may contribute to clinical anxiety by affect-
ing vmPFC function. These results further demonstrate that dys-

Cha et al. o Circuit-Wide Factors of vmPFC Fear Generalization

functional vmPFC recruitment in negative affect processing, a
well known pathogenic marker of clinical anxiety (Milad and
Rauch, 2007; Greenberg et al., 2013b), is correlated with circuit-
wide abnormalities in a parallel manner.

Our results indicate that individual variability in the
vmPFC fear generalization gradient is independently ex-
plained by the vmPFC thickness, fiber integrity of the white
matter tracts converging on it, and intrinsic functional cou-
pling of the corticolimbic fear circuit. These results endorse
the notion of the vmPFC’s integral role in the corticolimbic
system (Roy et al., 2012) and further suggest that impover-
ished vmPFC recruitment in clinical anxiety, as previously
documented by our group (Greenberg et al., 2013b) and oth-
ers (Milad and Rauch, 2007; Myers-Schulz and Koenigs,
2012), is closely related to parallel system-wide abnormalities
between cortical or subcortical nodes in the fear circuit.

We show that individuals with thicker vmPFC display a more
discriminate vmPFC reactivity during the fear generalization
task, thus indicating a direct structure and function relationship.
This result is in line with previous research reporting that vmPFC
thickness positively correlates with fear extinction, as indexed by
skin conductance responses to CS (Milad et al., 2005). It should
be noted that patients with GAD did not show signs of vmPFC
thinning, which could be due to relatively young patient samples
(mean age of 22.3 = 4.5 years). Future research may determine
the impact of prolonged illness on vmPFC thickness.

Our tractography data show that the fiber integrity of all three
major pathways that converge upon the PFC correlates with
vmPFC fear generalization. Not only do our Tract-Based Spatial
Statistics results support this, they also demonstrate that fibers
proximal to the hippocampus, the amygdala, the thalamus, and
even the midbrain, play an important role in contributing to
vmPFC function. The pervasive correlation effect throughout the
corticolimbic system in the Tract-Based Spatial Statistics analysis
is striking, given the conservative whole-brain corrected p com-
bined with a nonparametric permutation method. Thus, these
results provide strong support for the role of the vmPFC as a hub
of diverse brain regions that collectively contribute to the vimPFC
response to affective stimuli. This notion is also relevant to other
domains of vmPFC function, such as cognition, valuation, and
memory (Price, 2007; Roy et al., 2012).

Here, we found a trend-level relationship between lower FA in
the UF and GAD. This is consistent with previous studies show-
ing attenuation of UF fiber integrity in patients with GAD
(Hettema et al., 2012; Tromp et al., 2012), in patients with gen-
eralized social anxiety disorder (Phan et al., 2009), and in non-
clinical trait-anxious individuals (Kim and Whalen, 2009).
However, it should be noted that the directionality of the rela-
tionship between UF fiber integrity and anxiety has produced
mixed results (Ayling et al., 2012; Montag et al., 2012), and cer-
tain anxiety-related behaviors, such as attentional bias to threat,
are associated with heightened UF integrity (Carlson et al.,
2013a,b). Nevertheless, it should be noted that, in the present
study, patients with GAD still showed overgeneralizing reactivity
to threat versus safety, even without showing an apparent FA
reduction. This indicates that FA reduction in the UF tract may
not be essential for impoverished vmPFC threat processing and
that there may exist parallel pathways for maladaptive vmPFC
fear processing.

It is important to note that the directions of correlations be-
tween vmPFC coupling and its fear generalization gradient are
distinct across different regions. Decreased vmPFC coupling with
the mediodorsal thalamus and the IFG correlates with a less dis-
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Table 4. Block-wise multiple regression model with vmPFC generalization gradient as the dependent variable and the three categories of neural metrics as the

independent variables
Coefficients Model summary
Step Block Predictors B Significance R? Adjusted R* AR*(p)
0 (Initial, fixed terms) 0.113 0.075 0.113 (0.060)
Group 0.283¢ 0.045°
Age 0.176° 0.207°
1 Cortical thickness 0.269 0.221 0.156 (0.003)
a —0.412° 0.003°
2 Fractional anisotropy 0.269 0.415 0.218 (0.002)
a —0.417 0.001
FAura —0.310° 0.020°
FAcce —-0.111° 0.376°
FAye —0.234° 0.045°
3 Intrinsic (functional) coupling 0.678 0.596 0.191(0.001)
a —0.277 0.010
FAurs —0412 0.001
FAcce 0.003 0.976
FAye —0.069 0.500
IC,,, 0317° 0.011°
G, —0.176° 0.091°
ICoe —0.074° 0.520°
1Gre —0.242° 0.027°
“Newly entered predictors.

Am, amygdala; CT, cortical thickness; IC, intrinsic functional coupling; Th, thalamus.

—> direct effect

——3 indirect effect onto GAD

etal., 2011). Impoverished functioning in
these regions has also been shown to con-
tribute to the development of anxiety
(Bishop et al., 2004; Bishop, 2009). To-
gether with prior literature, our results
suggest that inefficient prefrontal-vmPFC

interaction is an important contributor to
maladaptive vmPFC threat processing
and, consequently, to the pathophysiol-
ogy of anxiety.

In contrast, we found the opposite re-
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Figure 6.

criminate vimPFC gradient. Indeed, the mediodorsal thalamus—
vmPFC connectivity has been implicated in associative learning
in animal studies (Mitchell and Gaffan, 2008; Cross et al., 2012;
Parnaudeau et al., 2013). Furthermore, it has been suggested that
the mediodorsal thalamus plays a critical role in the modulation
of fear extinction (Lee et al., 2012). Our functional connectivity
results cannot resolve directionality; nevertheless, they provide
support for these previous findings in animals. Similarly, de-
creased vimPFC-IFG coupling also correlates with indiscriminat-
ing vmPFC fear generalization. Finally, clinically anxious
individuals displayed decreased vmPFC-MFG coupling. These
results are consistent with previous reports in which vmPFC in-
teraction with other prefrontal regions (the MFG and the IFG)
has been implicated in emotion regulation (Delgado et al., 2008)
and value-based decision making (Hare et al., 2009; Baumgartner

A structural model shows that individual differences of the circuit-wide neural features are associated with clinical
anxiety; an indirect effect appears to be mediated, in part, through vmPFC fear generalization. Indirect effects are depicted as
dotted gray lines. The model included the same variables as the multiple regression model. Correlations between some of the
variables were modeled, but for brevity, are not shown (see Materials and Methods). This model showed a reasonable fit: d.f., 29;
X /df, 1.05; comparative fit index, 0.98; root mean square error of approximation, 0.03 (cutoff criteria: comparative fit index,
>(0.95; root mean square error of approximation <<0.06; Hu and Bentler, 1999). Significance of effects was determined by a
bootstrapping sampling with bias-corrected confidence intervals of 90%. *p << 0.05; ***p < 0.001.

lationship with vmPFC-limbic system
coupling: individuals with greater in-
trinsic coupling displayed less discrimi-
nate vimPFC fear generalization gradients.
Our results also show that heightened
coupling of the amygdala—PHG is related
to clinical anxiety. Thus, maintaining bal-
anced connectivity of the vmPFC-limbic
network appears to be critical to proper
vmPFC functioning. Our observations
from structural equation modeling—that
a greater vimPFC—-amygdala intrinsic cou-
pling is associated with clinical anxiety via
mediation of vmPFC fear generalization—seem to contradict a
previous report that found that patients with social anxiety dis-
order exhibit reduced vmPFC—amygdala resting-state functional
coupling (Hahn et al., 2011). Nevertheless, our results raise the
question of whether dysregulation in vmPFC—amygdala pathway
in anxiety (or in mood disorders more generally) can be solely
characterized as a decrease in resting-state functional connectiv-
ity. In line with this, increased vimPFC—amygdala intrinsic cou-
pling has been linked to the short variant of serotonin transporter
(5-HTT; Heinz et al., 2005), a well known genetic risk factor of
anxiety disorder (Schinka et al., 2004; Sen et al., 2004). Alto-
gether, our results suggest that abnormal vmPFC-limbic connec-
tions may contribute to vmPFC fear generalization in clinical
anxiety.
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Our block-wise regression model indicates that vmPFC thick-
ness, fiber integrity, and functional connectivity independently
account for significant variability in vimPFC reactivity during fear
generalization. This supports the hypothesis that the altered
vmPFC fear response in clinically anxious individuals is associ-
ated with parallel neural abnormalities. Clinical anxiety is a het-
erogeneous construct associated with distinct symptoms or
pathologies that may or may not be present in any given individ-
ual with anxiety. Complicating issues further, clinical anxiety
could result from multiple factors, such as prolonged or acute
aversive experiences and/or potential genetic risk factors. Our
structural equation modeling supports the notion that clinical
anxiety may have multiple parallel pathophysiologies in distrib-
uted brain areas, which together have a significant impact on
vmPFC functioning. This is in accord with recent reports that
distinct neural circuits are responsible for different aspects of
anxious states in rodent models (Jennings etal., 2013; S. Y. Kim et
al., 2013). Such an accumulative contribution of multiple factors
to pathophysiology is similar to that of autism (O’Roak et al.,
2011) and cardiac disorders (Spooner, 2009). Our findings pro-
vide functional and structural support for a multihit model for
clinical anxiety.
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