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In the domain of working memory (WM), a sigmoid-shaped relationship between WM load and brain activation patterns has been
demonstrated in younger adults. It has been suggested that age-related alterations of this pattern are associated with changes in neural
efficiency and capacity. At the same time, WM training studies have shown that some older adults are able to increase their WM
performance through training. In this study, functional magnetic resonance imaging during an n-back WM task at different WM load
levels was applied to compare blood oxygen level-dependent (BOLD) responses between younger and older participants and to predict
gains in WM performance after a subsequent 12-session WM training procedure in older adults. We show that increased neural efficiency
and capacity, as reflected by more “youth-like” brain response patterns in regions of interest of the frontoparietal WM network, were
associated with better behavioral training outcome beyond the effects of age, sex, education, gray matter volume, and baseline WM
performance. Furthermore, at low difficulty levels, decreases in BOLD response were found after WM training. Results indicate that both
neural efficiency (i.e., decreased activation at comparable performance levels) and capacity (i.e., increasing activation with increasing
WM load) of a WM-related network predict plasticity of the WM system, whereas WM training may specifically increase neural efficiency
in older adults.
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Introduction
Aging is related to changes in brain structure and functioning
(Raz et al., 2005; Greenwood, 2007; Reuter-Lorenz and Park,
2010; Grady, 2012), but a number of studies suggest that there
are no clear associations between brain structure and behav-
ioral task performance (Kaup et al., 2011; Salthouse, 2011;
Bolandzadeh et al., 2012). Apparently, the brain has mecha-
nisms to compensate to some extent for age-related neural de-
cline. The “compensation-related utilization of neural circuits
hypothesis” (CRUNCH; Reuter-Lorenz and Cappell, 2008) sug-
gests that older adults recruit more neural resources to achieve a
similar performance as younger adults at low task demands (re-
duced processing efficiency in older adults), whereas older adults

are unable to further exceed their neural activation levels at high
task demands (Todd and Marois, 2005; Schneider-Garces et al.,
2010; reduced capacity in older adults). In the domain of working
memory (WM), a sigmoid or inverted U-shaped relationship be-
tween blood oxygen level-dependent (BOLD) signal and WM
load has been shown (Callicott et al., 1999; Nyberg et al., 2009) in
which older participants reach their maximum BOLD response at
lower WM load levels compared with younger adults (Mattay et
al., 2006; Cappell et al., 2010; Schulze et al., 2011). At the same
time, functional connectivity within WM-related brain areas was
found to increase with WM task demand (Honey et al., 2002;
Axmacher et al., 2008; Nagel et al., 2011; Kim et al., 2012) but
seems to decline with age (Andrews-Hanna et al., 2007; Steffener
et al., 2012).

Alongside age-related decline in WM performance and asso-
ciated brain responses, sizeable individual differences have been
reported in older adults (De Frias et al., 2007; Lövdén et al., 2010),
suggesting that some maintain a relatively well preserved WM
functioning, whereas others show considerable decline (Nyberg
et al., 2012). In a recent WM study (Nagel et al., 2011), a relatively
low BOLD signal in brain areas of the WM network (Owen et al.,
2005) at low levels of WM load (high neural efficiency) together
with a relatively high BOLD signal at high levels of WM load
(high neural capacity) has been associated with higher WM per-
formance in both younger and older participants. Such a more
“youth-like” (cf. Nagel et al., 2011) BOLD response pattern asso-
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ciated with increased WM performance has been proposed as a
biomarker for cognitive reserve (Stern, 2009).

Several studies have reported that training-related increases in
WM performance in older adults (Li et al., 2008; Richmond et al.,
2011; Heinzel et al., 2013) go along with decreases in frontopari-
etal BOLD activation patterns (Erickson et al., 2007; Dahlin et al.,
2008; Brehmer et al., 2011), but, to date, little is known about how
functional brain activation patterns before training predict
training-related behavioral WM plasticity.

In the current study, we investigated whether the WM load-
dependent pattern of BOLD response and functional connectiv-
ity in WM-related regions of interest (ROIs) are associated with
training-related performance gains in WM and other cognitive
domains. Furthermore, we explored training-related changes in
WM load-dependent BOLD activation and connectivity.

Materials and Methods
Subjects and screening instruments
Twenty healthy older and 18 younger adults were included in the study.
One participant of the older group had to be excluded from analyses
because of a technical failure during the functional magnetic resonance
imaging (fMRI) scanning. Therefore, the final sample consisted of 19
older participants (six females) with a mean � SD age of 66.0 � 3.73
years (range, 61–75 years) and 18 younger adults (eight females) with a
mean � SD age of 24.1 � 2.43 years (range, 21–30 years). In a subsample
of 15 older participants, a second fMRI scan was conducted after the
training procedure. All participants were native German speakers, right-
handed, had normal or corrected-to-normal vision, no history of any
neurological or psychiatric diseases, and did not take any psychophar-
macological medication. All participants were suitable for fMRI, and
none of the participants took any antihypertensive medication. The
study was approved by the local Ethics Committee of the Charité–Uni-
versitätsmedizin Berlin according to the Declaration of Helsinki, and
written informed consent was obtained from all participants after the
procedures had been fully explained.

Neuropsychological assessments
For neuropsychological screening and the examination of possible gains
in untrained cognitive tasks from pretest to posttest, neuropsychological
tests were selected for measuring short-term memory (Digit Span Fwd,
Digit Span Bwd), processing speed (Digit Symbol, D2 Test), executive
functions (Verbal Fluency, Stroop Interference), and reasoning (Raven’s
SPM, Figural Relations).

Short-term memory tasks. To obtain an estimate of each participant’s
short-term memory capacity, Digit Span Forward (Digit Span Fwd) and
Backward (Digit Span Bwd) from the Wechsler Adult Intelligence Scale
(WAIS; Wechsler, 1987) was administered. Two trials of each list length
were presented. If participants failed to repeat both trials of a certain list
length, the assessment of this task was terminated. The score used in the
following analyses was determined by the amount of correctly repeated
trials.

Processing speed tasks. The D2 Test (Brickenkamp, 2002) and the Digit
Symbol Substitution subtest (Digit Symbol) of the WAIS (Wechsler,
1987) were included to assess mental processing speed and attention. In
the D2 Test, participants were instructed to cross out the letter “d” but
not the letter “p.” The score used in this study represents the amount of
crossed out d letters within 4 min 40 s. In Digit Symbol, participants were
asked to copy symbols as quickly as possible into empty boxes located
below a random sequence of numbers ranging from 1 to 9 according to a
specific coding key. The score used for analyses was the number of correct
symbols completed within 60 s.

Executive functions tasks. Verbal Fluency requires the ability to gener-
ate words while monitoring previously recalled words and following spe-
cific rules. Verbal Fluency was assessed by a German version of the
Controlled Oral Word Association Test (Benton and Hamsher, 1989).
Participants were asked to generate as many words as possible starting
with the letter “S” within 60 s (not including proper names or names of
places and cities). In the Stroop task (Stroop, 1935), participants were

first instructed to name the color of words (task A), then to name the
meaning of words (task B), and finally to name the color of words while
inhibiting the meaning of the words (a different color, task C). The
Stroop Interference score in this study was calculated using the following
equation (Golden, 1978): Stroop Interference � task C � [(task A � task
B)/(task A � task C)]. The raw values of each task represent the time
required to finish the task.

Abstract reasoning tasks. Abstract reasoning abilities were measured by
Raven’s Standard Progressive Matrices (Raven’s SPM; Raven et al., 1990)
and by the Figural Relations subtest of a German intelligence test (Leis-
tungspruefsystem; Horn, 1983). To solve these tasks, participants were
required to identify patterns of nonverbal symbols: in Raven’s SPM, they
were instructed to find a matching item to complete a pattern, whereas in
the Figural Relations, they had to mark the non-matching item of a
pattern of symbols. Both reasoning tasks were timed, and the scores were
derived from the number of correct items accomplished within 7.5 min
(Raven’s SPM) or 3 min (Figural Relations), respectively.

n-back paradigm during fMRI
A computerized version of the n-back paradigm with numerical stimuli
(Cohen et al., 1997) was used in this study. The n-back task consisted of
two runs. In each run, 16 blocks were presented in four different pseu-
dorandomized orders counterbalanced across subjects. The total dura-
tion of the task was 22 min. The n-back task was presented using
Presentation software (version 14.9; Neurobehavioral Systems). WM
load (0-, 1-, 2-, and 3-back) was varied between blocks. The WM load
condition of each block was indicated by a cue 2 s before the block started.
In each block, 16 randomly created digits from 0 to 9 were presented in
the center of a black screen one at a time for 500 ms, with an interstimulus
interval (ISI) of 500 or 1500 ms ( pseudorandomized across blocks); the
occurrence of five target stimuli was pseudorandomized. Targets were
defined as reoccurrence of a number previously presented one, two, or
three trials before (1-, 2-, or 3-back condition). In the 0-back condition,
the target was defined as the number “0.” The participants were in-
structed to press a button with their right thumb when they recognized a
target. After each block, a white fixation cross was presented in the center
of a black screen for 12 s.

n-back training procedure
Older participants accomplished an adaptive n-back training procedure
over a period of 4 weeks (12 training sessions). They accomplished three
runs of the n-back task in each training session, lasting �45 min. Each
run consisted of 12 blocks. At run 1 in session 1, all participants began the
training with difficulty level 1 (four blocks of each 0-, 1-, and 2-back at an
ISI of 1500 ms). The difficulty level of the task increased across training
runs according to individual performance by introducing higher WM
load levels and by shortening the ISI (Heinzel et al., 2013). Whenever a
participant successfully completed one run with a hit rate of �80%
within each block and with a false alarm rate below 15%, the next diffi-
culty level was introduced in the following run. From level 1 to level 3,
ISIs were gradually decreased from 1500 to 500 ms in steps of 500 ms. At
level 4, the next n-level was introduced (3-back), and 0-back was re-
moved, i.e., participants completed 1-, 2-, and 3-back tasks. In addition,
the ISI was set back to 1500 ms. At levels 5 and 6, ISIs gradually decreased
again to 1000 and 500 ms. At level 7, 4-back was introduced and 1-back
was removed.

Relative training gain
As shown in Equation 1, relative training gain was computed as the
difference of the mean n-back performance at posttest and pretest di-
vided by performance at pretest:

Relative training gain �

Performance posttest � Performance pretest

Performance pretest
� 100. (1)

Performance was defined as hit rate � false alarm rate.
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MR image acquisition
fMRI data were collected at two study centers. Twenty participants (11
females, seven younger) were scanned at Charité Virchow Campus, Ber-
lin, with a 3 T GE Signa Excite (GE Healthcare) and 17 participants (12
females, 11 younger) at Charité Campus Mitte, Berlin, with a 3 T Magnetom
Trio Tim MR system (Siemens). �2 tests indicated no significant differences
in distribution of age groups and sex across scanner sites (all p values �0.10).
In the beginning of each scanning procedure, one T1-weighted 3D pulse
sequence was obtained [repetition time (TR), 7.8 ms; echo time (TE), 3.164
ms; flip angle, 20°; field of view, 256 � 256 mm2; matrix size, 256 � 256;
176 sagittal slices with 1 mm thickness; voxel size, 1 � 1 � 1 mm 3].
Functional data were obtained using a gradient echo echo-planar
imaging pulse sequence (TR, 2000 ms; TE, 35 ms; flip angle, 80°;
matrix size, 64 � 64; voxel size, 3.1 � 3.1 � 3.8 mm). Thirty-one slices
were acquired approximately axial to the bicommissural plane.

MR image processing and analysis
All fMRI analyses were performed with SPM8 (Wellcome Department
of Imaging Neuroscience, London, UK). After correction for head
motion and computation of a mean echo planar image, the T1-
weighted anatomical image was coregistered to the mean echo planar
image and warped into the spatial standard space as defined by the
template of the International Consortium for Brain Mapping
(http://www.loni.usc.edu/ICBM/). Spatial transformations as esti-
mated in the step before were applied to echo planar images. Echo
planar images were resampled into isotropic voxels with an edge
length of 3.3 mm and spatially smoothed with an isotropic Gaussian
kernel of 8 mm full-width half-maximum.

Estimation of BOLD effect sizes in n-back
The WM experiment was analyzed within the framework of the general
linear model (GLM). To this end, at the single-subject level, we created
design matrixes comprising the experimental conditions of 0-, 1-, 2-, and
3-back as separate regressors of interest and all other experimental con-
ditions (cue, button presses, and the six rigid body realignment param-
eters) as regressors of no interest. The GLM was fitted voxelwise into the
filtered time series using the restricted maximum likelihood algorithm as
implemented in SPM8.

Computation of literature-based probabilistic ROIs
ROIs for n-back associated brain areas were created by combining ana-
tomical hypotheses with functional findings as reported in literature for
comparable experimental designs. To this end, spatial coordinates for
bilateral medial PFC [rostral cingulate zone (RCZ); Ridderinkhof et al.,
2004; BA 32/6], left and right lateral premotor cortex (LPMC; BA 6), left
and right dorsolateral prefrontal cortex (DLPFC; BA 9/46), and left and
right intraparietal sulcus (IPS; BA 40) were taken from 23 fMRI publica-
tions using verbal n-back paradigms (all citations available on request).
First, we created anatomical ROIs comprising the frontal gyri, the
frontal cortical midline structures, and the superior parietal cortex as
provided by the Automated Anatomical Labeling brain atlas
(Tzourio-Mazoyer et al., 2002). Second, we created the probabilistic
ROIs within these anatomical constraints in a three-step process
(Schubert et al., 2008).

(1) The probability that a voxel at a given position within an ana-
tomical ROI showed neural activity regarding the corresponding liter-
ature was estimated by calculating a 3D normal (Gaussian) distribution
G(x, y, z) as follows (Turkeltaub et al., 2002):

G	 x, y, z
 �
1

2���Det	C
�
exp�� 1

2
�x � x� y � y� z � z���C�1� x � x�

y � y�
z � z�

�,

(2)

where C is the covariance matrix for all coordinate triples x, y, z from the
underlying literature, and x�, y�, z� are the mean values of the x, y, and z
coordinates, respectively (Nielsen and Hansen, 2002).

(2) The outer limits of the finally used ROI were defined by the outer
limits of the anatomical ROI and a threshold of 2 SDs of the resulting 3D
distribution.

(3) Finally, a binary mask including all voxels spatially within these
boundaries was formed. The ROIs are depicted in Figure 1C. The WM
network is defined as all ROIs combined. Note that the script for gener-
ating the probabilistic ROIs (written in MATLAB by author T.W. and
compatible with SPM8) and the full lists of coordinates used for ROI
generation can be obtained on request.

Statistical analyses of imaging data
For group-level analysis, the individual contrast images (1-back �
0-back, 2-back � 0-back, and 3-back � 0-back) from the subject-level
analyses were entered into a 3 (WM load) � 2 (age group) ANCOVA
model in SPM8. The type of MR system (GE Healthcare vs Siemens) was
used as a dummy covariate to correct for unspecific variance caused by
differences in hardware configuration. Results of the n-back main effect
(1-, 2-, and 3-back � 0-back across both age groups) are shown at p 

0.05 familywise error (FWE) corrected for whole brain and minimum
cluster size � 10 voxels in Figure 1B. Parameter estimates were extracted
for the WM network (all ROIs combined) and each ROI separately and
exported to SPSS for additional analysis. Training-associated changes in
BOLD response from pretest to posttest in the older group were analyzed
by entering individual contrast images (1-back � 0-back, 2-back �
0-back, and 3-back � 0-back) from the subject-level analyses into a 3
(WM load) � 2 (time) ANCOVA model with the dummy covariate “MR
system” in SPM8.

Voxel-based morphometry analysis
A voxel-based morphometry (VBM) analysis using the VBM8 toolbox
implemented in SPM8 (http://dbm.neuro.uni-jena.de/vbm) was con-
ducted with the default parameters to obtain individual gray matter vol-
umes. For group comparisons, a two-sample t test with the covariates sex
and MR system was calculated and gray matter volume was extracted per
participant in the literature-based WM network ROIs to investigate age
differences. Changes in gray matter volume in the older group from
pretest to posttest were analyzed by a paired t test using sex and MR
system as covariates.

Psychophysiological interaction analysis
To investigate age-related WM load-dependent alterations in functional
connectivity, we calculated a psychophysiological interaction (PPI) anal-
ysis with the seed region in the DLPFC (Nagel et al., 2011). We chose the
right hemispheric DLPFC as seed region because previous research has
indicated that WM task-related functional connectivity with this region
seems to be both age (Steffener et al., 2012) and WM load sensitive
(Honey et al., 2002; Deserno et al., 2012). The PPI allows analyzing the
temporal association of the right DLPFC with other areas in the WM
network taking the psychological variable of WM load into account. To
this end, the individual mean first eigenvariate time series was extracted
for the literature-based ROI of the right DLPFC. Four different WM
load-dependent PPI regressors were generated by convolving this right
DLPFC eigenvariate time series with the experimental psychological vari-
able of WM load (0-back, 1-back, 2-back, and 3-back). A new GLM was
set up including the four PPI regressors, the four psychological variables
(corresponding to the n-back regressors, which were used in the standard
GLM as mentioned above), the first eigenvariate time series of the right
DLPFC, and the six rigid body movement parameters. On single-subject
level, differential T-contrast images were calculated for the PPI regressors
of 1-back versus 0-back, 2-back versus 0-back, and 3-back versus 0-back
and taken to group level. For group comparison, these differential
T-contrast images representing the functional coupling between right
DLPFC and other brain areas were entered to a ANOVA with the factors
group (younger and older adults) and WM load (1-back, 2-back, and
3-back) and the covariate of MR system. Finally, parameter estimates
were extracted for the WM network except the right DLPFC and ex-
ported to SPSS for additional analysis. Training-associated changes in
functional connectivity from pretest to posttest in the older group were
analyzed by entering individual contrast images from the subject-level
analyses into a 3 (WM load) � 2 (time) ANCOVA model with the
dummy covariate MR system in SPM8.
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Statistical analyses of relationship between imaging and
behavioral data
Statistical analyses of relationships between fMRI and behavioral data
were performed using SPSS version 18.0 (SPSS). Measures were com-
pared between younger and older adults and between high and low train-
ing gainers within the older group. High (n � 9) and low (n � 10)
training gainers were defined using a median split of the relative training
gain. For the prediction and cross-validation of training gain, we used

canonical discriminant analyses as a function of training gain group
(high vs low training gainers). WM network gray matter volume was
included as an additional covariate in all regression analyses. All statisti-
cal tests that were performed are reported in Results.

Computation of BOLD activation Delta scores
As a measure of the load-dependent BOLD response pattern, we used a
difference score (Delta score; cf. Nagel et al., 2011) that was calculated as

Figure 1. WM performance, load-dependent activations, and functional connectivity in younger and older participants. A, Performance in 1-, 2-, and 3-back in the younger and older
groups. Error bars indicate SEMs. B, Frontoparietal WM network in 19 older and 18 younger adults (T values for 1-, 2-, and 3-back vs 0-back at p 
 0.05 FWE corrected for whole brain).
C, Literature-based probabilistic ROIs of the n-back network. Left, Dorsal view of the ROIs overlaid onto the surface of the sample mean brain. Right, Right lateral view. The frontal lobe
was cut to display the midsagittal ROI. A, anterior; P, posterior; L, left; R right. D, Plot of parameter estimates [arbitrary units (a.u.)] in probabilistic ROIs of the WM network for the
contrasts: 1-back � 0-back, 2-back � 0-back, and 3-back � 0-back in younger and older participants. E, Functional connectivity parameter estimates derived from the PPI analysis from
right DLPFC to all other ROIs of the WM network.
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the difference between the parameter estimates of the 3-back versus
0-back contrast and the parameter estimates of the 1-back versus 0-back
contrast. Delta scores were calculated for the WM network (WM net-
work Delta score) and for each ROI separately.

Results
Age differences
Behavioral n-back performance
A 2 (age group) � 3 (WM load) ANOVA of the n-back perfor-
mance at pretest revealed a significant interaction (F(2,70) � 4.96,
p � 0.010, partial � 2 � 0.124), as well as significant main effects
of WM load (F(2,70) � 205.44, p 
 0.001, partial � 2 � 0.854) and
age group (F(1,35) � 34.99, p 
 0.001, partial � 2 � 0.500).
Follow-up two-sample t tests indicated that younger adults had a
better performance at 2-back (t(35) � 4.66, p 
 0.001) and 3-back
(t(35) � 4.24, p 
 0.001) but only at trend level at 1-back (t(35) �
1.89, p � 0.068; Fig. 1A).

Neuropsychological measures
Means, SDs, and t test results of the performance at pretest in the
neuropsychological measures Digit Span Fwd, Digit Span Bwd,
D2 Test, Digit Symbol, Verbal Fluency, Stroop Interference, Ra-
ven’s SPM, and Figural Relations are shown in Table 1. A multi-
variate ANOVA (MANOVA) indicated that younger adults
performed better in neuropsychological measures compared
with older participants (F(8,28) � 3.98, p � 0.003, partial � 2 �
0.532).

Gray matter volume at pretest
Gray matter volume in the ROI-based WM network (t(35) � 7.62,
p 
 0.001) was larger in younger compared with older adults
(Table 1).

FMRI results at pretest
Whole-brain analyses of 1-, 2-, and 3-back versus 0-back condi-
tions in 37 participants (19 older and 18 younger adults) revealed
the well known frontoparietal network involved in maintaining
and updating information in WM (Owen et al., 2005; Fig. 1B).

A 2 (age group) � 3 (WM load) ANOVA of the parameter
estimates derived from the ROI-based WM network (Fig. 1C)
showed a significant interaction indicating different load-
dependent BOLD response patterns between younger and older

adults (F(2,70) � 9.49, p 
 0.001, partial � 2 � 0.213). Follow-up
paired t tests indicated an increase of BOLD response in younger
participants from 1- to 2-back (t(17) � 3.95, p � 0.001) and from
2- to 3-back (t(17) � 2.46, p � 0.025), which was not found in
older participants (all p values �0.16; Fig. 1D). Additional
follow-up two-sample t tests comparing brain responses in the
WM network between age groups at each WM load level sepa-
rately showed a lower BOLD response at 1-back (t(35) � 2.81, p �
0.008). This effect also held when matching for performance lev-
els in 1-back by excluding the two worst performers in the old
sample (t(33) � 2.78, p � 0.009). There were no differences be-
tween age groups at 2-back (t(35) � 0.42, p � 0.674). Further-
more, we found a higher BOLD response at 3-back (t(35) � 3.53,
p � 0.001) in younger adults compared with older adults. Con-
sequently, we found a significant difference in WM network
Delta score between age groups (t(35) � 4.26, p 
 0.001; Fig. 1D).

PPI analyses at pretest
PPI analyses using the right DLPFC as a seed region revealed
differences in functional connectivity to the other ROIs in the
WM network between younger and older participants (Fig. 1E).
A 2 (age group) � 3(WM load) ANOVA indicated that strength
of connectivity within the WM network differs as a function of
WM load between the age groups (F(2,70) � 6.01, p � 0.004,
partial � 2 � 0.146). Follow-up two-sample t tests showed that, in
younger adults, strength of connectivity is higher at 3-back (t(35)

� 3.37, p � 0.002), whereas there is a trend for an increased
connectivity at 2-back in older compared with younger partici-
pants (t(35) � 1.84, p � 0.075). The difference score between
3- and 1-back connectivity in the WM network (parameter esti-
mates of connectivity in 3-back � 1-back) was higher in younger
compared with older adults (t(35) � 2.15, p � 0.039).

Prediction of training gain
Improvements in WM performance after training
As shown in Figure 2A, the older training group as a whole im-
proved after n-back training. A 2 (time) � 3(WM load) ANOVA
indicated that improvements differed between WM load levels
(F(2,36) � 8.65, p � 0.001, partial � 2 � 0.325). Follow-up paired
t tests showed that n-back performance increased in 1-back

Table 1. Demographic variables, neuropsychological performance, gray matter volume, and functional brain response (Delta scores) in all ROIs

Variable Younger (n � 18) Older (n � 19) Younger versus older t(35) ( p)

Age 24.06 � 2.41 65.95 � 3.73 40.28 (
0.001)
Sex 8 males/10 females 6 males/13 females �2

(37,1) � 0.65 (0.508)
Education 16.36 � 1.86 15.61 � 3.26 0.86 (0.395)
WM network gray matter volume 0.58 � 0.05 0.48 � 0.03 7.62 (
0.001)
WM network Delta score 2.60 � 1.74 0.13 � 1.60 4.26 (
0.001)
RCZ Delta score 2.15 � 1.24 0.28 � 1.93 3.83 (0.001)
l LPMC Delta score 1.76 � 0.99 0.23 � 1.55 4.13 (
0.001)
r LPMC Delta score 2.56 � 1.61 0.24 � 1.54 3.55 (0.001)
l DLPFC Delta score 1.51 � 1.24 0.67 � 2.08 3.08 (0.004)
r DLPFC Delta score 2.04 � 1.55 �0.07 � 1.49 3.51 (0.001)
l IPS Delta score 2.34 � 1.82 �0.61 � 1.81 4.78 (
0.001)
r IPS Delta score 2.13 � 1.23 �0.13 � 1.62 4.35 (
0.001)
Digit Span Fwd 9.39 � 1.50 7.58 � 1.87 3.24 (0.003)
Digit Span Bwd 7.89 � 2.25 6.68 � 1.86 1.78 (0.083)
D2 Test 500.77 � 72.35 394.68 � 79.48 4.24 (
0.001)
Digit Symbol 41.50 � 6.31 32.32 � 6.21 4.46 (
0.001)
Verbal Fluency 17.39 � 3.40 16.58 � 4.74 0.59 (0.556)
Stroop Interference 57.61 � 11.75 69.50 � 17.79 2.38 (0.023)
Raven’s SPM 21.83 � 3.50 16.84 � 4.34 3.84 (
0.001)
Figural Relations 26.33 � 3.66 19.00 � 4.78 5.21 (
0.001)

Descriptive characteristics of the samples and t test in younger and older participants. Delta score, Parameter estimates of (3-back � 0-back) � (1-back � 0-back). l, Left; r, right.
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(t(18) � 3.37, p � 0.003), 2-back (t(18) � 7.47, p 
 0.001), and
3-back (t(18) � 4.86, p 
 0.001) after training. Mean differences
indicate that the strongest improvement was found in 2-back
performance (Fig. 2A). The relative training gain (Eq. 1) in the
training group was 14.68 � 8.48% (mean � SD). The high train-
ing gainers (defined by median split) improved by 21.40 � 6.45%
(mean � SD), whereas the low training gainers improved by

8.66 � 4.62% (mean � SD, t(17) � 4.99, p 
 0.001). At pretest, no
difference in mean performance in n-back was found between
high (mean � SD, 0.72 � 0.06) and low (mean � SD, 0.74 �
0.04, t(17) � 1.11, p � 0.282) training gainers. At posttest, high
training gainers (mean � SD, 0.87 � 0.05) outperformed low
training gainers (mean � SD, 0.81 � 0.05, t(17) � 2.63, p �
0.018).

Figure 2. Training-related performance changes and prediction of training gain in older participants. A, Performance in 1-, 2-, and 3-back before and after n-back training in older participants.
B, Scatter plot of the mean WM network BOLD parameter estimates at 1-back and relationship to relative training gain (R 2 � 0.175). C, Scatter plot of the mean WM network BOLD parameter
estimates at 3-back and relationship to relative training gain (R 2 � 0.359). D, Scatter plot of the mean WM network Delta score and relationship to relative training gain (R 2 � 0.347). E, WM
network BOLD parameter estimates at 1-, 2-, and 3-back for high and low training gainers.
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Correlation analyses
Exploratory analyses showed that relative training gains were sig-
nificantly negatively associated with pretest WM BOLD activity
during 1-back (r � �0.417, p 
 0.001) and significantly posi-
tively associated with pretest WM BOLD network activity during
3-back (r � 0.599, p 
 0.001; Fig. 2B,C). At the same time, WM
BOLD network activity during 1-back was significantly associ-
ated with WM BOLD network activity during 3-back (r �
�0.477, p � 0.039) at pretest.

Regression analyses
The WM network Delta score in older adults at pretest was lin-
early related to relative training gains (Pearson’s correlation co-
efficient, r � 0.589, p � 0.004; Fig. 2D). Older adults with a BOLD
response pattern more similar to the one found in younger par-
ticipants (higher WM network Delta score) had a better training
outcome. Hierarchical regression analyses showed that WM net-
work Delta score at pretest explained significantly more variance
in relative training gains (	 � 0.598, R 2 change � 0.336, F(1,13) �
7.02, p � 0.020) than gray matter volume (	 � 0.026, R 2

change � 0.000, F change (1,14) � 0.01, p � 0.936) and the
covariates age (	 � 0.095), sex (	 � 0.174), and years of educa-
tion (	 � �0.017, R 2 change � 0.042, F change (1,15) � 0.22,
p � 0.882).

In addition, regression analyses, controlling for age, gender,
education, and gray matter volume, showed that beyond the ef-
fects of pretest n-back performance (	 � 0.622, R 2 change �
0.218, F change (1,13) � 3.73, p � 0.076), WM network Delta
score at pretest was associated with training gain (	 � 0.627, R 2

change � 0.369, F change (1,12) � 11.31, p � 0.006).
When including connectivity scores at pretest as an additional

predictor in regression models to behavioral training gain, no
increase in explained variance was detected compared with mod-
els including covariates (age, sex, education) and gray matter
volume (1-back connectivity: R 2 change � 0.029, F change
(1,13) � 0.40, p � 0.539; 2-back connectivity: R 2 change � 0.000,
F change (1,13) � 0.000, p � 0.983; 3-back connectivity: R 2

change � 0.106, F change (1,13) � 1.61, p � 0.226; 3-back �
1-back connectivity score: R 2 change � 0.010, F change (1,13) �
0.14, p � 0.717).

Canonical discriminant analyses
To test accuracy of classification into high and low training gain-
ers that could be achieved by the WM network Delta score at
pretest, canonical discriminant analyses were performed. It was
found that WM network Delta score increased both sensitivity
and specificity of classifying high (sensitivity) and low (specific-
ity) training gainers compared with gray matter volume within
the WM network and covariates age, sex, and education. Sensi-
tivity increased from 56.7 to 89.5, specificity raised from 61.0% to
91.0%. Classification accuracy increased from 58.7% for covari-
ates and gray matter volume to 90.5% for covariates and gray
matter volume plus WM network Delta score. Cross-validation,
using leave-one out analyses with bootstrapping, revealed a clas-
sification accuracy of 79.5%.

Differences in BOLD response between high and low training
gainers at pretest
The 2 (high vs low training gainers) � 3(WM load) ANOVA with
BOLD activation as the dependent variable indicated that high
and low training gainers differ in WM load-dependent BOLD
activation of the WM network (F(2,34) � 4.81, p � 0.042, partial
� 2 � 0.221; Fig. 2E). Consequently, the WM network Delta score

was larger in high compared with low training gainers (t(17) �
2.19, p � 0.042).

Differences in functional connectivity between high and low
training gainers at pretest
When comparing connectivity strength from right DLPFC to the
other regions of the WM network between high and low training
gainers, no differences were found at any WM load level (all p
values �0.29).

Changes in the WM network from pretest to posttest
Changes in gray matter volume
In the subgroup of older participants that received a second fMRI
scan at posttest (n � 15), there was no significant change in WM
network gray matter volume after training (t(14) � 0.83, p �
0.421).

Changes in WM BOLD activity
Within the older participants, a 2 (time) � 3(WM load) ANOVA
of BOLD response in the WM network showed no significant
interaction (F(2,28) � 0.34, p � 0.714, partial � 2 � 0.024) but a
significant main effect of time (F(1,14) � 12.68, p � 0.003, partial
� 2 � 0.475), indicating a general reduction in BOLD response in
the WM network after training. However, follow-up paired t tests
revealed that the time effect was driven mainly by a BOLD de-
crease in 1-back (t(14) � 2.43, p � 0.029), whereas decreases in
2-back (t(14) � 0.99, p � 0.337) and 3-back (t(14) � 1.33, p �
0.206) were not significant (Fig. 3). Hence, the WM network
Delta score did not change significantly after training (t(14) �
0.77, p � 0.456).

Changes in functional connectivity
When comparing functional connectivity strength before and
after training in the older group, a 2 (time) � 3 (WM load)
repeated-measures ANOVA did not reveal any WM load-
dependent differences in connectivity changes in WM network
(F(2,28) � 1.08, p � 0.355, partial � 2 � 0.071). Follow-up paired
t tests for time effects in 1-, 2-, and 3-back separately were non-
significant (all p values �0.30).

Exploratory associations with behavioral measures
Exploratory correlational analyses of associations between
training-related change in WM network BOLD activity and base-

Figure 3. Training-related BOLD response changes in a subset of older participants (n�15).
WM network BOLD parameter estimates at 1-, 2-, and 3-back before and after n-back training.
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line neuropsychological measures (all p values �0.29), n-back
performance levels (all p values �0.14) and baseline BOLD acti-
vation (all p values �0.15) did not reveal any significant results.

Gains in untrained tasks from pretest to posttest
Changes in neuropsychological test performance from pretest to
posttest are reported in Table 2. A repeated-measures MANOVA
with the factor time showed that older adults improved in neu-
ropsychological measures after the training procedure (F(8,11) �
12.42, p 
 0.001, partial � 2 � 0.900). Post hoc paired t tests
showed that Digit Span Fwd (t(18) � 2.97, p � 0.008), D2 Test
(t(18) � 6.15, p � 0.001), Digit Symbol (t(18) � 2.76, p � 0.013),
Stroop Interference (t(18) � 3.28, p � 0.004), and Figural Rela-
tions (t(18) � 4.74, p � 0.001) showed significant improvements,
whereas Digit Span Bwd (t(18) � 1.49, p � 0.155), Verbal Fluency
(t(18) � 1.26, p � 0.224), and Raven’s SPM (t(18) � 0.55, p �
0.591) did not show significant changes after n-back training.

Bivariate correlations were found between relative training
gain in n-back and relative gain in Digit Span Fwd (r � 0.679, p �
0.001). Relative gain in all other neuropsychological measures
was not related to relative training gain in n-back (all p values
�0.12). At the same time, BOLD activation (WM network Delta
score) at baseline was associated with relative gain in Digit Span
Fwd at trend level (r � 0.429, p � 0.067).

Discussion
In the current study, we compared the BOLD signal and func-
tional connectivity within WM-related ROIs during an n-back
task at different load levels between younger and older partici-
pants and tested the association between WM load-dependent
BOLD signal before and behavioral gains after a 12-session WM
training experiment in older adults. Furthermore, training asso-
ciated changes in BOLD signal, functional connectivity, and neu-
ropsychological tests were investigated.

Age differences
As expected, younger adults outperformed older adults in the
n-back task and neuropsychological tests at pretest. Consistent
with previous research (Mattay et al., 2006; Cappell et al., 2010;
Nagel et al., 2011), younger participants showed lower BOLD
activations in the WM network at 1-back and higher activations
at 3-back compared with older participants at pretest, which re-
sulted in significant differences in the WM network Delta score
(i.e., the difference between 3- and 1-back BOLD response in all
WM-related ROIs).

Age-related differences in WM network Delta score may re-
flect both differences in efficiency (i.e., decreased activation at
comparable performance levels) and capacity (i.e., increasing ac-
tivation with increasing WM load; for a recent discussion on this
issue, see Barulli and Stern, 2013). Therefore, we also analyzed

age differences in WM network BOLD response at comparable
levels of performance (1-back). By matching younger and older
adults in performance, age-related BOLD activation increases at
1-back reflect a decrease in efficiency of WM network activations
with age. With respect to capacity, we found a distinct pattern of
WM load-related linear increase in BOLD activity in young
adults, whereas older adults showed a tendency toward an in-
verted U-type pattern of BOLD activation with increasing WM
load. These cross-sectional results are in line with previous find-
ings suggesting that WM load-dependent BOLD activation
changes with age and is associated with aspects of WM capacity
(Mattay et al., 2006; Cappell et al., 2010; Schneider-Garces et al.,
2010; Nagel et al., 2011). However, beyond that, results indicate
that the WM load-dependent pattern in older adults, on a neural
level, reflects both decreased neural capacity (in that older adults
did not show an increase in BOLD activation at 3-back) and
decreased efficiency (in that older adults at 1-back, when
matched for performance, showed increased levels of BOLD ac-
tivation; Barulli and Stern, 2013).

In addition to BOLD differences, we found a similar differ-
ence in WM load-dependent functional connectivity between
younger and older adults within the WM network at pretest: in
younger adults, functional connectivity was higher in 3-back,
whereas in older adults, functional connectivity reached a maxi-
mum at 2-back. Functional connectivity here basically reflects
temporal coactivation of right DLPFC and the other regions
within the WM network. The maximum of this simultaneous
co-utilization was reached at load levels associated with maxi-
mum BOLD activation in both age groups, suggesting that con-
nectivity may increase at the limits of WM capacity.

Prediction of WM training gains
In older participants, we found a significant negative correlation
between WM network activation during 1-back at pretest and
relative training gain, indicating that decreased activation during
1-back (increased efficiency) was associated with larger subse-
quent behavioral plasticity. In addition, we found that increased
activation during 3-back was positively associated with subse-
quent behavioral training gain, indicating that capacity within
the WM network was also related to plasticity. Consequently,
when predicting individual differences in behavioral WM plastic-
ity within the older group, it was found that older participants
showing a more youth-like (Nagel et al., 2011) BOLD response
pattern (i.e., higher WM network Delta scores) achieved higher
WM training gains, regardless of age, sex, years of education, and
gray matter volume. Specifically, we found that WM network
Delta score at pretest significantly predicted training gains be-
yond the effects of pretest behavioral performance and gray mat-
ter volume, suggesting a unique effect of BOLD activation on
behavioral training gains.

These findings indicate that the functional properties of the
aging brain may be more relevant for WM plasticity than struc-
tural properties (Stern, 2009; Nyberg et al., 2012) and that plas-
ticity within WM seems to depend on both neural capacity and
neural efficiency within WM (Reuter-Lorenz and Park, 2010; Na-
gel et al., 2011; Barulli and Stern, 2013). Crucially, our finding
that these aspects of neural correlates of WM functioning are
closely related and predict behavioral training gain beyond the
effects of baseline WM performance indicates that behavioral
plasticity in WM in older adults may be governed by an inter-
play between neural efficiency and capacity. This is in line with
recent proposals in the domain of visual WM (Anderson et al.,
2013) and integrates current theories on age-related neural com-

Table 2. Changes in neuropsychological measures from pretest to posttest in older
participants

Variable Pretest Posttest
Pretest versus
posttest t(18) ( p)

Digit Span Fwd 7.58 � 1.87 8.63 � 1.74 2.97 (0.008)
Digit Span Bwd 6.68 � 1.86 7.15 � 1.61 1.49 (0.155)
D2 Test 394.68 � 79.48 435.26 � 80.83 6.48 (
0.001)
Digit Symbol 32.32 � 6.21 34.37�6.78 2.76 (0.013)
Vebal Fluency 16.58 � 4.74 17.74 � 4.28 1.26 (0.224)
Stroop Interference 68.50 � 17.79 63.04 � 13.66 3.28 (0.004)
Raven’s SPM 16.84 � 4.34 17.26 � 4.47 0.55 (0.591)
Figural Relations 19.00 � 4.78 22.21 � 3.72 4.73 (
0.001)
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pensatory processes (CRUNCH; Reuter-Lorenz and Cappell,
2008) and neural efficiency (Schneider-Garces et al., 2010).

Functional connectivity in the WM network at pretest did not
predict behavioral WM plasticity in our older sample. Thus, we
could not replicate very recent findings from younger adults,
suggesting a relationship between baseline functional connectiv-
ity and behavioral WM training gains (Kundu et al., 2013). It
seems that a relatively youth-like functioning of the WM network
found in high training gainers might rely mainly on BOLD acti-
vation patterns rather than WM load-dependent WM network
connectivity in older adults. This might be attributable to a con-
siderable age-related decrease in functional connectivity at high
WM load found in this and other studies (Nagel et al., 2011). At
high executive task demand, age-related decrease in functional
connectivity was found to be more pronounced than age-related
differences in BOLD activation (Madden et al., 2010).

Changes in WM network activations and connectivity from
pretest to posttest
With respect to changes in BOLD activation succeeding WM
training, the pattern of decreased activations after training may
best be described as an increase in efficiency, which is further
corroborated by a significant decrease especially in the 1-back
condition. This finding is in line with previous WM training research
in older adults reporting BOLD activation decreases in cortical WM
areas rather than increases (Erickson et al., 2007; Brehmer et al.,
2011). Because increases in WM network Delta scores after training
were not significant, conclusions on training-related capacity changes
may not be drawn from the current data.

Similar to a nonsignificant prediction of WM training gain by
functional connectivity, no changes in overall WM network con-
nectivity were found in the current study. In future work, analy-
ses testing more specific connectivity models (Deserno et al.,
2012) could be performed to detect more locally defined changes
in functional connectivity.

However, at this stage, the small effect sizes in pre–post fMRI
measures in our study precluded us from additional analysis of
predictors and correlates of training-induced changes in WM
BOLD activation and connectivity.

Gains in untrained tasks after n-back training
Exploratory analyses of additional pre–post effects suggested that
n-back training may have been associated with improvements in
tasks of attention, WM, executive functions, and fluid intelli-
gence. Also, relative gains in n-back performance correlated with
relative gains in Digit Span performance. However, because of
the lack of an untrained control group, we cannot rule out that
gains in untrained tasks were related to a practice effect.

We found trendwise associations between WM network Delta
score and Digit Span gains, indicating that WM network activa-
tion patterns may predict gains in both trained n-back and un-
trained Digit Span tasks. If confirmed by additional research,
this finding suggests that WM network Delta score may serve
as a functional biomarker of WM plasticity beyond task-
specific effects.

Limitations and future directions
Although 37 subjects may be considered a moderate sample size
for fMRI studies, a replication of the observed findings in larger
samples would be desirable. A cross-validation of the classifica-
tion algorithm in an independent test set would further increase
confidence in the predictive value of the WM network Delta
score. Furthermore, in future studies, diffusion tensor imaging

should be applied to obtain a more comprehensive measure of
brain connectivity. A strength of the current work is that differ-
ences in WM load-dependent activations between younger and
older participants as well as prediction of training gains in older
adults were related to a brain response pattern that was found to
be very consistent across the literature-based probabilistic ROIs.
Nevertheless, parameters for defining ROI dimensions could be
chosen differently, and, more importantly, other regions such as
ventrolateral PFC or thalamus could also be included into ROI anal-
yses. Because we were interested in the predictive value of WM load-
dependent BOLD response in older adults, no training was
conducted in the younger group. In future studies, a comparison
group of younger training participants could be included.

Conclusions
Together, our study highlights that individual differences in neu-
robiological resources—specifically, the neural efficiency and ca-
pacity of the WM load-dependent brain response in the WM
network— can serve as a predictor for WM plasticity in older
adults. Our results provide first evidence integrating theories of
neural and behavioral plasticity in relation to age-associated neu-
ral compensatory effects. It seems that older adults showing a
more youth-like WM load-dependent brain response will best
respond to WM training. Age-related activation increases at low
task demand (1-back), which have been attributed to compensa-
tion, were associated with both reduced neural efficiency and
reduced behavioral WM plasticity.
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(2011) Neural correlates of training-related working-memory gains in
old age. Neuroimage 58:1110 –1120. CrossRef Medline

Brickenkamp R (2002) Test d2. The d2 test of attention, Ed 9. Goettingen,
Germany: Hogrefe.

Callicott JH, Mattay VS, Bertolino A, Finn K, Coppola R, Frank JA, Goldberg
TE, Weinberger DR (1999) Physiological characteristics of capacity
constraints in working memory as revealed by functional MRI. Cereb
Cortex 9:20 –26. CrossRef Medline

Cappell KA, Gmeindl L, Reuter-Lorenz PA (2010) Age differences in pre-
fontal recruitment during verbal working memory maintenance depend
on memory load. Cortex 46:462– 473. CrossRef Medline

Cohen JD, Perlstein WM, Braver TS, Nystrom LE, Noll DC, Jonides J, Smith
EE (1997) Temporal dynamics of brain activation during a working
memory task. Nature 386:604 – 608. CrossRef Medline
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De Frias CM, Lövdén M, Lindenberger U, Nilsson L-G (2007) Revisiting the

1232 • J. Neurosci., January 22, 2014 • 34(4):1224 –1233 Heinzel et al. • Brain Response, Working Memory Training, and Aging

http://dx.doi.org/10.1177/0956797612464380
http://www.ncbi.nlm.nih.gov/pubmed/23572280
http://dx.doi.org/10.1016/j.neuron.2007.10.038
http://www.ncbi.nlm.nih.gov/pubmed/18054866
http://dx.doi.org/10.1523/JNEUROSCI.1778-08.2008
http://www.ncbi.nlm.nih.gov/pubmed/18632934
http://dx.doi.org/10.1016/j.tics.2013.08.012
http://www.ncbi.nlm.nih.gov/pubmed/24018144
http://dx.doi.org/10.1186/1471-2377-12-126
http://www.ncbi.nlm.nih.gov/pubmed/23110387
http://dx.doi.org/10.1016/j.neuroimage.2011.06.079
http://www.ncbi.nlm.nih.gov/pubmed/21757013
http://dx.doi.org/10.1093/cercor/9.1.20
http://www.ncbi.nlm.nih.gov/pubmed/10022492
http://dx.doi.org/10.1016/j.cortex.2009.11.009
http://www.ncbi.nlm.nih.gov/pubmed/20097332
http://dx.doi.org/10.1038/386604a0
http://www.ncbi.nlm.nih.gov/pubmed/9121583
http://dx.doi.org/10.1126/science.1155466
http://www.ncbi.nlm.nih.gov/pubmed/18556560


dedifferentiation hypothesis with longitudinal multi-cohort data. Intelli-
gence 35:381–392. CrossRef
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