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A growing body of evidence suggests that the neuronal dynamics are poised at criticality. Neuronal avalanches and long-range temporal
correlations (LRTCs) are hallmarks of such critical dynamics in neuronal activity and occur at fast (subsecond) and slow (seconds to
hours) timescales, respectively. The critical dynamics at different timescales can be characterized by their power-law scaling exponents.
However, insight into the avalanche dynamics and LRTCs in the human brain has been largely obtained with sensor-level MEG and EEG
recordings, which yield only limited anatomical insight and results confounded by signal mixing. We investigated here the relationship
between the human neuronal dynamics at fast and slow timescales using both source-reconstructed MEG and intracranial stereotactical
electroencephalography (SEEG). Both MEG and SEEG revealed avalanche dynamics that were characterized parameter-dependently by
power-law or truncated-power-law size distributions. Both methods also revealed robust LRTCs throughout the neocortex with distinct
scaling exponents in different functional brain systems and frequency bands. The exponents of power-law regimen neuronal avalanches
and LRTCs were strongly correlated across subjects. Qualitatively similar power-law correlations were also observed in surrogate data
without spatial correlations but with scaling exponents distinct from those of original data. Furthermore, we found that LRTCs in the
autonomous nervous system, as indexed by heart-rate variability, were correlated in a complex manner with cortical neuronal avalanches
and LRTCs in MEG but not SEEG. These scalp and intracranial data hence show that power-law scaling behavior is a pervasive but

neuroanatomically inhomogeneous property of neuronal dynamics in central and autonomous nervous systems.
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Introduction
The human brain appears to operate akin to a dynamical system
near a critical point (Chialvo, 2010), which could be central for
understanding neuronal processing in vivo (Shew et al., 2009,
2011) and its implications for behavior (Palva et al., 2013) and
brain diseases. Critical dynamics is an emergent characteristic
also in several models of brain activity (Rubinov et al., 2011; Poil
et al.,, 2012). Nevertheless, the predictions from theories and
models of criticality are challenging to test with empirical data
from biological systems (Mora and Bialek, 2011). For criticality
in brain dynamics, two principal series of experimental observa-
tions constitute the most compelling evidence.

First, in the timescales of seconds to tens of minutes, power-
law long-range temporal correlations (LRTCs) characterize the
amplitude envelopes of neuronal oscillations in human MEG and

Received Nov. 28, 2014; revised Feb. 24, 2015; accepted Feb. 25, 2015.

Author contributions: S.P. and J.M.P. designed research; A.Z. and L.N. performed research; A.Z., G.A., and J.M.P.
contributed unpublished reagents/analytic tools; A.Z. and G.A. analyzed data; A.Z., G.A., S.P., and J.M.P. wrote the
paper.

This work was supported by the Academy of Finland and by the Helsinki University Research Funds. We thank Dr.
Hugo Eyherabide for helpful comments on the manuscript.

The authors declare no competing financial interests.

Correspondence should be addressed to Dr. Alexander Zhigalov, Neuroscience Center, University of Helsinki, P.0.
Box 56, Helsinki 00014, Finland. E-mail: alexander.zhigalov@helsinki.fi.

DOI:10.1523/JNEUR0SCI.4880-14.2015
Copyright © 2015 the authors ~ 0270-6474/15/355385-12$15.00/0

EEG (Linkenkaer-Hansen et al., 2001) as well as in intracranial
recordings (Monto etal., 2007). The LRTC scaling exponent, (3, is
an individual characteristic that is modulated by stimuli and
tasks and is different among frequency bands (Linkenkaer-
Hansen et al., 2004; Palva et al., 2013). Furthermore, fMRI has
shown that the resting-state LRTC exponents of BOLD signals
are also different among brain systems (He, 2011), but this has
not been systematically assessed with electrophysiological re-
cordings so far.

Second, in millisecond timescales, neuronal activity cascades,
or “neuronal avalanches,” exhibit power-law size distributions in
in vitro (Beggs and Plenz, 2003; Pasquale et al., 2008), in vivo
(Petermann et al., 2009; Hahn et al., 2010), and human invasive
(Solovey et al., 2012; Priesemann et al., 2013) and noninvasive
(Palvaetal., 2013; Shriki et al., 2013) electrophysiological record-
ings. Neuronal avalanches in organotypic cultures (Beggs and
Plenz, 2003) and human MEG (Shriki et al., 2013) appear to
exhibit balanced branching at the size scaling exponent o of 3/2,
which is line with a theoretical prediction for a critical branching
process (Zapperi et al., 1995).

Several studies show that neuronal avalanches may coexist
with LRTCs both in vitro (Beggs and Plenz, 2004) and in vivo
(Benayoun et al., 2010; Hahn et al., 2010; Palva et al., 2013) and in
models (Poil et al., 2012). LRTCs and avalanches may hence arise
from shared underlying mechanisms or coemerge through inter-
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actions with a third system, such as the autonomous nervous
system (ANS) that also exhibits scale-free activity (Ivanov et al.,
1999).

We use here both intracranial stereo-electroencephalography
(SEEG) and source-reconstructed MEG to obtain, at mesoscopic
and macroscopic, respectively, levels, a comprehensive view onto
the electrophysiological hallmarks of criticality in human resting-
state brain activity. We set out here to do the following: (1) rig-
orously assess the scaling and branching behavior of neuronal
avalanches; (2) characterize the cortical topology of LRTCs and
its relation to brain systems in fMRI; and (3) test the hypothesized
relationship between LRTCs and avalanches. Finally, we also ad-
dressed the relationship of criticality in the central nervous sys-
tem with the scaling of heart-rate variability (HRV) that is
controlled by the ANS.

Materials and Methods

Data acquisition. We analyzed the invasive SEEG recordings from a co-
hort of 22 epileptic patients (7 females, age 1621 years) and noninvasive
MEG data recorded from 14 healthy subjects (7 females, age 18-27
years). Resting-state SEEG was collected for 10 min with eyes closed and
without external disturbance using a 192 channel SEEG amplifier system
(NIHON-KOHDEN NEUROFAX-110) at a sampling rate of 1 kHz. We
acquired monopolar local field potentials (LFPs) from brain tissue with
platinum-iridium, multilead electrodes. The number of electrode con-
tacts along each penetrating shaft varied from 8 to 15. These contacts
were 2 mm long, 0.8 mm thick, and had an intercontact distance of 1.5
mm (DIXI Medical). The anatomical positions and amounts of elec-
trodes varied according to surgical requirements (Cardinale et al., 2013).
On average, each subject had 14 * 1.9 (mean = SD) shafts (range 17-10)
with a total of 152 = 20 electrode contacts (range 193—147, left hemi-
sphere: 37 = 49, right hemisphere: 115 = 51 contacts). MEG data were
collected in resting-state condition for 10 min with the subjects looking
at a fixation point on the monitor screen. We recorded 306 channel (204
planar gradiometers and 102 magnetometers) MEG (Elekta Neuromag)
at a sampling rate of 600 Hz.

SEEG preprocessing. The locations of each SEEG electrode contact were
extracted with submillimeter accuracy from postimplant cone-beam CT
scans by means of an automatic algorithm for SEEG implant identifica-
tion (Arnulfo et al., 2015a) and subsequently coregistered to FreeSurfer
(http://surfer.nmr.mgh.harvard.edu/) geometrical space. We used a
“closest-white-matter” referencing scheme for SEEG where electrode
contacts in gray matter were referenced to the closest contacts in under-
lying white matter (Arnulfo et al., 2015b), which largely eliminates
volume-conducted signals but preserves the LFP phase and polarity un-
distorted because gray matter signals are never referenced to other gray
matter signals. Only signals from gray-matter contacts were analyzed in
this study.

MEG preprocessing and source reconstruction. Preprocessing of raw
MEG time series consisted of the following steps. First, the temporal
extension of signal space separation method (Taulu et al., 2005) was used
to remove extracranial noise from the raw MEG recordings. Next, inde-
pendent component analysis (Bell and Sejnowski, 1995) was used to
identify and exclude components associated with eyes movements/blinks
and cardiac artifacts.

For cortical surface reconstructions, T1-weighted anatomical mag-
netic resonance images with a 1.5-T MRI scanner (Siemens) were re-
corded. FreeSurfer software was used for automatic volumetric
segmentation of the MRI data, surface reconstruction, flattening, and
cortical parcellation. MNE software (www.martinos.org/mne/) was used
to create three-layer boundary element conductivity models and corti-
cally constrained source models with fixed-orientation dipoles, and for
computing the forward and inverse operators (Hamaéldinen and Ilmoni-
emi, 1994; Lin et al., 2006). MEG time series were filtered using filter with
a finite impulse response (pass-band 1-40 Hz). After filtering, MEG
sensor data were inverse transformed and then collapsed into time series
of 219 cortical parcels derived from individual MRI scans using Free-
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Surfer and CMP software (Daducci et al., 2012) using collapsing opera-
tors maximizing individual reconstruction accuracy (Korhonen et al.,
2014).

Analysis of neuronal avalanches. We identified neuronal avalanches
from source-reconstructed MEG parcel time series and from white-
matter referenced SEEG gray-matter LFP time series and quantified their
statistical properties in the following manner. Broadband-filtered time
series (1-40 Hz) were normalized by subtracting the mean and dividing
by SD. The time series were transformed into binary point process by
detecting peaks above the threshold T that ranged from 1.5 to 5.25 with
step 0.25 and setting the samples corresponding to peak latencies to 1’s.
These binary sequences (or sequences of events) were then converted
into avalanche time series by summing the events across the electrodes in
different time bins (At, ranges from 4 to 80 ms with step 4 ms) (Plenz,
2012). A neuronal avalanche is defined as cluster of events in successive
time bins where the beginning and end of the avalanche are defined by
single time bins with no events (see Fig. 1A4). The avalanche size is the
total number of events. It has been shown earlier that the avalanche size
distribution is typically a power-law (Beggs and Plenz, 2003; Plenz, 2012;
Palvaetal.,2013; Shriki etal., 2013). Importantly, the distribution reveals
power-law form only for a certain parameters (threshold and time bin
width) used in avalanches detection. To comprehensively map the pa-
rameter space, we assessed the avalanche sizes for multiple combinations
thresholds and time bin widths and fit the data using the truncated-
power-law model, which has separate power-law and exponential com-
ponents. The truncated-power-law model was statistically tested (see
below) against power-law and exponential to define the range of param-
eters (T and At) or regimen where the one model outperforms another.

Probability functions of truncated-power-law, power-law, and expo-
nential models can be expressed as follows:

ptp(s) = Ctp TS e*)\s; Smin =s= Smax (1)
Pp(S) = Cp * S_O(;Smin =s5= Smax (2)
Pe(s) = Cor e ™800 = 5 = Sppas (3)

where p(s) denotes the probability of observing avalanche of size s, C,,
C,» and C, are normalization constants, « and A are parameters of the
power-law and exponential terms, and s, ; and s are the minimum
and maximum avalanche sizes, respectively.

There are several studies that emphasize the importance of estimating
minimum and maximum avalanche sizes to obtain correct values of
scaling exponents (Clauset et al., 2009; Klaus et al., 2011; Dehghani et al.,
2012; Langlois et al., 2014). The minimum size is highly affected by noise
level, which depends on the thresholds and time bin widths used in
avalanche detection. Instead of estimating s, ;,,, we used fixed value (s,;,,
= 1) and assessed the scaling exponents for multiple thresholds and time
bin widths; thus, the exponent « can be considered as a function of two
parameters (T and At), a7, oy. The maximum avalanche size s,,,,, was set
to the total number of cortical parcels (MEG) or electrode contacts
(SEEG) included in the analysis (Priesemann et al., 2013; Shriki et al,,
2013).

To estimate the scaling exponents of avalanche size distribution, max-
imum likelihood method was applied (Clauset et al., 2009; Klaus et al.,
2011). The results of maximum likelihood approach were corroborated
with a freely available Python toolbox (Alstott et al., 2014) for scaling
exponent estimation (Clauset et al., 2009).

Definition of the regimens. We used statistical testing to define three
regimens that correspond to a certain combinations of T and At.
Power-law regimen assumes no difference between truncated-power-
law and power-law models, as well as exponential regimen that as-
sumes no difference between truncated-power-law and exponential
models. Truncated-power-law regimen corresponds to the situation
where power-law or exponential models are different from truncated-
power-law.

Statistical comparison between the models has been done by comput-
ing log-likelihood ratio (LLR) as it described in (Clauset et al., 2009;
Klaus et al., 2011).

The LLR between the two distributions is defined as follows:

max
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LLR(x) =I(a|x) — I(b]| x) (4)

where a and b are estimated parameters of the first and second model. If
LLR(x) is significantly larger than 0, then the first model is assumed to be
better fit data x, and vice versa. The p value for the LLR test is defined as
follows:

|LLR|
) (5)

p= erfc( \/2777

where:

1 n
of = X ilaks) = Ia | x)im) = (blx) = (b | x)m)]*

Difference between two models was considered to be statistically signif-
icant if p < 0.05.

Likelihoods for truncated-power-law, power-law, and exponential
models can be expressed as follows:

)\l*a
Z‘P(S)zr(l—a As ~).Sia.e#\s (©)
L(s) = (@ = 1) sp; -5 ¢ (7)
I(s) = A= ghsmine g (8)

Analysis of long-range temporal correlations. We used detrended fluc-
tuation analysis (DFA) to assess the scaling exponents of LRTCs (Peng et
al., 1995; Linkenkaer-Hansen et al., 2001; Palva et al., 2013). DFA was
applied to the amplitude envelopes of neuronal time series that are filtered
using Morlet’s wavelets with the logarithmically spaced central frequencies
(from 3 to 40 Hz). The same analysis was used to assess LRTCs of heartbeat
intervals of MEG subjects. The analysis can be represented as a two stage
procedure. In the first stage, time series X is normalized to 0 mean and
integrated over the samples (y(n) = (X(n) — (X)) + Y(n — 1)), then
segmented into time windows of various sizes 7. At the second stage, each
segment of integrated data is locally fitted to a linear function and the
mean-squared residual F(7) is computed,

F(7) = N;VESI[YT(@ - Uf(k)]2> 9)

where N is the number of samples in segment 7.

The scaling exponent f3 is defined as the slope of linear regression of
the function F(7) plotted in log-log coordinates. The exponents 3, were
computed for each wavelet central frequency and cortical parcel (MEG)
or electrode contact (SEEG), in case of neuronal recordings, whereas
Bury was evaluated for the HRV time series extracted from MEG data
using independent component analysis.

Relationship between scaling exponents o and 3. We assessed the rela-
tionship between the pairs of scaling exponents of avalanche size distri-
bution («) and those of LRTCs (B) (associated with each subject) with
Pearson correlation coefficient. The significance of the correlation coef-
ficient was assessed with t-statistics, t = +/(n — 2)/(1 — r?), where ris
the correlation coefficient and n is the sample size (number of subjects).
In the case where 3 values were averaged across all parcels or electrode
contacts, the level of significant was selected at p < 0.05, whereas in case
of correlation with 3 associated with each functional system, the signifi-
cance level was p < 0.01, false discovery rate (FDR) corrected (Benjamini
and Hochberg, 1995).

Partial correlation analysis has been applied to control the potential
confounders. The partial correlation was computed between « and
with controlling Byry> and a and By with controlling .

Shuffling methods. To assess statistical significance of the results with-
out making an assumption on the theoretical distribution of data, the
scaling exponents of LRTCs and neuronal avalanches were computed for
phase-shuffled data (Linkenkaer-Hansen et al., 2001; Shriki et al., 2013).
Phase-shuffling disrupts temporal as well as spatial correlations in mul-
tichannel time series while preserving the power spectrum. Phase-
shuffling is often used in hypothesis testing for avalanche size
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distribution (Gireesh and Plenz, 2008; Shriki et al., 2013). Here the prob-
lem is that, although spatial interactions, such as neuronal activity cas-
cades (Plenz, 2012), would appear to be a likely explanation for the
power-law statistics of neuronal avalanches in empirical data, similar
scaling could arise artificially through the local temporal autocorrelation
structures of thresholded long-memory process (Touboul and Destexhe,
2010). Whether the power-law size scaling of avalanches is attributable to
global spatial interactions or local temporal correlations cannot be de-
duced with phase-shuffled surrogate data. For this reason, scaling expo-
nents of avalanche size distribution were assessed also with time-shuffled
surrogate data. The time-shuffled time series were derived from the orig-
inal ones so that the signal of each channel was circularly shifted by a
random number of samples. This approach breaks spatial correlations
but essentially fully preserves the temporal autocorrelation structure.

Estimation of the branching parameter. The branching parameter (o)
was estimated by computing the ratio of the number of events in the
second time bin to the number of events in the first time bin in neuronal
avalanche (Beggs and Plenz, 2003).

@
1y M
o= NEizlE (10)

Where n{" and n/ is the number of events in first and second time bin of
i avalanche, respectively; N is the total number of avalanches.

Functional parcellation. To assess the putative anatomical differences
in neuronal scaling properties with a readily accessible neuroanatomical
basis, we collapsed the MEG data and the large amount of SEEG
recording sites into functional modules that are consistent across
subjects (Damoiseaux et al., 2006; Brookes et al., 2011). The scaling
exponents of LRTCs, By and correlation coefficients, r(Bm, )
and (B, Brry)> were hence mapped into fMRI-based functional
systems (Yeo et al., 2011). Each cortical parcel (MEG) or electrode con-
tact (SEEG) was associated with one of the seven functional systems,
including visual (VI), somato-motor (SM), dorsal attention (DA), ven-
tral attention (VA), limbic (LI), frontoparietal (FP), and default (DM).
The mapping was done for each subject by comparing 3D coordinates of
the contacts or source points within parcel with the coordinates of func-
tional systems and assigning the parcel or contact with closest (smallest
Euclidian distance) system. Consensus clustering was applied to unify
the functional parcellation between the subjects.

Results
Avalanche size distributions reveal scale-free dynamics of
neuronal fluctuations
Cascades of propagating neuronal activity, neuronal avalanches,
were readily observable in broadband source-reconstructed
MEG (Fig. 1A) as well as in gray-matter SEEG recordings of spon-
taneous activity. The avalanche is defined to comprise consecu-
tive events that for field potential data are peaks with amplitude
greater than T in neuronal fluctuations, summed across cortical
parcels (MEG) or electrodes (SEEG) within a time bin of a certain
width (A#) (Fig. 1A). The avalanche size is defined as the number
of events on all sensors in the avalanche (Shriki et al., 2013) (Fig.
1A). We assessed the scaling exponents of avalanche size distri-
butions, a, by using the maximum likelihood approach to com-
pare power-law, truncated -power-law, and exponential models.
The estimates of « as well as the best-fitting model per se are
dependent on T'and At, which may lead to controversial results if
a priori fixed parameter values are used in data analysis. To quan-
tify o comprehensively, we explored a wide range of T and At
(Fig. 1B). In both MEG and SEEG, we found three salient regi-
mens in these data: at high thresholds, the size distribution was
well fit by a power-law (Fig. 1C), whereas at intermediate and low
thresholds, the distributions were best fit by a truncated power-
law or an exponential, respectively (Fig. 1 D, E). The fitting range
was restricted by the total number of cortical parcels (MEG) or



5388 - J. Neurosci., April 1,2015 - 35(13):5385-5396

164 ms
Iy
23 Ll g 2 3 —
o | 16 ms
5, ol il i
B =1 sy =7 s(+2)=6 S(+3)=5

Figure 1.

20 1 @
) 2.0 A7
. 1.0 -1
) 0.0
[ a 2
- 3
' -4 L
: 0 05 1 15 2
(

logo(p(s))

Zhigalov et al. @ Relationship of Fast- and Slow-Scale Neuronal Dynamics

D,

logso(p(s))

4 16 28 40 52 64 76
logo(s), # sensors

At (ms) E
0
! (©}
1 A0
P —
@ e—s-o-
é 2] ‘\
>
L2 34
-4 4 —
0 05 1 15 2 0 05 1 15 2

logo(s), # sensors log;0(S), # sensors

Large-magnitude neuronal fluctuations constitute neuronal avalanches in MEG and SEEG. 4, Example of spatiotemporal pattern of neuronal avalanches at fast timescales. Avalanche

time series (black bars) are derived from multichannel recordings (color lines), where the peaks (black circles) with suprathreshold amplitude (T, green line) are transformed to binary 1’sand summed
across channels within the time bins (At, vertical lines). Neuronal avalanches are described by their size (s; i.e., number of peaks the cascade contains). B, Example of a parametric map of scaling
exponents of avalanche size distribution obtained for multiple thresholds ( 7) and time bin widths (At). C—E, Example of distributions of avalanche sizes detected at high (€), moderate (D), and low
(E) thresholds obeying power-law, truncated-power-law, and exponential form, respectively. Colored circles represent the parameters (T and At) for which neuronal avalanches are detected. Gray

lines/circles represent distribution for phase-shuffled time series.

electrode contacts (SEEG), as has been suggested previously (Pri-
esemann et al., 2013; Shriki et al., 2013). The avalanche-like
events detected with an identical procedure for phase-shuffled
time series were not well fit by the power-law model with any
parameters.

Relationship of the scaling exponent and branching
parameter of neuronal avalanches

Scaling exponents assessed for multiple thresholds and time bin
widths were averaged across subjects. The regimens (ranges of the
parameters T and Af) indicating significant difference between
truncated-power-law, power-law, and exponential models were
defined at the group level assuming that the individual models
belong to the same class and significantly different (log-likelihood
test) from alternative models for given T and At (see Materials and
Methods).

We found a systematic increase in the exponent values with
increasing threshold and decreasing time bin width for original
but also time-shuffled MEG and SEEG time series (Fig. 2A). The
scaling exponent « can be expressed as a function of T and At
(oran = At~ ¥T) where k is a normalizing parameter. This ob-
servation was in line with previous findings where a is considered
as a function of At for relatively high thresholds (Beggs and
Plenz, 2003; Petermann et al., 2009). The results suggested
that permanent value of « (e.g., @ = 3/2) requires simultane-
ous changing of the threshold and time bin width, which is in
line with the limited range of At where fixed T yields un-
changed « (Shriki et al., 2013).

The exponents computed with the same T and At were larger
for SEEG than for MEG time series (p < 0.0005, ¢ test). This
observation may be explained by linear mixing in MEG and the
exponents being negatively correlated with linear mixing (Shriki
et al., 2013) or by the putative anatomical subsampling of SEEG
(Priesemann et al.,, 2009). In both SEEG and source-
reconstructed MEG, the scaling exponents at the commonly used
parameters T = 3 SD and At = 4 ms were greater than those

reported earlier for sensor space MEG time series (Fig. 2A)
(Shriki et al., 2013). Avalanches in phase-shuffled surrogate data
did not exhibit power-law size scaling, as observed previously
(Shriki et al., 2013). However, avalanches in time-shuffled surro-
gate data, where spatial structures were abolished but the tempo-
ral autocorrelation structure retained, did exhibit power-law size
distributions. Power-law scaling in time-shuffled data was, nev-
ertheless, associated with greater scaling exponents (p < 0.05, ¢
test, FDR corrected) in the power-law regimen than the original
data in >85% of all analyzed pairs of T'and At. This suggests that
power-law size scaling of neuronal avalanches does not arise epi-
phenomenally from the spurious superpositions of local long-
memory random processes (Bédard et al., 2006; Touboul and
Destexhe, 2010).

To test the hypothesis that the neuronal dynamics in MEG and
SEEG time series was akin to a critical branching process (Plenz,
2012), we computed the branching parameter (o) for multiple T
and At in the same manner as the scaling exponents (Fig. 2B). The
results showed that the values of o observed within the power-law
regimen of the T-At plane were smaller than those expected for a
critical branching process (o = 1). Nevertheless, the curves a =
3/2 and o = 1 were very close to each other and contained within
the truncated-power-law regimen (Fig. 2B). Branching parame-
ter for time-shuffled data revealed a similar trend without a sig-
nificant difference (p > 0.11, MEG; p > 0.10, SEEG; ANOVA)
between the parameters that yielded « = 3/2 and o = 1 (Fig. 2B).
These surrogate data hence show that the temporal autocorrela-
tion structure per se in MEG and SEEG recordings of large-scale
neuronal network activity, in the absence of true spatial correla-
tions, leads to similar truncated-power-law scaling of avalanche
sizes with seemingly balanced branching. This result questions
the validity of using the theory of branching process in describing
neuronal dynamics in modular large-scale systems, which has
also been discussed previously (Taylor et al., 2013; Hartley et al.,
2014).
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Scaling exponents of avalanche size distribution vary as a function of threshold and time bin width and bounded by power-law and exponential regimens. A4, Scaling exponents

computed for multiple thresholds and time bins (averaged across subjects) show a clear dependency on threshold and time bin widths for original (left) and time-shuffled (right) data. Exponents that
are close to those of a critical branching process (e ; o,y = 3/2) are approximated by a power-law function of threshold and time bin width (black line with yellow circles). Statistical estimates of
power-law (gray lines) and exponential (yellow lines) regimens reveal different ranges of thresholds and time bins for MEG (top) and SEEG (bottom) time series while showing a similar trend. B,
Dynamics of the branching parameters is similar to that of scaling exponents across multiple thresholds and time bin widths for original (left) and time-shuffled (right) data. The branching
parameters that are close to those of a critical branching process (o- = 1.0) are approximated by a power-law function of Tand At (black line with cyan circles) for MEG (top) and SEEG (bottom) time
series. Yellow circles represent the scaling exponents close to 3/2. Gray lines indicate the power-law regimen. Yellow lines indicate exponential regimens. Scaling exponents for a certain
combinations of Tand At are shown in dark gray because of insufficient amount of data for statistical analysis or the values are out of range.

Scaling exponents of LRTCs reveal signatures of functional
and frequency specificity

We then quantified the neuronal LRTCs with scaling expo-
nents 3 that were estimated for the amplitude envelopes of
narrowband oscillations (Fig. 3A) across a wide range of fre-
quencies. Colocalizing the electrophysiological data with a
functional-connectivity-fMRI (fc-fMRI) based parcellation of
intrinsic connectivity networks, we asked whether LRTCs were
distinct among functional brain systems (Fig. 3B). The exponents
of LRTCs were assessed using DFA that quantifies the scaling of
the signal autocorrelation structure of time series through com-
puting variance of linearly detrended signal at different time-
scales. The DFA plots were log-log linear across a wide time range
(from 5 to 500 s), which implies monofractality and thereby that
a single exponent 3 is sufficient to describe dynamics of the pro-
cess (Fig. 3C). The scaling exponents were largely above 8 = 0.5
that would correspond to an uncorrelated Gaussian process, and
varied along the frequency of underlying narrowband oscilla-
tions, revealing a prominent peak at 10 Hz in MEG and less
pronounced at 8 Hz in SEEG (Fig. 3D). The exponents associated
with five frequency bands (8-band (3 Hz), 6-band (6 Hz), a-band
(10 Hz), B-band (16 Hz), and y-band (30 Hz)) were mapped into
seven functional systems, including VI, SM, DA, VA, LI, FP, and
DM (Fig. 3E). The power-law exponents 3, ranged from 0.61
(LI, in 8-band) to 0.72/0.70 (VI/DA, in a-band) in MEG and
from 0.63 (LI, in B-band) to 0.70 (DA, in a-band) in SEEG. The
results showed a good agreement between MEG and SEEG (Pear-
son correlation coefficient r = 0.39, p < 0.02; and r = 0.49, p <
0.005), with and without VI system, respectively) with the VI
system as an outlier possibly because of sparse SEEG sampling
there. We then assessed the similarity of B, between the systems
separately for MEG and SEEG.

We found that, in MEG, the exponents in 6-, a-, and
B-frequency bands were different in VI, SM, and DA compared
with LI, FP, and DM (Fig. 3E; p < 0.001, unequal variance ¢ test).
In the y-frequency band, differences were observed between VA

and DM, and SM and DA. Importantly, the lowest values of 3,
were observed in LI in MEG and SEEG in 6-, -, and 3-bands.

These data indicate that, in the light of both mesoscopic and
macroscopic electrophysiological measurements, spontaneous
resting-state brain activity exhibits significant LRTCs throughout
the human neocortex with distinct scaling properties in different
brain systems and frequency bands.

Scaling exponents of avalanche size distributions are
correlated with those of LRTCs

We characterized the relationship between the scaling exponents
of avalanche size distributions and LRTCs. We first averaged the
exponents 3, across cortical parcels (MEG) or electrode con-
tacts (SEEG) for each subject and estimated the correlation be-
tween B, and oy, 5, for parameters of T 'and At picked from the
power-law and truncated-power-law regimens. Surprisingly, we
observed strong negative correlations (r = —0.78, p < 0.005,
MEG; r = —0.44, p < 0.05, SEEG) for parameters (f= 3 Hz, T =
3.25, At = 8, MEG; and At = 16, SEEG) that belong to power-law
regimen and positive correlations (r = 0.80, p < 0.005, MEG; r =
0.46, p < 0.05, SEEG) for parameters for the truncated-power-
law regimen (f = 3 Hz, T = 2.00, At = 8, MEG; and At = 16,
SEEG) (Fig. 4A). Despite the fact that correlation coefficients
were higher for MEG than SEEG, the results were strikingly con-
sistent between these modalities. To assess this phenomenon
comprehensively, the correlations were computed for all Tand At
in the avalanche analysis, and for each frequency of LRTC:s (f),
and then significant values were averaged across frequencies
(Fig. 4B). The results indicated negative correlations that
broadly represented within power-law regimen, whereas pos-
itive correlations were observed within a narrow range of pa-
rameters (T and At) that precisely coincide with o5, = 3/2
in truncated-power-law regimen. The values of negative and
positive correlations were depended on frequency of 8, and
varied independently from each other in power-law and trunctated-
power-law regimens.
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Figure3.  Scaling exponents of LRTCs are unique characteristics of cortical oscillation amplitude dynamics. A, Example of narrowband filtered source-reconstructed time series (gray line) of a single cortical
parcel and its envelope (brown line) for which LRTCs are computed. B, Seven fMRI-based functional systems are shown on an inflated brain surface: visual (blue), somatomotor (cyan), dorsal attention (green),
ventral attention (teal), limbic (brown), frontoparietal (yellow), and default (red). C, DFA reveals mono-fractal behavior of LRTCs (black circles/line) in MEG (top) and SEEG (bottom) time series of representative
subjects (f = 10 Hz). The exponents for phase-shuffled time series (3,.) are close to those of random Gaussian process (gray line). D, Scaling exponents (pooled across sensors/subjects) vary with the frequency
of underlying narrowband oscillations. The mean values of scaling exponents (averaged across sensors/subjects) as a function of frequency show maximal values at frequencies ~10 Hzand 8 Hz (black line) for
MEGand SEEG data, respectively. Phase-shuffled data are characterized by smaller exponents and frequency-unspecific dynamics (gray lines). £, The exponents of LRTCs are significantly different (p << 0.001, FDR
corrected, ¢ test) between some of the functional systems at certain frequencies. Bar colors match functional system colors as shown in panel B.
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Figure4.  Scaling exponents (cv) of avalanche size distributions are correlated with LRTC exponents (/3). A, Scatter plots of cv 7, and 3, for all subjects for avalanches belonging to the power-law regimen
(f=3Hz,T=3.255D, At = 8ms[MEG] and At = 16 ms[SEEG]) indicate strong negative correlations (blue dots), whereas the scatter plots for avalanches belonging to the truncated-power-law regimen (f =
3Hz, T=12.005D, At = 8ms[MEG] and At = 16 ms[SEEG]) reveal positive correlations (red dots), for MEG (top) and SEEG (bottom) time series. **p << 0.005. *p << 0.05. B, Correlation maps between scaling
exponents (cyz », and B;) estimated for multiple thresholds and time bins (significant values are averaged across frequencies) reveal robust patterns of negative values that belong to a power-law regimen
(gray lines) and positive correlations that coincide with ot 7 1,y = 3/2 (black line with yellow circles). €, D, Example of avalanche size distributions of two representative subjects with weak (orange) and strong
(black) LRTCs for truncated-power-law (€) and power-law (D) regimens, in MEG (top) and SEEG (bottom). Color codes correspond to those in A.

To understand the possible mechanism of interaction be-  atlow thresholds and larger at high thresholds compared with
tween a(ra, and By, we assessed the distribution of ava-  subjects with stronger LRTCs, which might explain the pres-
lanche size for subjects with weak versus strong LRTCs (Fig.  ence of negative and positive correlations between o a;
4C,D). Subjects with weaker LRTCs had smaller exponents @ and By.
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reveals the highest value compared with

1 most systems (VI, LI, FP, and DM). Sur-
o  Dprisingly, the negative correlations in
a-band were lowest in the VI system com-

-1 pared with others (SM, VA, and LI) (Fig.
6A). DA showed dramatic drop in 3-band

and became smallest compared with VI,

VA, FP, and DM. No differences between

the systems were observed in y-band. The

LI revealed highest values compared with

all the systems in y- and partially B-bands

in case of positive correlates (Fig. 6B). The

results suggested that the spatio-spectral
patterns of negative and positive corre-

lates are highly overlapping (r = 0.35, p <
0.03). The spatio-spectral patterns of cor-
relations in time-shuffled data (Fig. 6C)
were similar to the negative (r = 0.54, p <
0.0007) and positive (r = 0.76, p <
0.0001) patterns of original time series, al-
though no similarities were observed for
phase-shuffled data (Fig. 6D). These find-
ings further corroborate the correlational
relationship of LRTCs and neuronal ava-
lanches and raise the intriguing question
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Figure5.  Scaling exponents of avalanche size distributions are correlated with the exponents of LRTCs for time-shuffled data.

A, Scatter plots of vy 5y and B, across subjects for avalanches belonging to a power-law regimen ( =3 Hz, T=3.255D, At =
8ms[MEG] and At = 16 ms[SEEG]; blue dots) indicate strong negative correlations, whereas the scatter plots for avalanches from
truncated-power-law regimen (f = 3 Hz, T = 2.00 SD, At = 8 ms [MEG] and At = 16 ms [SEEG]; red dots) reveal positive
correlations, for MEG (top) and SEEG (bottom) time series. **p << 0.005. B, Correlation maps between scaling exponents (v )
and B,,) estimated for multiple thresholds and time bins (significant values are averaged across frequencies) reveal negative and
positive values thatlargely belong to a truncated-power-law regimen and are close to ot ; o, = 3/2 (blackline with yellow circles).

Gray lines indicate power-law regimen. Yellow lines indicate exponential regimen.

Surprisingly, a qualitatively similar relationship was observed
for time-shuffled data (Fig. 5), albeit with weaker positive corre-
lations than those of original. These positive and negative corre-
lations were largely observed within the truncated-power-law
regimen and coincided with a5, = 3/2.

These observations hence comprise the first cortex-wide view
into the relationship of avalanches and LRTCs. The finding that
their correlation was observed in time-shuffled surrogate data as
well, albeit weakly, suggests that, in addition to interareal neuro-
nal interactions, also local LRTCs play a significant role in shap-
ing the avalanche dynamics.

Functional localization of correlates between « and 3

The localization of the correlates in terms of functional systems
and frequencies of LRTCs was done for earlier defined parame-
ters (T and Ar) associated with negative and positive correlations
in MEG data. SEEG data have been excluded from the analysis
because of spatial sampling bias. The correlation coefficients were
averaged within each functional system and frequency band (Fig.
6). The negative and positive correlates revealed distinct dynam-
ics over the frequencies. In all the frequency bands except 6-band,
the negative correlations were significant (p < 0.05), whereas
positive correlations were significant only at - and y-frequencies
(p <0.05). The negative and positive correlations showed similar
relationships between the systems at 8-frequency band where DA

of whether another long-memory process
would through c-modulation determine the
dynamics of both neuronal LRTCs and
avalanches.

Relationships among LRTCs of
neuronal and HRV and dynamics of
neuronal avalanches

Our previous study revealed that the scal-
ing exponents of LRTCs of neuronal am-
plitude fluctuations and of HRV time
series were correlated (Palva et al., 2013),
which suggests that the critical dynamics
in the central and ANSs could be related. To expand this obser-
vation and assess its role in the LRTC-avalanche relationship
examined here, we first quantified the LRTCs in HRV and exam-
ined their relationship with neuronal avalanches. Persistent
LRTCs were observed in HRV time series (Fig. 7A), with DFA
revealing scale-invariant mono-fractal dynamics (Fig. 7B). The
scaling exponents By were correlated with the exponents of
avalanche size distribution a4, detected in MEG in a manner
similar to their correlation with B, which supports the notion
onastronginterconnection between central and ANS activities in
a wide range of timescales (Fig. 7C). Moreover, although the
negative correlations between Syry and oy, in MEG were ob-
served for higher values of T and At compared with B, the
positive correlations were precisely matched with a4, = 3/2
and o1 ,, = 1 in the truncated-power-law regimen, which sug-
gests stability of the dynamics in this regimen. However, the cor-
relations between Bygy and a1 5, were not significant in SEEG
data (Fig. 7D).

We then assessed the relationship between By and neuronal
LRTCs. Joint distribution of the exponents, By and B, (f = 3 Hz,
averaged across cortical parcels [MEG] or electrode contacts
[SEEG]), plotted for all the MEG and SEEG subjects, indicated a
strong linear relationship with a correlation coefficient of r =
0.59 (p < 0.05) in MEG (Fig. 8A). The correlations between By
and B, were frequency-specific changes and different among
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Figure7. The LRTCscaling exponents of HRV are correlated with the size-scaling exponents
of neuronal avalanches in MEG but not in SEEG. A, Example of a heartbeat intervals time series
for a representative MEG subject. B, DFA reveals scale-free dynamics of HRV time series. C, D,
Scaling exponents of HRV ([3,,z,) are correlated with the exponents of avalanche size distribu-
tion 7. o in MEG (C) but not in SEEG (D).

functional systems (Fig. 8B). The correlations were significant
(p < 0.05) in 8- and 7y-frequency bands in MEG. LI and VA
systems showed greater correlation values than VI, SM, and DM
in 6-band. In y-band, LI showed the highest value as well, which
was different from DA, FP, and SM, and also VI revealed differ-
ence with SM. Curiously, the relationship between the systems in

v-band was very similar to that of positive correlations between
acrap and By Assessing this quantitatively, we found that the
spatio-spectral correlation patterns of Bry and By, were similar
to the correlation patterns of a7, and B, for original (r = 0.66,
p >0.0001 and r = 0.72, p < 0.0001; negative and positive cor-
relates, respectively) as well as time-shuffled (r = 0.93, p >
0.0001; negative correlates) data.

In SEEG, however, similarly to the absence of correlations
between By;zy and a4, there were no significant correlations
between Bygy and By in any functional system or frequency
band (Fig. 8B). Correlations for some systems seemed relatively
high (such as VI at 6 Hz, r = —0.44; LI at 6 Hz, r = —0.45), but
only half of the subjects (11 of 22) had electrode contacts in these
systems; therefore, the statistical power may be inadequate. Nev-
ertheless, this result strongly suggests that neuronal activity at the
scale of millimeter-range LFPs is essentially independent of ANS
dynamics that, in turn, is correlated only with the centimeter-
scale local synchronization measured by MEG.

Factors determining the correlation between scaling
exponents

We applied partial correlation analysis to control the influence of
a third variable among the interactions of &7, B(s)>» and Brry-
Intriguingly, we found that the scaling exponents of neuronal
avalanches were independently correlated with either cortical
(Fig. 9A) or autonomous (Fig. 9B) nervous system LRTCs.
Hence, neither central nor ANS LRTCs play an unequivocal driv-
ing role, but rather these dynamics appear to arise through recip-
rocal interactions between these systems.

Discussion

Several lines of electrophysiological (Linkenkaer-Hansen et al.,
2001), imaging (He, 2011), and behavioral (Palva et al., 2013)
evidence show that many features of CNS activity in vivo are
scale-free. The scale-free dynamics is relevant because it is a sig-
nature characteristic of complex systems poised at criticality
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A B al., 2013) and LRTGCs in 1-100 s scales
08 - 11 (Linkenkaer-Hansen et al., 2001), have
& o 0.8 been observed in human electrophysio-
= ' logical recordings. Both how these phe-
0.7 1 06 - nomena are mutually related and how
3 r T they interact with similar scale-free dy-
06 - 0.4 namics of the ANS (Ivanov et al., 1999)
° 02 have remained unclear. To address these
r=0.59* (p < 0.05) ’ questions, we set out to obtain a compre-
05 ' ' 0 hensive quantitative view onto human brain
0.4 0.9 14 dynamics by using both mesoscopic and
Briry macroscopic electrophysiological record-
08 - 06 ings with SEEG and MEG, respectively. This
(Che . study advances our understanding of brain
i ° 0.4 criticality in four fronts.
U)o_7 _ o ° 0.2 (1) The results indicate that the size
= o\‘\ distribution of large-amplitude activity
= ..':0“' £ 0 cascades (i.e., neuronal avalanches) ex-
06 1 . 02 hibits robust power-law scaling in both
r=-021 (p>0.17) 04 source-reconstructed MEG and white-
05 : : matter referenced SEEG recordings.
0.4 0.9 14 098° These observations are in line with the
Brrv nfa’ 6‘3‘1' \Q‘?@ & v Q‘?‘/l' studies that reported power-law distribu-
= tion of neuronal avalanche sizes in sensor-
Figure8.  LRTCsof HRV and neuronal fluctuations are correlated in MEG but not SEEG. A, Scatter plot of LRTC scaling exponents level EEG and MEG (Allegrini et al., 20105

of HRV (8Byy) and neuronal fluctuations (3, f = 3 Hz) for MEG (top) and SEEG (bottom) time series. B, Correlations between
Buryand B, reveal frequency-specific changes and differences between functional brain systems (*p << 0.01, ttest) in MEG (top)
but not SEEG (bottom). Dashed line indicates the significant threshold for correlation coefficients (p << 0.05, ¢ test for correlation

coefficient). Functional system colors are the same as in Figures 3 and 6.
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Figure 9.  Partial correlation analysis shows that neuronal avalanches in distinct T-At regi-
mens are independently correlated with either cortical or ANS LRTCs. 4, B, The significant values
of partial correlations between oy 5 and B4 with controlling variable 8,5, (4) and between
QA and Bygy with controlling variable 3, (B) averaged across multiple frequency bands.

(Chialvo, 2010). Operating at a critical state endows the system
maximal dynamic range (Kinouchi and Copelli, 2006; Shew et al.,
2009), optimal information retention, storage, and transmission
capacity (Haldeman and Beggs, 2005; Shew et al., 2011). Never-
theless, several controversies have continued to surround brain
criticality and demand further experimental work (Beggs and
Timme, 2012; Shew and Plenz, 2013).

The dynamics of a near-critical system can be quantitatively
described by power-law scaling exponents (Bak et al., 1987) that
in brain dynamics are both predictive of behavioral dynamics
(Palva et al., 2013; Smit et al., 2013) and robust biomarkers for
many brain diseases (Linkenkaer-Hansen et al., 2005; Nikulin et
al,, 2012).

However, several distinct forms of scale-free dynamics, in-
cluding neuronal avalanches in millisecond timescales (Shriki et

Shriki et al., 2013) and invasive ECoG re-
cordings (Solovey et al., 2012; Priesemann
et al,, 2013). (2) Although there are nu-
merous sensor-level EEG and MEG stud-
ies on LRTCs in ongoing human brain
activity, no studies have used source-reconstruction methods or
SEEG to identify the neuroanatomical characteristics of LRTCs.
We show here that the LRTC scaling exponents are systematically
distinct both among functional brain systems and between neu-
ronal oscillations in different frequency bands. In most analyses,
SEEG and MEG recordings yielded comparable results indicating
that neuronal dynamics at spatial meso and macro scales, respec-
tively, are similar. (3) Computational modeling predicts that the
exponents of avalanches and LRTCs would be correlated (Poil et
al., 2012). We found here a strong correlation between the expo-
nents of neuronal avalanches and LRTCs, which suggests that
these two dynamics have shared underlying mechanisms and/or
neuronal substrates. (4) We asked whether the critical dynamics
of ANS predicts the dynamics in CNS. We found that the scaling
exponents of LRTCs in neuronal and HRV time series were cor-
related in MEG but not in SEEG. This suggests that the impact of
ANS dynamics on cortical activity is weak and anatomically wide-
spread so that it becomes observable only in the centimeter-scale
coherent activity observable with MEG. Moreover, both CNS and
ANS LRTCs had independent partial correlations with neuronal
avalanches. These findings together suggest that there is bidirec-
tional interaction between ANS dynamics and macroscopic CNS
dynamics.

Data for and against the critical branching process theory for
avalanches in neuronal systems

Currently, there are no widely accepted theories for the phenom-
enology and mechanisms of criticality in neuronal systems. Pre-
dictions from the theory of critical branching processes are in line
with observations of neuronal dynamics (Beggs and Plenz, 2003),
but recent studies also reveal contradictions. In particular, critical
branching predicts a constant scaling exponent of 3/2, whereas
empirical results indicate that the exponent depends on interelec-
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trode distance (Beggs, 2008), subsampling (Priesemann et al.,
2009), and volume conduction (Shriki et al., 2013). Our results
show that the scaling exponents of source-reconstructed MEG
and SEEG time series are largely above 3/2 for the identical pa-
rameters of threshold ( T) and time bin width (At) that have been
used in previous studies (Beggs and Plenz, 2003; Shriki et al.,
2013). Taking into account that source reconstructed MEG and
SEEG are less affected by signal mixing, these results are in line
with the scaling exponent decreasing with increasing linear mix-
ing (Shriki et al., 2013).

The universalism of branching models in the domain of neu-
roscience is debated because most of the simulation results are
mainly consistent with experimental data acquired at submilli-
meter to millimeter scales (Beggs and Plenz, 2003; Haldeman and
Beggs, 2005; Plenz and Thiagarajan, 2007). For instance, the lin-
ear relationship between the exponents of avalanche size and
lifetime distributions observed at level of individual neurons
(Friedman et al., 2012) is in line with earlier studies (Beggs and
Plenz, 2004; Plenz and Thiagarajan, 2007). However, such results
might not be easily projected onto large-scale neuronal systems,
like brains in vivo, where the lifetimes of neuronal avalanches do
not exhibit power-law scaling and the size scaling exponents are
distinct among neuroanatomical structures (Petermann et al.,
2009; Hahn et al., 2010). Furthermore, a growing body of evi-
dence shows that large-scale brain networks are modular and
hierarchically organized (Meunier et al., 2010; Gallos et al., 2012).
A recent modeling study on avalanches in a modular system
showed that avalanche propagation was not confined to the mod-
ule where it started but still was able to activate only a small subset
of neurons in invaded modules (Russo et al., 2014). This suggests
that the dynamics of neuronal avalanches in a homogeneous sys-
tem may be fundamentally different from the dynamics of a sys-
tem composed of interacting modules.

Neuronal LRTCs are anatomically and spectrally distinct in
both MEG and SEEG

Graph theoretical analyses have shown that both the structural
connectome (i.e., the predominant axonal pathways) and the
dynamically emergent functional connectome of BOLD signal
correlations of the human brain are hierarchical and modular
networks. Are these internally densely connected modules char-
acterized by dynamics distinct of those in other modules? LRTCs
of amplitude of narrowband fluctuations vary across brain areas
in EEG and MEG (Linkenkaer-Hansen et al., 2004; Nikulin and
Brismar, 2005; Palva et al., 2013), in ECoG (He et al., 2010), and
functional systems in fMRI (He, 2011) recordings. To under-
stand the neuroanatomical specificity of LRTCs, we mapped
systematically the scaling exponents of LRTCs of source-
reconstructed MEG and SEEG time series into a common func-
tional parcellation (Yeo et al., 2011) for the five major frequency
bands (8-, 6-, a-, B-, and y-band). The largest exponents were
found in visual and dorsal attentional networks (a-band) in
MEG and SEEG, which is in line with prior EEG (Nikulin and
Brismar, 2005) and partially with fMRI (He, 2011) studies.
Importantly, SEEG and MEG recordings revealed similar spatio-
spectral patterns of the exponents at meso- and macro-spatial-
scales, respectively, suggesting that the dynamics reflects a
common neuronal process.

However, it is important to note that there are several kinds of
noncritical processes that may be associated with power-law
LRTCs (e.g., Friedman and Landsberg, 2013; Aitchison et al.,
2014; Schwab et al., 2014). Signatures of critical system are also
(1) asimple algebraic relationship between the exponents of mul-
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tiple power laws, (2) the existence of a universal scaling function,
and (3) phase transitions caused by tuning of the control param-
eter (Beggs and Timme, 2012). A modeling study suggests that
tuning of the excitation-inhibition balance from overinhibited to
underinhibited changes the LRTCs together with a shift in neu-
ronal avalanches from a subcritical to a supercritical regimen,
respectively (Poil et al., 2012).

Scaling exponents are correlated at fast- and slow-timescales
Neuronal avalanches and LRTCs coexist in neuronal activity
(Beggs and Plenz, 2004; Benayoun et al., 2010; Hahn et al., 2010),
but their relationship has remained unclear. We found here that
the scaling exponents of avalanche size distribution («) and
LRTCs (B) were correlated in both MEG and SEEG. Surprisingly,
the correlation coefficients between a and 3 were negative for a
in the power-law regimen, as tentatively observed previously
(Palvaetal., 2013), and positive for a in the truncated-power-law
regimen. The presence of both negative and positive correlations
might be related to LRTCs in the neuronal time series through a
simple mechanism. A process with stronger LRTCs facilitates
larger avalanches (smaller a), which explain negative correlations
at high threshold. Atlow threshold, a process with weaker LRTCs
facilitates larger avalanches (smaller &) mainly made of random
events which explain positive correlations accordingly. In time-
shuffled surrogate data with no spatial correlations, the positive
correlations were largely absent, which is likely associated with
the absence of large avalanches caused by random events. In this
sense, at meso- and macro-spatial-scales, the LRTCs might play a
crucial role in scale-free dynamics of neuronal avalanches.
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