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The study of functional connectivity (FC)
has become a major branch of functio-
nal MRI (fMRI) research. Biswal et al.
(1995)’s seminal discovery, that voxels in
the sensorimotor cortex exhibited highly
correlated activity at rest, seeded the field;
however, it took at least 10 more years for
it to gain widespread interest (Cordes et
al., 2000; Greicius et al., 2003; Fox et al.,
2005; Smith et al., 2009). There is cur-
rently much research into using FC as a
biomarker for clinical diagnosis (Greicius,
2008; Linden, 2012) and, more generally,
to gain insight into individual differences
in brain function (Smith et al., 2013).
Most studies investigate FC in the so-
called “resting state”: subjects in the scan-
ner are instructed to “lie still and think of
nothingin particular,” with eyes closed, or
open and fixating (Patriat et al., 2013);
however, FC can also be computed from
task fMRI data, usually after regressing
out stimulus-evoked activity (Fair et al,,
2007).

Cole et al. (2014) showed that, on av-
erage across subjects, a reliable intrinsic
network structure is preserved through all
tasks and rest. Additionally, ~40% of the
connections show mild but significant
changes that are task- (equivalently,
state-) dependent. The variability of FC in
individual subjects is now well recog-
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nized; functional network structure actu-
ally moves through several states within
the span of a single resting-state run
(Hutchison et al., 2013; Allen et al., 2014).
While some authors have used the dy-
namic nature of individual network struc-
ture to their advantage, e.g., Damaraju et
al. (2014), there is growing concern that
this variability could impede our ability to
use FC as a stable, trait-like measure of
individual subjects. A recent study in The
Journal of Neuroscience (Geerligs et al.,
2015) reinforces this concern.

Geerligs et al. (2015)’s study is among
the first published outputs of the Cam-
bridge Centre for Ageing and Neur-
oscience (Cam-CAN) cohort study, a
large-scale (N = ~700), multimodal
(MRI, MEG, and behavioral), cross-
sectional, population-based adult lifespan
(18—87 years old) investigation of the
neural underpinnings of successful cogni-
tive aging (Shafto et al., 2014; Taylor et al.,
2015). Geerligs et al. (2015) used state-of-
the-art imaging and preprocessing tech-
niques, notably with respect to motion
correction, which has been a thorny issue
in the functional connectivity literature
(Power et al., 2012; Satterthwaite et al.,
2012; Van Dijk et al., 2012; Tyszka et al.,
2014), and is especially problematic in ag-
ing studies (older people tend to move
more, as confirmed in this study). Geer-
ligs etal. (2015)’s study boasts a final sam-
ple size of 587 subjects (~100 per decade
of life), all of whom completed three
different tasks in the scanner: an 8 min,
40 s eyes-closed resting-state run (REST

state), an 8 min, 40 s sensorimotor task
(detection of brief auditory tones and/or
visual checkerboard flashes; TASK state),
and an 8 min, 13 s movie-watching run
(the movie being a shortened version of
Alfred Hitchcock’s television episode
“Bang, you're dead!,” as described in Has-
son et al. (2010); MOVIE state).

Whole-brain FC was assessed among
748 nodes from a published functional
parcellation (Craddock et al., 2012)
(Fig. le), in each of the three states
(REST, TASK, MOVIE), yielding a
748 X 748 FC matrix for each subject
and each state (Fig. 1a). First, the au-
thors performed the same analysis as
Cole et al. (2014): they averaged FC ma-
trices across subjects, then quantified
the similarity of the average FC matrices
for each pair of states using the Pearson
correlation coefficient r (Fig. 1b). As in
Cole et al. (2014), they found a high
similarity between the REST and TASK
FC matrices [variance explained r* =
87% of total variance (TV)]. Crucially,
Geerligs et al. (2015) also quantified the
reliability of the average FC matrix in
each state using a (conservative) split-
half procedure: the explainable variance
(EV) was high (99%TV), because of the
large number of subjects. The variance
attributable to state effects was thus
99%TV — 87%TV = 12%TV; ie,
12%TV/99%TV = 11.9%EV, for the
REST-TASK comparison.

The question that Geerligs et al. (2015)
set out to answer is whether relationships
between FC and age established in one
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Figure 1.

Geerligs et al. (2015)'s approach. a, Functional connectivity is assessed between all pairs of ROIs in the Craddock et al. (2012) parcellation, for each of the N = 587 subjects (S, S, . . .

Sy) in each of three states (MOVIE not shown). b, The average FCacross subjects is calculated for each state; the matrices are compared across states using the Pearson correlation coefficient, from
which the shared variance can be derived. , For each edge, the correlation of the FC value with age is computed across subjects (r, e  rc); the resulting matrices for each state can then be compared
and shared variance derived. d, Subjects’ FC matrices are compared using Pearson correlation, resulting is an N >}< N matrix of subject similarity for each state. The matrices are compared to establish
shared variance. e, The parcellation used for FC analyses; reproduced from Craddock et al. (2012), their Figure 3. (Matrices adapted from Geerligs et al. (2015), their Figs. 1-3; scatterplot in ¢ for

illustrative purposes only; color barin b applies to a—c).

state still hold in a different state. Instead
of looking at the average across subjects
for each edge value (i.e., each value in the
FC matrix), the authors computed the
correlation of each edge value with age
across subjects, again resulting in a 748 X
748 matrix for each state (Fig. 1¢). With
the same matrix correlation approach as
used previously, Geerligs et al. (2015)
established that 53%TV (61%EV) was
shared between REST and TASK runs,
while 34%TV (39%EV) was attributable
to differences between these states. These
results led Geerligs et al. (2015) to warn
that the conclusions drawn regarding the
effects of aging on FC would be “quite dif-
ferent” depending on the state that FC is
measured in.

Finally, to make a more general point
about individual differences inferred
from FC, Geerligs et al. (2015) used the
748 X 748 FC matrix of each subject as a
“fingerprint” (Miranda-Dominguez et al.,
2014; cf. Finn et al., 2015) and computed

the similarity between all pairs of subjects,
resulting in a 587 X 587 subject similarity
matrix for each of the three states (Fig.
ld). Again applying their matrix cor-
relation approach, Geerligs et al. (2015)
established that the similarities between
subjects had approximately equal con-
tributions from shared and state com-
ponents (REST-TASK 50%EV shared,
50%EV state), thus replicating and ex-
tending the age-related result. A notewor-
thy result from this last analysis is that
older subjects tended to have more idio-
syncratic FC matrices (in all three states).
Relatedly, Finn et al. (2015) recently
showed, using fMRI data from the Hu-
man Connectome Project (HCP) (168
subjects), that the intrinsic component of
the FC matrix of each subject allowed sub-
ject identification from FC matrices with
very high accuracy across states (e.g.,
REST-TASK). In light of Geerligs et al.
(2015)’s result, using older subjects (Finn
etal. (2015)’s oldest subjects were 35 years

old) may lead to even better identification
accuracy.

In an additional set of analyses (the de-
tails of which are beyond the scope of this
short commentary) Geerligs et al. (2015)
looked at FC within and between 16
custom-defined functional networks, in
an attempt to make more local claims on
which within- and between-network con-
nections are most affected by state, which
are most related to age in each state, and
finally, which connections show a signifi-
cant interaction between state and their
relationship to age.

Geerligs et al. (2015) conclude that FC
should be assessed under a wide range of
states for individual differences research,
to disentangle state effects from more sta-
ble FC differences. This is certainly wise
advice, although one could argue that
traits need not be solely reflected in stable
FC differences. For instance, if the aim is
to uncover the brain correlates of individ-
ual differences in social cognition, the
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brain states of subjects watching a movie
replete with social cues and interactions
(Byrge et al., 2015) may be more informa-
tive than those of the same subjects listen-
ing to classical music.

Can we still use FC derived in one
state (e.g., REST, the most often used,
and often only available, kind of data) as
a trait measure in the face of the re-
ported state-related variability? Though
Geerligs et al. (2015) write that “the re-
gions exhibiting the strongest effects of
aging on FC vary considerably between
tasks,” (p. 13959) the data are perhaps
less alarming. The first set of analyses
quantified variance of the entire FC ma-
trix and thus included a lot of irrelevant
information that potentially made the
situation look much worse than it really
is. The results presented by Geerligs et
al. (2015) are in fact compatible with a
situation in which a subset of the con-
nections are trait-related and stable
across states, while the rest of the con-
nections are more state-dependent (and
account for much of the state-related
variance). It would have been informa-
tive to compute a metric such as the in-
traclass correlation coefficient (ICC)
(Caceres et al., 2009) for each edge
across states to identify the best candi-
dates for trait-related connections, such
as the ones that have a high ratio of in-
tersubject variance (Mueller etal., 2013)
to intrasubject variance (Laumann et
al., 2015).

As a final note, establishing whether
FC in a particular state can be used as a
trait measure for age may have been better
approached using a predictive framework.
By building a (multivariate) predictive
model for age from FC edges in, for exam-
ple, the REST state (as in Dosenbach et al.,
2010), and then testing whether the mo-
del generalizes to other states (TASK,
MOVIE), one would find out whether the
significant state-related variance reported
by Geerligs et al. (2015) is of any practical
importance. Better yet, by trying out dif-
ferent models (different feature selection
mechanisms, different classifiers, etc.) in
the REST data, and assessing how they
generalize to other states, one may be
able to formulate practical guidelines for
building state-independent models from
data collected in a single state. Luckily,
given that this is a shared dataset (Taylor
et al.,, 2015), the burden of conducting
these additional analyses does not rest
solely with the original authors; anybody
interested in conducting them is able to
do so.
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