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Abstract

Individualized treatment rules aim to identify if, when, which, and to whom treatment should be 

applied. A globally aging population, rising healthcare costs, and increased access to patient-level 

data have created an urgent need for high-quality estimators of individualized treatment rules that 

can be applied to observational data. A recent and promising line of research for estimating 

individualized treatment rules recasts the problem of estimating an optimal treatment rule as a 

weighted classification problem. We consider a class of estimators for optimal treatment rules that 

are analogous to convex large-margin classifiers. The proposed class applies to observational data 

and is doubly-robust in the sense that correct specification of either a propensity or outcome model 

leads to consistent estimation of the optimal individualized treatment rule. Using techniques from 

semiparametric efficiency theory, we derive rates of convergence for the proposed estimators and 

use these rates to characterize the bias-variance trade-off for estimating individualized treatment 

rules with classification-based methods. Simulation experiments informed by these results 

demonstrate that it is possible to construct new estimators within the proposed framework that 

significantly outperform existing ones. We illustrate the proposed methods using data from a labor 

training program and a study of inflammatory bowel syndrome.
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1. Introduction

There is a growing consensus that the best possible care results from treatment decisions that 

are carefully tailored to individual patient characteristics (Sox and Greenfield, 2009). 

Individualized treatment rules (ITRs) formalize tailored treatment decisions as a function 

from patient information to a recommended treatment. We define an optimal ITR as 

maximizing the mean of a pre-specified clinical outcome if applied to recommend 

treatments in a population of interest (see Linn et al., 2016, for alternative definitions of 

optimality). With expanding access to patient-level data through electronic health records, 

adverse event reporting, insurance claims, and billing records, there is increasing interest in 

estimating optimal ITRs from observational data. An important use of an estimated optimal 

ITR is hypothesis-generation whereby the estimated optimal rule is used to discover 

covariate-treatment interactions or identify subgroups of patients with large treatment 

effects. In such applications, it is useful to directly control the class of ITRs within which the 

optimal ITR will be estimated. The form of this class can be chosen to ensure 

interpretability, enforce logistical or cost constraints, or make the tests of certain clinical 

hypotheses overt.

One approach to estimating an optimal ITR is to model some or all of the conditional 

distribution of the outcome given treatments and covariates and then to use this estimated 

distribution to infer the optimal ITR. These approaches are sometimes called indirect 

methods as they indirectly specify the form of the optimal ITR through postulated models 

for components of the conditional outcome distribution. Indirect methods have dominated 

the literature on estimating optimal ITRs; examples of indirect estimation methods include 

variations of g-estimation in structural nested models (Robins, 1989, 1997; Murphy, 2003; 

Robins, 2004); Q- and A-learning (Zhao et al., 2009; Qian and Murphy, 2011; Moodie et al., 

2012; Chakraborty and Moodie, 2013; Schulte et al., 2014), and regret regression 

(Henderson et al., 2009). However, a major drawback with these approaches is that the 

postulated outcome models dictates the class of possible ITRs. A consequence is that to 

obtain a simple ITR requires specification of simple outcome models, which may not be 

correctly specified. Moreover, if these outcome models are misspecified, the foregoing 

methods may not be consistent for the optimal ITR within the class implied by the outcome 

models. For example, to ensure a linear ITR using Q-learning, it is common to use a linear 

conditional mean model. It can be shown that if the linear mean model is misspecified then 

the estimated optimal ITR using Q-learning need not converge to the optimal linear ITR 

(Qian and Murphy, 2011). Alternatively, flexible outcome models that mitigate the risk of 

misspecification (e.g., Zhao et al., 2009; Qian and Murphy, 2011; Moodie et al., 2013) can 

induce a class of ITRs that is difficult or impossible to interpret (see Section 2 for details).
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An alternative to indirect estimation is to decouple models for the conditional outcome 

distribution from the class of ITRs. One way to do this is to form a flexible estimator of the 

mean outcome as a function of the ITR that is consistent under a large class of potential 

generative models and then to use the maximizer of this function over a pre-specified class 

of ITRs as the estimator of the optimal ITR. These approaches are called direct (Laber et al., 

2014), policy-search (Sutton and Barto, 1998; Szepesvári, 2010), policy learning (Athey and 

Wager, 2017) or value-search (Davidian et al., 2014) estimators. An advantage of direct 

estimators is that they permit flexible, e.g., semi- or non-parametric, models for modeled 

portions of the outcome distribution yet still control the form of the estimated optimal ITR. 

Direct estimators include outcome weighted learning (Zhao et al., 2012, 2015a, 2015b), 

robust value-search estimators (Zhang et al., 2012a, 2012b, 2013); marginal structural mean 

models (Robins et al., 2008; Orellana et al., 2010); and Q-learning with policy-search 

(Taylor et al., 2015; Zhang et al., 2015, 2017).

While the foregoing methods represent significant progress in direct estimation, 

computational and theoretical gaps remain. Outcome weighted learning uses a convex 

relaxation of an inverse-probability weighted estimator (IPWE) of the mean outcome. This 

convex relaxation makes their method computationally efficient and scalable to large 

problems; in addition, convexity simplifies derivations of convergence rates and 

generalization error bounds. However, the IPWE is known to be unstable under certain 

generative models (Zhang et al., 2012a, 2012b), and theoretical guarantees for outcome 

weighted learning were developed only for data from a randomized clinical trial. Robust 

value-search estimators directly maximize an augmented IPWE (AIPWE). The AIPWE is 

semi-parametric efficient and is significantly more stable than the IPWE. However, the 

AIPWE is a discontinuous function of the observed data, which makes direct maximization 

computationally burdensome even in moderate sized problems and complicates theoretical 

study of these estimators. We establish the theory for both AIPW and its convex relaxation, 

which fills the gap in the current literature on direct search methods. Marginal structural 

mean models are best suited for problems where the ITR depends only on a very small 

number of covariates. Liu et al. (2016) proposed a robust method for estimating optimal 

treatment rules in a multi-stage setup. At each stage in a multi-stage setup, they proposed a 

robust weight to replace the original weight in OWL based on the idea of augmentation. 

However, they still require consistent estimation of the propensity score at the present stage. 

In particular, their proposal for the single stage problem still relies on an IPWE, and does not 

possess the double robustness property.

We propose a class of estimators representable as the maximizer of a convex relaxation of 

the AIPWE; we term this class of estimators Efficient Augmentation and Relaxation 

Learning (EARL). EARL is computationally efficient, theoretically tractable, and applies to 

both observational and experimental data. Furthermore, EARL contains outcome weighted 

learning (OWL) (Zhao et al., 2012) as a special case. However, EARL is considerably more 

general than OWL, and this generality leads to new insights about classification-based 

estimation of ITRs, new algorithms, and new theoretical results. Unlike OWL, EARL makes 

use of both a propensity score and an outcome regression model. Estimators within the 

EARL framework are doubly-robust in the sense that they consistently estimate the optimal 

ITR if either the propensity score model or outcome regression model is correctly specified. 
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Within the EARL framework, we are able to characterize convergence rates across a range of 

convex relaxations, propensity score models, and outcome regression models. In particular, 

making use of sample splitting, we are able to remove the dependence in estimating the 

nuisance functions and in constructing the estimated ITR. We show that under all convex 

relaxations considered, a fast convergence rate of the estimated optimal ITR can be 

achieved, and that the estimation of the propensity score and outcome regression models 

need not affect the upper bound of this rate. Our theoretical results complement existing 

work on convergence rate for estimating optimal treatment decision rules, which primarily 

compared the estimated rules to the best-in-class rule (Kitagawa and Tetenov, 2017; Athey 

and Wager, 2017; ?). The proposed method has been implemented in R and is freely 

available through the ‘DynTxRegime’ package hosted on the comprehensive R network 

(cran.org).

In Section 2, we introduce the EARL class of estimators. In Section 3, we investigate the 

theoretical properties of estimators within this class. In Section 4, we use simulation 

experiments to investigate the finite sample performance of EARL estimators. In Section 5, 

we present illustrative case studies using data from a labor training program and an 

inflammatory bowel disease study. In Section 6, we make concluding remarks and discuss 

potential extensions.

2. Methods

In this section, we first provide background of the proposed method. We then introduce 

Efficient Augmentation and Relaxation Learning (EARL) in details.

2.1 Background and preliminaries

The observed data, Xi, Ai, Y i i = 1
n , comprise n independent, identically distributed copies 

of (X, A, Y ), where: X ∈ ℝp denotes baseline subject measurements; A ∈ {−1, 1} denotes 

the assigned treatment; and Y ∈ ℝ denotes the outcome, coded so that higher values are 

better. In this context, an ITR, d, is a map from ℝp into {−1, 1} so that a patient presenting 

with X = x is recommended treatment d(x). Let 𝒟 denote a class of ITRs of interest. To 

define the optimal ITR, denoted d*, we use the framework of potential outcomes (Rubin, 

1974; Splawa-Neyman et al., 1990). Let Y (a) denote the potential outcome under treatment 

a ∈ {−1, 1} and define Y(d) = ∑a ∈ − 1, 1 Y(a)I{a = d(X)} to be the potential outcome under 

d. The marginal mean outcome V(d) ≜ E Y(d)  is called the value of the ITR d. The optimal 

ITR satisfies d * ∈ 𝒟 and V (d*) ≥ V (d) for all d ∈ 𝒟. Note that this definition of optimality 

depends on the class 𝒟. To express the value in terms of the data generating model, we 

assume: (i) strong ignorability, {Y(−1), Y(1)} ⫫ A|X (Rubin, 1974; Robins, 1986; Splawa-

Neyman et al., 1990); (ii) consistency, Y = Y (A); and (iii) positivity, there exists τ > 0 so 

that τ < P(A = a|X) for each a ∈ {−1, 1} with probability one. These assumptions are 

common and well-studied (see Schulte et al., 2014, for a recent review of potential outcomes 

for treatment rules). Assumption (i) is true in a randomized study but unverifiable in an 

observational study (Bang and Robins, 2005).

Zhao et al. Page 4

J Mach Learn Res. Author manuscript; available in PMC 2019 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://cran.org


Define Q(x, a) ≜ E(Y | X = x, A = a), then under the foregoing assumptions, it can be shown 

that

V(d) = E[Q X, d(X) ], (1)

from which it follows that d*(x) = arg maxa ∈ − 1, 1 Q(x, a). Q-learning is a common 

regression-based indirect approach for estimating d* wherein an estimator Q(x, a) of Q(x, a) 

is constructed and subsequently the estimated optimal rule is d (x) = arg maxaQ(x, a). Let 𝒬

denote the postulated class of models for Q(x, a), then the set of possible decision rules 

obtained using Q-learning is 𝒟 = d :d(x) = argmaxaQ(x, a), Q ∈ 𝒬 . Thus, there is an inherent 

trade-off between choosing 𝒬 to be sufficiently rich to reduce the risk of model 

misspecification and the resultant complexity of the resultant class of ITRs.

Direct estimators specify a class of candidate ITRs independently from postulated models 

for some or all of the generative model. Let 𝒟 denote a class of ITRS; direct search 

estimators first construct an estimator of the value function, say V( ⋅ ), and then choose 

d = argmaxd ∈ 𝒟V(d) as the estimator of d*. Thus, a complex model space for V (·) need not 

imply a complex class of rules 𝒟. However, the class of models for V (·) must be sufficiently 

rich to avoid implicit, unintended restrictions on d . To avoid such restrictions and to avoid 

model-misspecification, it is common to use a flexible class of semi- or non-parametric 

models for V (·).

2.2 Augmentation for the value function

Define the propensity score π(a; x) ≜ P(A = a | X = x), then

V(d) = E Y
π(A; X) I{A = d(X)} , (2)

where I{·} denotes the indicator function (e.g., Qian and Murphy, 2011). Unlike (1), the 

preceding expression does not require an estimator of the Q-function. Given an estimator of 

the propensity score, π(a; x), a plug-in estimator for V (d) based on (2) is the inverse 

probability weighted estimator (IPWE) VIPWE(d) ≜ ℙn[YI{A = d(X)}/π(A; X)], where ℙn is the 

empirical distribution. The IPWE has potentially high variance as it only uses outcomes 

from subjects whose treatment assignments coincide with those recommended by d.

One approach to reduce variability is to augment the IPWE with a term involving both the 

propensity score and the Q-function that is estimated using data from all of the observed 

subjects (Robins et al., 1994; Cao et al., 2009). Let Q(x, a) denote an estimator of Q(x, a). 

The augmented inverse probability weighted estimator is
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VAIPWE(d) ≜ ℙn
YI A = d(X)

π d(X); X − I A = d(X) − π d(X); X
π d(X); X Q{X, d(X)} . (3)

It can be seen that VAIPWE(d) is equal to VIPWE(d) plus an estimator of zero built using 

outcomes from all subjects regardless of whether or not their treatment assignment is 

consistent with d. If Q(x, a) ≡ 0 then VAIPWE(d) = VIPWE(d) for all d.

Hereafter, we use Q(x, a) and π(a; x) to denote generic estimators of the Q-function and 

propensity score. The following assumption is used to establish double robustness of 

VAIPWE(d).

Assumption 1—Q(x, a) and π(a; x) converge in probability uniformly to deterministic 

limits Qm(x, a) and πm(a; x).

This assumption does not require that the estimators Q(x, a), π(a; x) are consistent for the 

truth, only that they converge to fixed functions. The following result is proved in Web 

Appendix A.

Lemma 2.1—Let d ∈ 𝒟 be fixed. If either πm(a; x) = π(a; x) or Qm(x, a) = Q(x, a) for all 

(x, a) outside of a set of measure zero, then V AIPWE(d) p V AIPWE, m(d) = V(d), where

V AIPWE, m(d) ≜ E YI A = d(X)
πm(A; X)

−
I A = d(X) − πm d(X); X

πm d(X); X
Qm{X, d(X)} .

The preceding result shows that V AIPWE(d) is doubly-robust in the sense that if either the 

propensity model or the modeled Q-function is consistent, but not necessarily both, then 

V AIPWE(d) is consistent for V (d). Thus, the maximizer of V AIPWE(d) over d ∈ 𝒟 is termed a 

doubly-robust estimator of the optimal treatment rule (Zhang et al., 2012a, 2012b, 2013). 

However, because V AIPWE(d) is not continuous, computing this doubly-robust estimator can 

be computationally infeasible even in moderate problems (Zhang et al., 2012a). Instead, we 

form an estimator by maximizing a concave relaxation of V AIPWE(d). Maximizing this 

concave relaxation is computationally efficient even in very high-dimensional problems. We 

show that the maximizer of this relaxed criteria remains doubly-robust. Furthermore, we 

show that the rates of convergence of the proposed estimators depend on the chosen concave 

relaxation, the chosen propensity model, and the chosen model for the Q-function. The 

relationships among these choices provides new knowledge about direct search estimators 

based on concave surrogates (Zhang et al., 2012; Zhao et al., 2012, 2015a, 2015b).

2.3 Efficient augmentation and relaxation learning (EARL)

Let ℳ be the class of measurable functions from ℝp into ℝ. Any decision rule d(x) can be 

written as d(x) = sgn{f(x)} for some function f ∈ ℳ, where we define sgn(0) = 1. For d(x) = 
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sgn{f(x)}, I{a = d(x)} = I{af(x) ≥ 0}. Define V (f), VIPWE,m(f), and V AIPWE,m(f) by 

substituting I{Af(X) ≥ 0} for I{A = d(X)} in their respective definitions. Define

Wa
m = Wa Y , X, A, πm, Qm = YI(A = a)

πm(a; X)
− I(A = a) − πm(a; X)

πm(a; X)
Qm(X, a), a ∈ { − 1, 1} .

The following result shows that maximizing VAIPWE( f ) is equivalent to minimizing a sum of 

weighted misclassification rates; a proof is given in Web Appendix B.

Lemma 2.2—Assume that P{f(X) = 0} = 0. Define f n = argsup f ∈ ℳVAIPWE( f ), then

f n = arg inf
f ∈ ℳ

ℙn W1 I sgn W1 f (X) < 0 + W−1 I −sgn W−1 f (X) < 0 ,

where Wa = Wa(Y , X, A, π, Q), a = ∈ {−1, 1}.

Lemma 2.2 shows that the estimator, f n, which maximizes VAIPWE( f ) over f ∈ ℳ, can be 

viewed as minimizing a sum of weighted 0–1 losses. In this view, the class labels are 

sgn(Wa) ⋅ a and the misclassification weights are Wa , a = ∈ {−1, 1} (see Zhang et al., 2012b, 

2013). Directly minimizing the combined weighted 0–1 loss is a difficult non-convex 

optimization problem (Laber and Murphy, 2011). One strategy to reduce computational 

complexity is to replace the indicator function with a convex surrogate and to minimize the 

resulting relaxed objective function (Freund and Schapire, 1999; Bartlett et al., 2006; Hastie 

et al., 2009). This strategy has proved successful empirically and theoretically in 

classification and estimation of optimal treatment rules (Zhao et al., 2012). However, unlike 

previous applications of convex relaxations to the estimation of optimal treatment rules, we 

establish rates of convergence as a function of the: (i) choice of convex surrogate; (ii) 

convergence rate of the postulated propensity score estimator; and (iii) convergence rate the 

postulated Q-function estimator. We characterize the relationship among these three 

components in Section 3.

The function f is conceptualized as being a smooth function of x that is more easily 

constrained to possess certain desired structure, e.g., sparsity, linearity, etc. Thus, we will 

focus on estimation of f within a class of functions ℱ called the approximation space; we 

assume that ℱ is a Hilbert space with norm ‖ · ‖k. Let ϕ: ℝ → ℝ denote a convex function 

and define EARL estimators as those taking the form

f n
λn = arg inf

f ∈ ℱ
ℙn W1 ϕ sgn(W1) f (X) + W−1 ϕ −sgn(W−1) f (X) + λn‖ f ‖2, (4)

where λn‖f‖2 is included to reduce overfitting and λn ≥ 0 is a (possibly data-dependent) 

tuning parameter. Throughout, we assume that ϕ(t) is one of the following: hinge loss, ϕ(t) = 

max(1 – t,0); exponential loss, ϕ(t) = e−t; logistic loss, ϕ(t) = log(1 + e−t); or squared hinge 
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loss, ϕ(t) = {max(1 – t, 0)}2. However, other convex loss functions are possible provided that 

they are differentiable, monotone, strictly convex, and satisfy (0) = 1 (Bartlett et al., 2006). 

As noted previously, Zhao et al. (2012) proposed a special case of EARL called outcome 

weighted learning, which set (t) = max(0, 1 – t), Q(x, a) ≡ 0, and assumed that the propensity 

score was known. Thus, as noted previously, EARL is considerably more general than OWL 

and, as shown in Section 4, the choice of a non-null model for the Q-function and alternative 

surrogate loss functions can lead to dramatically improved finite sample performance.

2.4 EARL via sample splitting

To facilitate the analysis of the statistical properties of EARL, we consider the following 

alternative estimator based on the sample splitting. Let I1,I2, …, IK denote a random 

partition of the indices {1,2, …, n} with Ij ∩ Ik = ∅ for any j ≠ k and ∪k = 1
K Ik = 1, 2, …, n . 

We assume the size of the partitions is comparable, that is, nk = |Ik| with n1 ≍ n2 ≍ … ≍ nK. 

In practice, K is taken as a small integer (e.g., 2, or 5) and is assumed fixed. Recall that the 

EARL estimator based on the full sample is defined in (4). In particular, the same samples 

are used to estimate the nuisance functions π, Q and construct the estimator f n
λn in (4). This 

creates the delicate dependence between the estimators π, Q and the samples used in the 

empirical risk minimization in (4). To remove this dependence, we now modify the 

procedure via sample splitting. First, for 1 ≤ k ≤ K, we construct estimators πk, Qk based on 

the samples in Ik, i.e., {(Xi, Ai, Yi); i ∈ Ik}. Denote I(−k) = {1, …, n}\Ik. Then, we use the 

remaining samples I(−k) for the EARL estimator

f n, k

λnk = arg inf
f ∈ ℱ

ℙn
( − k) W1k ϕ sgn(W1k) f (X) + W−1k ϕ −sgn(W−1k) f (X) + λnk‖ f ‖2,

(5)

where Wak = Wa(Y , X, A, πk, Qk), a =∈ {−1, 1} and ℙn
( − k) f = 1

I( − k)
∑i ∈ I( − k)

f Xi . We 

note that independent samples are used for estimating the nuisance functions π, Q and the 

decision rule f. Thus, the dependence between the estimators π, Q and the samples use in (4) 

is removed. Finally, to obtain a more stable estimator, we can aggregate the estimators

f n

λn = 1
K ∑

k = 1

K
f n, k

λnk, (6)

which is the final estimator based on sample splitting. While the estimator f n
λn requires more 

computational cost, it has important advantages over the original EARL estimator f n
λn in (4). 
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From a theoretical perspective, one can still analyze the EARL estimator f n
λn based on the 

empirical process theory. This typically requires the entropy conditions on the function 

classes of π and Q. In comparison, we show in the following section that the sample 

splitting estimator f n
λn does not require this condition. To the best of our knowledge, similar 

sample splitting technique was first applied by Bickel (1982) in general semiparametric 

estimation problems; see also Schick (1986). Recently, this approach has received attention 

in causal inference problems as a means of relaxing technical conditions. We refer to Zheng 

and van der Laan (2011); Chernozhukov et al. (2016); Robins et al. (2017) for further 

discussion.

3. Theoretical properties

Let f * ∈ ℳ be such that d*(x) = sgn{f*(x)}, and V * ≜ sup f ∈ ℳV( f ) = V f * . Define the 

population risk of function f as

ℛ( f ) = E(YI[A ≠ sgn f (X) ]/π(A; X)),

and ℛ* ≜ inf f ∈ ℳℛ( f ). We define the risk in this way to be consistent with the convention 

that higher risk is less desirable; however, inspection shows that the risk equals K – V (f) 
where K is a constant that does not depend on f. Thus, minimizing risk is equivalent to 

maximizing value, and V * − V( f ) = ℛ( f ) − ℛ *. Accordingly, for a convex function ϕ, we 

define the ϕ-risk

ℛϕ
m( f ) = E W1

m ϕ sgn W1
m f (X) + W−1

m ϕ −sgn W−1
m f (X) .

By construction, ℛϕ
m( f ) is convex; we assume that it has a unique minimizer and that 

ℛϕ
m * ≜ inf f ∈ ℳℛϕ

m( f ). The following result is proved in Web Appendix C.

Proposition 3.1

Assume that either πm(a; x) = π(a; x) or Qm(x, a) = Q(x, a). Define f = argmin f ∈ ℳRϕ
m( f )

and cm(x) = E{|W1(Y, x, A, πm, Qm)| + |W−1(Y, x, A, πm, Qm)|}. Then:

a. d * (x) = sgn f (x) ;

b. and

ψ V* − V( f )
sup

x ∈ ℝpcm(x) ≤
ℛϕ

m( f ) − ℛϕ
m *

inf
x ∈ ℝpcm(x) ,
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where ψ(θ) = |θ| for hinge loss, ψ(θ) = 1 − 1 − θ2 for exponential loss, ψ(θ) = (1 

+ θ)log(1 + θ)/2 + (1 − θ)log(1 − θ)/2 for logistic loss, and ψ(θ) = θ2 for 
squared hinge loss.

Part (a) of the preceding proposition states that if either the model for the propensity score or 

for the Q-function is correctly specified, then the EARL procedure, optimized over the space 

of measurable functions, is Fisher consistent for the optimal rule. Part (b) bounds the 

difference between V (f) and V * through the surrogate risk difference ℛϕ
m( f ) − ℛϕ

m *. The 

different forms of ψ(·) are due to the fact that different loss functions induce different 

distance measures of closeness of f(x) to the true f*(x). We use these risk bounds to derive 

bounds on the convergence rates of the value of EARL estimators constructd using sample 

splitting.

Let Π denote the function spaces to which the postulated models for π(a; x) belong; that is, 

the estimator π(a; x) belongs to Π. Similarly, let 𝒬 denote a postulated class of models for 

Q(x, a). In this section, we allow the approximation space, ℱ, to be arbitrary subject to 

complexity constraints; our results allow both parametric or non-parametric classes of 

models. Our primary result is a bound on the rate of convergence of V * − V( f n
λn) in terms of 

the ϕ-risk difference ℛϕ
m( f n

λn) − ℛϕ
m *.

For any ϵ > 0 and measure P, let N ϵ, ℱ, L2(P)  denote the covering number of the space ℱ, 

that is, N ϵ, ℱ, L2(P)  is the minimal number of closed L2(P)-balls of radius ϵ required to 

cover ℱ (Kosorok, 2008). Denote f P, 2
2 = E f 2(X). We make the following assumptions.

Assumption 2

There exists MQ > 0 such that |Y | ≤ M𝒬 and |Q(x, a) | ≤ M𝒬 for all (x, a) ∈ ℝp × {−1, 1} and 

Q ∈ 𝒬; there exists 0 < LΠ < MΠ < 1 such that LΠ ≤ π(a; x) ≤ MΠ for all (x, a) ∈ ℝp × {−1, 

1} and π ∈ Π.

Assumption 3

There exist constants 0 < v < 2 and c < ∞ such that for all 0 < ϵ ≤ 1: 

supPlogN ϵ, ℱ, L2(P) ≤ cϵ−v, where the supremum is taken over all finitely discrete 

probability measures P.

Assumption 4

For some α, β > 0, E πk(a; x) − π(a; x)
P, 2
2 = O n−2α  and E Qk(x, a) − Q(x, a)

P, 2
2 = O n−2β

for a = ±1 and 1 ≤ k ≤ K.

Assumption 2 assumes outcomes are bounded, which often holds in practice. Otherwise, we 

can always use a large constant to bound the outcome. We also assume propensity scores are 

bounded away from 0 and 1, which is a standard condition for the identification of the 
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treatment effect in causal inference. Assumption 3 controls the complexity of the function 

spaces for estimating an optimal ITR. For example, if ℱ is composed of linear combinations 

of elements in a fixed base class, ℋ, where ℋ has finite Vapnik-Chervonenkis (VC) 

dimension vc, then there exists a constant cvc, depending on vc, so that 

supPlogN ϵ, ℱ, L2(P) ≤ cvcϵ−2vc/(vc + 2) (Theorem 9.4, Kosorok (2008)). We note that the 

entropy conditions on 𝒬 and Π are not needed by using the sample splitting technique, due to 

the independence between estimating π, Q and estimating f.

Assumption 4 specifies the rate of convergence of the estimators π and Q in terms of the ‖ · 
‖P,2 norm. It is well known that the L2 rate of convergence is related to the smoothness of the 

function classes 𝒬 and Π and the dimension of X. For instance, if 𝒬 corresponds to the 

Holder class with smoothness parameter s on the domain [0, 1]p, then Theorem 7 of Newey 

(1997) implies E Q(x, a) − Q(x, a)
P, 2
2 = Op K /n + K−2s/ p , where Q(x, a) is the regression 

spline estimator and K is the number of basis functions.

Define the approximation error incurred by optimizing over ℱ as

𝒜 λn = inf
f ∈ ℱ

λn f 2 + ∑
a = ± 1

E Wa
mϕ a ⋅ f (X) − inf

f ∈ ℳ
∑

a = ± 1
E Wa

mϕ a ⋅ f (X) . (7)

The following result on the risk bound is the main result in this section and is proved in the 

Web Appendix D.

Theorem 3.1

Suppose that assumptions 1–4 hold, λn → 0. Define 

cm(x) = E |W1
m X =x, A = 1 + E |W−1

m X = x, A = − 1 . If Qm(x, a) = Q(x, a) and πm(a; x) = 

π(a;x), then

ψ
V* − V f n

λn

sup
x ∈ ℝpcm(x) ≲ 1

inf
x ∈ ℝpcm(x) ⋅ 𝒜 λn + n

− 2
v + 2λn

− v
v + 2 + n−1λn

−1

+λn
−1/2n−(α + β) + λn

−1/2 n−(1/2 + α) + n−(1/2 + β) .

In all cases considered, the function ψ is invertible on [0,1], and its inverse is monotone non-

decreasing. Thus, for sufficiently large n (making the right-hand-side of the equation 

sufficiently small) the inequality can be re-arranged to yield a bound on V * − V( f n
λn). The 

form of ψ−1 dictates the tightness of the bound as a function of the ϕ-risk. According to 

Lemma 3 in Bartlett et al (2006), a flatter loss function leads to better bound on ψ function. 
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In other words, a flatter loss function gives better bounds on V * −V (f) in terms of 

ℛϕ
m( f ) − ℛϕ

m *. In this respect, hinge-loss can be seen to provide the tightest bound; however, 

the ϕ-risk is not directly comparable across different loss functions as they are not on the 

same scale.

The right hand side of the bound in Theorem 3.1 consists of three parts: the approximation 

error 𝒜 λn  due to the size of the approximation space ℱ, the error n
− 2

v + 2λn
− v

v + 2 + n−1λn
−1

due to the estimation in the function space ℱ, and the error 

λn
−1/2n−(α + β) + λn

−1/2 n−(1/2 + α) + n−(1/2 + β)  incurred from plugging the estimators πk and 

Qk. As expected, the approximation error decreases as the complexity of the class ℱ

increases, whereas the estimation error increases with the complexity of the class ℱ and 

decreases as the sample size increases.

For the error incurred from plugging the estimators πk and Qk, the component 

λn
−1/2 n−(1/2 + α) +n−(1/2 + β)  converges to 0 faster than λn

−1/2n−(α + β) in regular statistical 

models (i.e., α, β ≤ 1/2). Thus, it suffices to only look at the term λn
−1/2n−(α + β). This term 

can shrink to 0 sufficiently fast as long as one of the estimators πk and Qk has a fast rate, due 

to the multiplicative form of the estimation error. For example, if α = β = 1/4, the error from 

plugging the estimators π and Q is n−1/2λn
−1/2. Hence, the rate of the proposed method is 

faster compared with the outcome weighted learning method, which is developed based on 

an IPWE and does not enjoy this multiplicative form of the errors. This phenomenon can be 

viewed as a nonparametric version of the double robustness property (see Fan et al., 2016; 

Benkeser et al., 2017, for additional discussion). Compared with the results in Athey and 

Wager (2017), we allow for the surrogate loss to replace the 0–1 loss in solving for the 

optimizer. While the orders in the bound of convergence rates are comparable, the 

differences in the constants in the bounds might be due to the application of the surrogate 

function.

Remark 1

If α = β and

n2α − 1λn
−1/2 ∞, or n2α(v + 2) − 2λn

1 − v/2 ∞, (8)

then

ψ
V* − V( f n

λn)
sup

x ∈ ℝpcm(x) ≲ 1
inf

x ∈ ℝpcm(x) ⋅ 𝒜 λn + n
− 2

v + 2λn
− v

v + 2 + n−1λn
−1 , (9)
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where the upper bound is of the same order as that obtained if the conditional mean Q(x, a) 

and propensity score π(a; x) are known. We note that the additional constraints on α and v 
in (8) are necessary to obtain the fast rate of convergence (9). For instance, if the function 
classes 𝒬 and Π are indexed by finite dimensional parameters, we can obtain α = β = 1/2 

under mild conditions. As a result, the first condition in (8) holds and the fast rate of 
convergence (9) is applied. On the other hand, if ℱ is a simple class but π − π P, 2 and 

Q − Q P, 2 converge at slower rates, the rate for V* − V( f n
λn) will be driven by λn

−1/2n−(α + β).

To estimate the value of the optimal treatment rule V *, one can aggregate the empirical 

value of the sample splitting estimator f n, k
λn, k in each subsamples I(−k), that is, 

V = 1
K ∑k = 1

K V( − k)( f n, k
λn, k

), where

V( − k)( f ) = ℙn
( − k) W1k ϕ sgn(W1k) f (X) + W−1k ϕ −sgn(W−1k) f (X) ,

The following corollary, provides a corresponding bound on the rate for V * − V. The proof 

is given in Web Appendix D.

Corollary 3.1

Suppose that assumptions 1–4 hold, and λn → 0. If Qm(x,a) = Q(x, a) and πm(a; x) = π(a; 

x), then

V* − V ≲ 1
K ∑

k = 1

K
[V* − V( f n, k

λn, k)] + n−1/2 + λn
−1/2n−(α + β) + λn

−1/2 n−(1/2 + α) + n−(1/2 + β) ,

where

1
K ∑

k = 1

K
[V* − V( f n, k

λn, k)] ≲ sup
x ∈ ℝp

cm(x)ψ−1 1
inf

x ∈ ℝpcm(x) ⋅ 𝒜 λn + n
− 2

v + 2λn
− v

v + 2 + n−1λn
−1

+λn
−1/2n−(α + β) + λn

−1/2 n−(1/2 + α) + n−(1/2 + β) .

Remark 2

Athey and Wager (2017) and Kitagawa and Tetenov (2017) investigated the binary-action 
policy learning problem, and established a risk bound of n−1/2 for both known propensities 
(Kitagawa and Tetenov, 2017) and unknown propensities (Athey and Wager, 2017). 
However, they considered a restricted class of decision rules and subsequent risk bound were 
established with respect to the optimal rule within this restricted class. Hence, there was not 
consideration of the approximation error. In contrast, we considered the optimal rule within 
the space consisting of all measurable functions from ℝp (the covariate space) to {−1, 1} 

(the treatment space). We used a smaller space, for example, a reproducing kernel Hilbert 
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space, to approximate the policy space and to avoid overfitting. This led to a tradeoff 
between approximation and estimation error, and λn was a tuning parameter to control this 
bias-variance tradeoff. Consequently, the achieved convergence rates are different.

4. Simulation experiments

We compare EARL estimators with: Q-learning fit using ordinary least squares (QL, Qian 

and Murphy, 2011); estimating the optimal rule within a restricted class based on an AIPW 

estimator (AIPWE, Zhang et al., 2012b); and outcome weighted learning (OWL, Zhao et al., 

2012). Comparisons are made in terms of the average value of the rule estimated by each 

method. For Q-learning, we fit a linear model for the Q-function that includes all two-way 

interactions between predictors and pairwise interactions between these terms and treatment. 

In the AIPWE method, an AIPW estimator for the value function is constructed and then the 

optimal linear rule that maximizes the AIPW estimator is identified via a genetic algorithm. 

Similar to EARL, both a propensity score model and a regression model need to be fitted in 

AIPWE. We will use the same set of models in EARL and the AIPWE, which are detailed in 

below. For OWL, we use a linear decision rule; recall that OWL is a special case of EARL 

with Q(x, a) ≡ 0, ϕ(t) = max(0, t), and a known propensity score. All estimation methods 

under consideration require penalization; we choose the amount of penalization using 10-

fold cross-validation of the value. Within the class of EARL estimators, we considered 

hinge, squared-hinge, logistic, and exponential convex surrogates. An implementation of 

EARL is available in the R package ‘DynTxRegime;’ this package also includes 

implementations of AIPWE and OWL and therefore can be used to replicate the simulation 

studies presented here. We included an example for implementing EARL method using 

‘DynTxRegime’ package in Web Appendix H.

We consider generative models of the form: X = (X1, …, Xp) ∼i.i.d. N(0,1) with p = 10; 

treatments are binary, taking the values in {−1, 1} according to the model p(A = 1|X) = exp{ℓ
(X)}/[1 + exp{ℓ(X)}], where ℓ(x) = x1 + x2 + x1x2 in Scenario 1, and ℓ(x) = 0.5x1 – 0.5 in 

Scenario 2; Y = ∑ j = 1
p X j

2 + ∑ j = 1
p X j + Ac(X) + ϵ, where ϵ ~ N(0, 1), and c(x) = x1+x2−0.1. 

Write X2 to denote X1
2, …, X p

2 . The following modeling choices are considered for the 

propensity and outcome regression models.

CC. A correctly specified logistic regression model for π(A;X) with predictors X1, 

X2 and X1X2 in Scenario 1, and with predictor X1 in Scenario 2; and a correctly 

specified linear regression model for Q(X, A) with predictors X, X2, A, X1A and X2A 
in both scenarios.

CI. A correctly specified logistic regression model for π(A; X) with predictors X1, X2 

and X1X2 in Scenario 1, and with predictor X1 in Scenario 2; and an incorrectly 

specified linear model for Q(X, A) with predictors X, A, XA in both scenarios.

IC. An incorrectly specified logistic regression model for π(A; X) with predictors X 
in Scenario 1, and without any predictors in Scenario 2; and a correctly specified 

linear model for Q(X, A) with predictors X, X2, A, X1A and X2A in both scenarios.
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II. An incorrectly specified logistic regression model for π(A; X) with predictors X in 

Scenario 1, and without any predictors in Scenario 2; and an incorrectly specified 

linear model for Q(X, A) with predictors X, A, XA in both scenarios.

We use the same model specifications to carry out AIPWE, and denote them as CC-A, CI-A, 

IC-A, and II-A correspondingly. For the OWL method, we use correct and incorrect 

propensity models to construct the ITRs, and denote them as C. and I. respectively. 

Similarly, we use Q-learning to construct the ITRs based on correct and incorrect regression 

models, and term them as .C and .I respectively.

We consider sample sizes 200, 500, 1000, 2500, 5000 and 10000. We generate a large 

validation data set (size 10000) and 500 training sets under each sample size. The ITRs are 

constructed based on one training set out of 500 replicates using competing methods. For 

implementing EARL, we use logistic loss. We observe similar patterns for other surrogate 

loss functions (see the Web Appendix). We carry out cross-validation to select λn among a 

pre-specified set of values (2−5,,2−4, …, 25). Then we calculate the mean response had the 

whole population followed the rule (the value function) by averaging the outcomes over 

10000 subjects under the estimated ITRs in the validation data set. Thus, there are 500 

values of the estimated rules on the validation set for each sample size. Boxplots of these 

values are shown in Figures 1 and 3. The performance of OWL was generally worse than 

that of the EARL estimator or QL. The AIPWE method exhibits a larger bias and a higher 

variance compared to the proposed method, while running approximately 200 times slower. 

As expected, the QL method works best when the model is correctly specified but can 

perform poorly when this model is misspecified.

It appears that misspecification of the model for the Q-function has a bigger impact than 

misspecification of the propensity score model on the AIPWE and EARL methods. The 

relatively poor performance when the propensity is correctly specified but the regression 

model is not might be attributed in part to inverse weighting by the propensity score, which 

is problematic when some estimated propensity scores are close to zero, yielding large 

weights and subsequently induces bias (Kang and Schafer, 2007). This is illustrated by 

contrasting scenarios 1 and 2. Propensity scores in Scenario 2 are bounded away from zero, 

which yield a better result compared to Scenario 1. Furthermore, the large variability when 

the regression model is misspecified may be partly a consequence of the method used to 

estimate the coefficients in the regression model (see Cao et al., 2009).

Finally, we consider an example to illustrate the impact of a severely misspecified propensity 

score model. In Scenario 3, the data was generated as in Scenario 2 except that the 

propensity score was set to 0.025 for all subjects. The ‘CI’ setup outperformed the ‘IC’ 

setup, especially when the sample size was small. Furthermore, the performance of the 

AIPWE method was largely affected by this poorly imposed propensity model. The results 

of ‘CI’ and ‘II’ setups were unsatisfactory even when the sample size was increased to 

10000. This example indicates that the performances in the ‘CI’ and ‘IC’ setups depend on 

the degree of misspecification in the outcome regression model and propensity score model.

We also conducted a set of simulation experiments to investigate the role of parametric and 

nonparametric models for the propensity score and outcome regression. In addition, we 
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compared the performance across different surrogate loss functions, including logistic loss, 

exponential loss, squared hinge loss, and hinge loss. These additional simulation results can 

be found in Web Appendix F. In summary, we found that in the examples considered, using 

nonparametric working models for propensity scores could improve results over parametric 

models. Hinge loss has a more robust performance when the regression model is incorrect 

compared to other smooth losses.

5. Application: Ocean State Crohn’s and Colitis Area Registry (OSCCAR)

OSCCAR is a community—based incident cohort of subjects with inflammatory bowel 

disease (IBD) residing in the state of Rhode Island that was established in 2008 (Sands et al., 

2009). Subjects enrolled in OSCCAR have ulcerative colitis (UC), Crohn’s disease (CD), or 

indeterminate colitis (IC). Corticosteroids are commonly used to treat active symptoms. 

Although, corticosteroids often promptly achieve remission, long-term use is complicated by 

many potential side effects. One treatment strategy for IBD patients is a “step-up” approach 

in which patients are prescribed medications with increasing potential toxicity based on the 

severity of their disease. Alternatively, a “top-down” approach uses aggressive therapy early 

in the disease course to prevent long-term complications. Both approaches have been shown 

to be clinically effective, however, there is treatment response heterogeneity and it is not 

clear which treatment is right for each individual patient. Clinical theory dictates that those 

likely to experience a more aggressive disease progression would benefit more from “top-

down” than “step-up”; whereas those likely to experience a less aggressive progression 

might benefit more from “step-up.”

The primary outcome is the disease activity score measured at the end of the second year, as 

measured by the Harvey—Bradshaw Index for subjects with CD and the Simple Clinical 

Colitis Index for subjects with UC. In both measures, higher scores reflect more disease 

activity. A high-quality treatment rule would reduce disease activity by assigning patients to 

top-down if it is necessary and step-up otherwise. Among the 274 patients included in the 

observed data, 32 patients were assigned to the top-down strategy (A = 1) and 242 were 

assigned to step-up (A = −1). To remain consistent with our paradigm of maximizing mean 

response we used the negative disease activity score as the response, Y. 11 patient covariates 

were used, which included age, gender, ethnicity, marital status, race, body mass index, 

disease type, antibiotics drug usage, antidiarrheal drug usage, indicator for extra-intestinal 

manifestation and baseline disease activity scores. We used a linear regression model to 

estimate the Q-function, and a regularized logistic regression model to estimate the 

propensity score to avoid overfitting. In addition to the EARL estimators we applied QL and 

OWL to estimate an optimal treatment rule. Because this is an observational study with 

unknown propensity scores, we evaluated the estimated treatment rules d  using inverse 

probability weighting VIPWE(d ) = ℙn YI A = d (X) /π(A; X) /ℙn I A = d (X) /π(A; X) , where 

π is the estimated propensity score. Higher values of VIPWE(d ), that is, lower disease activity 

scores, indicate a better overall benefit.

The coefficients of the estimated optimal treatment rules constructed from EARL with 

logistic loss are presented in Table 1. A permutation test based on 2000 permutation times 
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was conducted to obtain the p-value for each covariate, which showed that body mass index 

was significant at 0.05 level and gender was significant at 0.1 level. In general, patients with 

a more severe disease status at baseline are likely to benefit from a top-down therapy. This is 

consistent with clinical theory as these symptoms are associated with higher disease severity.

Table 2 describes the agreement between the estimated optimal decision rules constructed 

using different methods, which shows that the rules estimated using EARL with different 

loss functions give quite similar treatment recommendations. In this table, we also present 

the agreement between the estimated decision rules and the observed treatments. Compared 

to the observed treatment allocations, the estimated rules encourage more patients to receive 

top-down therapy, where 161 patients are recommended to top-down treatment by EARL 

methods with all loss functions, 225 patients are recommended by OWL method using 

logistic loss and 145 patients are recommended by QL method respectively. The estimated 

disease activity score is 1.75 using logistic loss, compared with 1.80 for the QL estimator, 

and 1.75 for OWL using logistic loss. Although the achieved benefit of the ITR yielded by 

OWL and EARL were similar, EARL recommended less patients to the more intensive top-

down therapy, which could benefit patients by reducing the side effects. The achieved 

benefits of the derived ITRs were greater than the benefit that was achieved in the observed 

dataset, where the average disease activity score was 2.24. Since top-down therapy is relative 

new in the practice, to be conservative, physicians tend not to provide such therapy to 

patients. Our analysis encourages the usage of top-down therapy for a greater benefit, which 

can be tailored according to individual characteristics. By looking into the relationship 

between the observed treatment and covariates, we found that in current practice, physicians 

were more likely to follow top-down therapy while giving out antibiotics and antidiarrheals 

drugs in patients with Crohn’s disease. The ITRs resulted from EARL, on the other hand, 

were more likely to recommend top-down therapy for ulcerative colitis/indeterminate colitis 

patients while they are not taking antibiotics and antidiarrheals drugs.

We also applied our method to the study of National Supported Work Demonstration, which 

also showed a superior performance of the proposed method. Results are shown in Web 

Appendix G.

6. Discussion

We proposed a class of estimators for the optimal treatment rule that we termed EARL. This 

class of methods is formed by applying a convex relaxation to the AIPWE of the marginal 

mean outcome. To reduce the risk of misspecification, it is possible to use flexible, e.g., 

nonparametric, models for the propensity score and the Q-function. However, we showed 

theoretically and empirically that such flexibility comes at the cost of additional variability 

and potentially poor small sample performance.

We demonstrated that extreme propensity scores may lead to a large variance in the 

augmented inverse probability weighted estimator. To alleviate this issue, weight 

stabilization could potentially help. In particular, we can consider a stabilized weight of the 

form

Zhao et al. Page 17

J Mach Learn Res. Author manuscript; available in PMC 2019 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SWa
m = Wa

m I(A = a)
πm(a; X)

.

Using modified weight SWa
m leads to consistent estimator of the optimal decision rule if 

positivity assumption holds, that is, Lemma 2.2 still holds under the modified weight. 

Alternatively, we may also consider an estimator which achieves the smallest variance 

among its class of doubly robust estimators when the propensity score model is correctly 

specified. Such an estimator can be derived following the techniques used in Cao et al. 

(2009).

There are several important ways this work might be extended. The first is to handle time-to-

event outcomes wherein the observed data are subject to right-censoring. In this setting, 

efficient methods for augmentation to adjust for censoring might be folded into the EARL 

framework. Another extension is to multi-stage treatment rules, also known as, dynamic 

treatment regimes (Murphy, 2003; Robins, 2004; Moodie et al., 2007). A challenging 

component of this extension is that the variability of the AIPWE increases dramatically as 

the number of treatment stages increases. We believe that the convex relaxation may help in 

this setting not only in terms of computation but also by reducing variance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Boxplots for Scenario 1 results under QL, AIPWE, and OWL and EARL using logistic loss.
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Figure 2: 
Boxplots for Scenario 2 results under QL, AIPWE, and OWL and EARL using logistic loss.

Zhao et al. Page 22

J Mach Learn Res. Author manuscript; available in PMC 2019 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Boxplots for Scenario 3 results under QL, AIPWE, and OWL and EARL using logistic loss.
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Table 1:

Coefficients for the estimated optimal decision rules by EARL with logistic loss (*: significant at 0.05 level).

Coefficient p-value

Intercept 2.466 -

Age −0.001 0.905

Gender (Male = 1) 0.756 0.015*

Ethnicity (Hispanic = 1) −1.045 0.144

Marital status (Single = 1) −0.320 0.318

Race (White = 1) −0.233 0.478

Body mass index −0.063 0.037*

Disease type (UC or IC = 1) 0.309 0.234

Antibiotics drug usage (Yes = 1) −0.156 0.563

Antidiarrheals drug usage (Yes = 1) −0.580 0.167

Extra-intestinal manifestation (Yes = 1) 0.273 0.286

Baseline disease activity scores 0.050 0.427
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Table 2:

Agreements between the estimated optimal decision rule yield by different methods and the observed 

treatment. OWL-logit: OWL using logistic loss; EARL: EARL using logistic loss; EARL: EARL using 

exponential oss; EARL-hinge: EARL using hinge loss; EARL-sqhinge: EARL using squared hinge loss; QL: 

Q-learning.

OWL-Logit EARL-logit EARL-exp EARL-hinge EARL-sqhinge QL

OWL-Logit 1 0.642 0.821 0.639 0.639 0.577

EARL-logit 1 0.588 0.996 0.996 0.920

EARL-exp 1 0.591 0.591 0.529

EARL-hinge 1 1 0.916

EARL-sqhinge 1 0.916

QL 1

Observed 0.193 0.449 0.117 0.453 0.453 0.507
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