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Abstract

Treatment rules based on individual patient characteristics that are easy to interpret and 

disseminate are important in clinical practice. Properly planned and conducted randomized clinical 

trials are used to construct individualized treatment rules. However, it is often a concern that trial 

participants lack representativeness, so it limits the applicability of the derived rules to a target 

population. In this work, we use data from a single trial study to propose a two-stage procedure to 

derive a robust and parsimonious rule to maximize the benefit in the target population. The 

procedure allows a wide range of possible covariate distributions in the target population, with 

minimal assumptions on the first two moments of the covariate distribution. The practical utility 

and favorable performance of the methodology are demonstrated using extensive simulations and a 

real data application.
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1 Introduction

In the new era of personalized medicine, it has been advocated that treatments should be 

recommended according to individual patient characteristics to account for considerable 

heterogeneity among patients’ responses to different treatments (Hayes et al., 2007; 

Hamburg and Collins, 2010). Randomized clinical trials (RCTs) are ideal for constructing 

such rules, since they provide internal validity by ensuring consistency, positivity and no 
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unmeasured confounders (Greenland, 1990; Hernán and Robins, 2006) that may be violated 

in observational studies.

Sophisticated statistical methods have been developed to estimate optimal individualized 

treatment rules using data from randomized trials. Regression-based methods estimate 

outcome as a function of patient covariates and treatment, and then select the treatment that 

maximizes the predicted outcome for each individual (Brinkley et al., 2010; Qian and 

Murphy, 2011; Kang et al., 2014). Some recent developments directly search for the 

individualized treatment rules that maximize the benefit for future patients (Zhang et al., 

2012; Zhao et al., 2012). When the primary outcome of interest is survival time subject to 

right censoring, some methods have been proposed in this regard using either regression-

based methods Goldberg and Kosorok (2012); Huang et al. (2014) or direct search methods 

Zhao et al. (2015).

The derived optimal rules sometimes are complex and nonlinear, so they are highly variable 

and may not be practically useful. To better inform clinical practice, it is more desirable that 

a recommended treatment rule be easy to interpret and disseminate. As suggested in 

Orellana et al. (2010), the class of practically enforceable candidate regimes is significantly 

smaller than the class of arbitrary functions of covariates. Usually these regimes are 

comprised of functions that only depend on a small set of covariates, and are indexed by a 

set of finite dimensional parameters. Statistically, Qian and Murphy (2011) used a rich linear 

basis for better modeling the outcome, with a sparsity penalty imposed to preserve the 

parsimoniousness of the resulting rule, while most works considered and recommended 

rules from a linear functional class.

Unfortunately, it has been well known that the RCT may have limited generalizability when 

the distribution of treatment effect modifiers in trial participants differs from the one in a 

target population (Buchanan et al., 2016). A parsimonious treatment rule constructed from 

trial data using current methods cannot be directly carried over to a target population, when 

the population characteristics are different between the two. Some attempts have been made 

to adjust population difference using inverse probability-of-selection weight method (Cole 

and Stuart, 2010). This, however, requires complete knowledge of population selection 

mechanism, and it is yet to be extended to the context of developing optimal treatment rules.

In this paper, we aim to robustify the treatment rule from a trial so that the robustified rule is 

(1) parsimonious (linear in patient features in particular); (2) still maximizes a general 

benefit criterion when applied to the target population. We provide a new framework, called 

minimax linear decision (MiLD), to robustify the treatment rule. MiLD enables the 

construction of a linear rule that optimizes the general benefit function in the target 

population, allowing differences between the target and the trial populations in the means 

and covariances in treatment effect modifiers. It can be further extended to construct 

nonlinear rules using the ‘kernel trick’, which avoids the explicit feature mapping but only 

relies on a kernel function to learn a nonlinear decision boundary. Regardless, MiLD 

requires no further assumptions beyond the first two moments of the covariate distributions. 

Moreover, our developed framework is applicable to all types of outcomes.
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The remainder of the paper is organized as follows. In Section 2, we formulate the problem 

of finding a robust and parsimonious treatment rule using data from a clinical trial. The 

proposed method, MiLD, is then developed to optimize a general benefit function in the 

target population, allowing the covariate distribution to be different between the two 

populations. Consistency and convergence rate results are established for the proposed 

method. We present simulation studies to evaluate performances of the proposed method in 

Section 4. We further illustrate the method using a data example from a US NIH funded 

SWOG trial on castration-resistant prostate cancer patients in Section 5. The proofs of 

theoretical results are given in the Appendix.

2 Methodology

2.1 Background and the optimal treatment rule

Let T denote the outcome of interest, A ∈ {−1, 1} denote a binary treatment, and X = (X1, 

…,Xm)T ∈ ℝm denote patient covariates. We assume the dimension is small to moderate, 

and fixed. The outcome could be a continuous, discrete, or time-to-event outcome subject to 

censoring. A treatment regime d ∈ 𝒟 is a function mapping from the space of X to the space 

of treatments. A future patient with X = x is then assigned with treatment d(x). Let T(a) 

denote the potential outcome under treatment a ∈ {−1, 1} (Rubin, 1978), and T(d) = 

T{d(X)} be the potential outcome under the rule d for the given covariate X. The quality of 

d can be measured by the marginal mean outcome E{T(d)}, which represents the trial 

population mean outcome were all patients in the trial population to receive treatment 

according to d. We denote this quantity as 𝒱(d), which is also called the value function of d. 

The optimal treatment regime d* maximizes 𝒱(d) over all possible d. We assume that in the 

trial,

(A1) P(A = a|X) > 0 with probability one for a ∈ {−1, 1};

(A2) {T(−1),T(1)} are independent of A conditional X;

(A3) consistency so that T(a) = ∑a I(A = a)T.

Since 𝒱(d) = E T(d) = EX(E[T d(X) | X ] , where the outer expectation EX(·) is taken with 

respect to the marginal distribution of X in the trial population, the optimal treatment for any 

patient with characteristics x is d*(x) = argmaxa∈{−1,1}E{T(a)|X = x} when there is no 

restriction of the functional form of the rule. These assumptions are typically standard and 

satisfied in randomized clinical trials (Robins et al., 2000), because application of the 

intervention to any individual is under the control of the investigator. This is however, not 

guaranteed in observational studies. For example, consistency assumption can be violated 

given that there could be variations of treatment, and each of them may have a different 

causal effect on the outcome. In addition, noncompliance can be severe in observational 

studies, where some subjects may never take what they are asked to take. If (A1)-(A3) are 

satisfied, the optimal treatment rule is

d * (x) = sign f * (x) , where f * (x) = E(T X = x, A = 1) − E(T X = x, A = − 1) .
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To assess the overall benefit of the obtained rule when applied to the target population, we 

let pX(x) denote the distribution of X in the trial population, and qX(x) denote the 

distribution of X in the target population, which is not necessarily the same as pX(x). 

Furthermore, we assume

(A4) the support of qX(x) is contained in the support of pX(x), i.e., there is no under-

coverage in the trial study;

(A5) the potential outcome mean given X is the same between the trial population and 

the target population. Thus, the treatment works the same in both populations.

Thus, the only difference between the two populations is due to the covariate distributions. 

Let Pq denote the distribution of X in the target population and Pp denote the distribution of 

X in the trial population. Let E denote the expectation is taken with respect to the 

distribution of X in the target population. Under (A4) and (A5), it is easy to observe that the 

expected outcome of rule d(X) for the target population is

𝒱(d) = E[T d(X) ] = ∫ E[T d(X) X]dPq

= ∫ E[T d(X) X] dPq

dPpdPp = EX E[T d(X) X]
qX(X)
pX(X) ,

where EX[·] denotes the expectation under X ~ pX(x). Consequently, the optimal rule 

obtained from the trial population, d*, is also the optimal for the target population if there is 

not any restriction to the formulation in d*.

2.2 A General Quality Value of Treatment Rules for the Target Population

We propose a general criterion assessing the quality of a decision rule for the target 

population, which includes both the value function and the correct allocation rate to the 

optimal rule as special cases. For a given rule d(X), the proposed quality assessment in the 

target population is defined as

ℬ(d) = E W(X)I d(X) = d * (X) ,

where W(X) is a non-negative function, essentially a reward if the treatment rule d(x) is the 

optimal.

The quality value in the definition has a different interpretation depending on the choice of 

W(x). For example, let W(x) = W1(x) = E{T|A = d*(x),X = x}−E{T|A ≠ d*(x),X = x} = |

f*(x)|. That is, for subject with covariate X = x, W(x) is the gain if he/she follows treatment 

rule d*. ℬ(d) achieves optimal if d = d*. This is because ℬ(d) = 𝒱(d) + E T −d * . Hence, 

maximizing ℬ(d) is equivalent to maximizing the value function in the target population. If 

we set W(X) = W2(X) ≡ 1, then ℬ(d) = P d X = d * X  and the criterion corresponds to the 

correct allocation rate of the optimal treatment. Additionally, in practice, W(X) could allow 

more general trade off between the benefit of optimal treatment and the relative cost of 
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giving optimal treatment to patients instead of standard care. In this paper, we will focus on 

the choice of W = W1 and W2.

2.3 Learning Robust Linear Rules for the Target Population

In many practices, since the set of enforceable treatment rules are usually restrictive and 

cannot be arbitrary, a parsimonious and interpretable decision rule is preferred. In particular, 

we focus on a linear decision rule, i.e., d(x) = sign{f(x)} where f(x) = xTβ1 +β0. A patient x 
is assigned to treatment 1 if xTβ1 + β0 ≥ 0 and treatment −1 otherwise. For example, let the 

potential outcome model be E[log T(a) | X] = 2I 3X /4 + sin(X)/4 − 2 2 − 1 − 1 a. The 

optimal rule d*(x) = 1 if 3x/4 + sin(x)/4 − 1 ≤ 0 or 3x/4 + sin(x)/4 − 3 > 0, and d*(x) = −1 

otherwise. Consider the space of linear decision rules with 

𝒟L = d(X) = sign β0 + β1X , β0, β1 ∈ ℝ . Therefore d*(x) is highly nonlinear, and 

d*(x) ∉ 𝒟L . Assume that X ~ N(2, 1) and X ~ N(4, 1) in the trial and target population, 

respectively. Then the optimal linear rule is dL*(X) = sign(X − 0.9) using the trial data. 

However, sign(−X +0.28) should be the optimal linear rule in the target population, which 

lead to a benefit of 0.997, versus a benefit of −0.387 using the optimal rule derived from the 

trial data. Hence, the optimal linear rules could be substantially different between the two 

populations.

We should note that unless the true optimal rule is linear itself, once restricted to such a class 

of linear rules, the optimal rule within this class may no longer be the optimal for the target 

population, since both pX(x) and qX(x) can be very different. It is thus desirable to guarantee 

that ℬ(d) is not small, regardless of X and which treatment is optimal; and ideally, the larger 

the better. To this end, we propose the following method, namely, Minimax Linear Decisions 

(MiLD). Note that

ℬ(d) = E W(X)I d(X) = 1 d * (X) = 1 P d * (X) = 1
+ E W(X)I d(X) = − 1 d * (X) = − 1 P d * (X) = − 1 .

We introduce a lower bound α on E W(X)I sign XTβ1 + β0 = j |d * (X) = j , j = ± 1, which 

represents the expected benefit that would have been obtained if the patients were to receive 

treatment j, whose optimal treatments would indeed be j in the target population. Hence, α 
controls the worst case overall benefits for each group, and we set the same lower bound for 

both quantities for simplicity. We then consider the following optimization problem:

max
α, β1, β0

α subject to inf
X f 1

E W(X)I X⊤β1 + β0 ≥ 0 d * (X) = 1 ≥ α,

inf
X f −1

E W(X)I X⊤β1 + β0 < 0 d * (X) = − 1 ≥ α,

(1)

where f1 and f−1 are the density of X in patients whose optimal treatment are 1 or −1 

respectively. That is, we want to guarantee the quality of being given optimal treatment as 

large as possible among those who should indeed be treated with the same treatment.
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Let q j(x) denote the density of X for patients with d*(X) = j, j = ±1 in the target population. 

Then

E W(X)I X⊤β1 + β0 ≥ 0 d * (X) = j = ∫ W(x)I x⊤β1 + β0 ≥ 0 q j(x)dx

∝ P X† ⊤β1 + β0 ≥ 0 ,

where the density of X† is proportional to q j x† W x† . Hence, (1) is equivalent to

max
α, β1, β0

α subject to inf
X† f 1

†
P X† ⊤β1 + β0 ≥ 0 ≥ α,

inf
X† f −1

†
P X†⊤

β1 + β0 < 0 ≥ α,

(2)

where f 1
† and f −1

†  are the density of X† in patients with optimal treatment being 1 or −1 

respectively.

However, f 1
† and f −1

†  could be very different, and difficult to characterize based on the trial 

data. We propose to quantify the difference between the target population and the trial 

population in terms of the first two moment conditions, without making any specific 

distributional assumptions for the two populations. In other words, the covariate moments of 

X† in patients with d*(x) = j, j = ±1 in the target population could be different from that of 

the trial population to some degree.

Suppose that the means of covariate X† are μ j
†, and intraclass covariance matrices are Σ j for 

patients with d*(X) = j in the target population, and μ j
† and Σ j

†, j = ±1 respectively, in the trial 

population under the new density. We assume that the quantities in the target population 

belong to

𝒰 j
† = μ j

†, Σ j
† : μ j

† − μ j
† ⊤Σ j

† μ j
† − μ j

† ≤ ν2, Σ j
† − Σ j

†
F

≤ ρ j , j = ± 1. (3)

Here, ν ≥ 0 and ρj ≥ 0 are known constants, and ∥ · ∥F is the Frobenius norm defined as 

M F
2 = Tr M⊤M . Such conditions define the closeness of the target population to the trial 

population. 𝒰 j
† suggests that the mean μ j

† in the target population belongs to an elliptical 

region around μ j
† with shape determined by the covariance Σ j

†, j = ±1. The covariance matrix 

Σ j
†, centered around Σ j

†, can also vary to certain degrees. Clearly, the larger ν or ρj, the more 

different the two populations are. (2) is consequently written as
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max
α, β1, β0

α subject to inf
X† μ1

†, Σ1
† ∈ 𝒰1

†
P X†⊤

β1 + β0 ≥ 0 ≥ α,

inf
X† μ−1

† , Σ−1
† ∈ 𝒰−1

†
P X† ⊤β1 + β0 < 0 ≥ α .

(4)

This yields a linear decision rule that safeguards against the possible difference of the 

distribution of X between the trial and the target populations. Such robustness of the 

treatment regime estimation is mainly due to the minimum requirements on the means and 

covariances. The above objective function has a similar form to the minimax probability 

machine techniques developed in Lanckriet et al. (2003), and their techniques for deriving 

the optimal linear rule can be employed if μ j
†, Σ j

† , j = ± 1, were known. The key step is to 

recognize that the condition inf
X† μ j

†, Σ j
† P X† ⊤β1 + β0 ≥ 0 ≥ α holds if and only if

β0 + μ j
† ⊤β1 ≥ κ(α) β1

⊤Σ j
†β1, j = ± 1, (5)

by applying the generalized Chebychev inequality (Marshall and Olkin, 1960), where 

κ(α) = α/(1 − α) (Lemma 1, Lanckriet and others (2003)). The constraint (5) is imposed on 

the distance with respect to the mean of the covariates within the class, taking into account 

the effect of the covariance matrices, which could be representable of the class. In other 

words, we search a line such that the normalized margin between the means of classes is as 

large as possible. Consequently, (4) is equivalent to

max
α, β1, β0

α subject to β0 + μ1
† ⊤β1 ≥ κ(α) β1

⊤Σ1
†β1

β0 + μ−1
† ⊤β1 ≥ κ(α) β1

⊤Σ−1
† β1 .

As shown in the Appendix, a further simplified objective function can be obtained as

min
β1

β1
⊤ Σ1

† + ρ1I p β1 + β1
⊤ Σ−1

† + ρ−1I p β1, (6)

subject to β1
⊤ μ1

† − μ−1
† = 1. We can eliminate the equality constraint in (6) by letting β1 = 

β10 + Fu, where u ∈ ℝp−1, β10 = μ1
† − μ−1

† / μ1
† − μ−1

†
2
2
 is a p × (p − 1) matrix. Let h denote 

the position of the maximum element in μ1
† − μ−1

† . F is constructed from a (p − 1) × (p − 1) 

identity matrix, with − μ1
† − μ−1

† /max μ1
† − μ−1

†  inserted into the hth row. We can see that F 
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is an orthogonal matrix whose columns span the subspace of vectors orthogonal to μ1
† − μ−1

† . 

Hence, the optimization problem can be written as

min
β1

β10 + Fu ⊤ Σ1
† + ρ1I p β10 + Fu + β10 + Fu ⊤ Σ−1

† + ρ−1I p β10 + Fu .

The lower bound on the worst case allocation rate α* = (κ* − ν)2/{1 + (κ* − ν)2}, and ν 

should not exceed κ*. Here, κ * = β1
* ⊤ Σ−1

† + ρ−1I p β1* + β1
* ⊤ Σ1

† + ρ1I p β1*
−1

 and ν is 

defined in (3). More details can be found in the Appendix.

Remark 1 Although the MiLD is proposed to identify a robust linear rule, it can be easily 
generalized using nonlinear kernel functions. We seek a decision rule in the form of f(x) = 

φ(x)Tβ1 + β0, where φ(x) is a set of basis functions. The kernelization of the proposed 
approach is possible because the objective function (6) can be expressed in terms of inner 
products between different X′s. Hence, the objective and constraint can be expressed in 
terms of inner products of φ(X). Subsequently, we can compute the robust nonlinear rule by 
slightly modifying the algorithm.

2.4 Estimating robust rules using empirical data

To solve for the minimax linear decisions given the observed data from a clinical trial, we 

first need to estimate μ j
†, Σ j

† , j = ± 1, which depends on both the optimal treatment rule 

d*(x) and the weight W(X). A three-step procedure is outlined below.

Step 1. Estimate d*(x) using a nonparametric method with the trial data, denoted by d (x).

Step 2. Estimate μ j
†; Σ j

†  using the initial estimate d (x), denoted by μ j
†, Σ j

† .

Step 3. Implement MiLD based on the estimated μ j
†, Σ j

† .

In Step 1, there are several ways to estimate d*. Indirect estimation methods model the 

response as a function of X and A, and select treatment, which maximizes the predicted 

mean outcome (Qian and Murphy, 2011). Since a consistent estimator d (x) is required to 

guarantee the performance, a flexible nonparametric method in Step 1 is preferred. For 

example, support vector machine and support vector regression can be used to estimate E(T|

X,A) for binary and continuous outcomes respectively. Alternatively, outcome weighted 

learning proposed in Zhao et al. (2012) circumvents the two-step procedure by directly 

optimizing the value function. We can employ a kernel function to induce nonlinearity in 

obtaining the initial estimator d .

In a cancer clinical trial, it is common that the primary endpoint is survival time that subjects 

to censoring. Given that d*(x) is invariant over the covariate distribution, we suggest 

utilizing flexible nonparametric machine learning methods. In particular, we will use the 

random forest survival tree method (Ishwaran et al., 2008) to estimate E(T|X,A), an 

ensemble tree method that extended random forest method (Breiman, 2001) for analysis of 
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right-censored survival data. It uses independent bootstrap samples to grow trees by 

randomly selecting a subset of variables at each node and splitting the node using a survival 

criterion adjusting for censoring status. The ensemble estimated cumulative hazard function 

is the average of the Nelson-Aalen estimator for each case’s terminal node. Easy-to-use 

software is available on R CRAN (https://cran.r-project.org). We can estimate E(T|X,A) 

correspondingly via viaE(T | X, A) = ∫ 0
τ P(T > t | X, A)dt. Then d (x) = sign f (x) , where 

f (x) = E(T | X = x, A = 1) − E(T | X = x, A = − 1).

To estimate μ j
†, Σ j

†  with a general weight W(x), we treat it as a multiplicative adjustment to 

X where we now sample from a density proportional to pX(x)W(x) instead of pX(x). This 

motivates us to employ techniques from importance sampling to estimate μ j
†, Σ j

† , j = ± 1. In 

particular, μ j
† can be estimated by

μ j
† =

∑i = 1
n XiW Xi I d Xi = j

∑i = 1
n W Xi I d Xi = j

;

and Σ j
† can be estimated by

Σ j
† = ∑

i = 1

n W Xi I d Xi = j

∑i = 1
n W Xi I d Xi = j

2
Xi − μ j

† ⊤
Xi − μ j

† .

In our case, we choose

W(x) = W1(x) = E T A = d * (x), X = x − E T A ≠ d * (x), X = x

= E T A = 1, X = x − E T A = − 1, X = x

= f (X)

or W(X) = W2(X) ≡ 1.

Provided with the estimated μ j
†, Σ j

† , j = ± 1, we solve for the robust linear treatment 

regimes in Step 3 using the procedure outlined in Section 2.3. In particular, estimates will be 

plugged in for μ j
† and Σ j

†, j = ± 1 and related quantities. We obtain β1 and β0 accordingly.

2.5 Choices of (ν, ρj)

Sometimes pilot data from the target population or the general patient population data are 

available. We can use this information to choose ρj and ν. First we obtain d (x) as an initial 

estimate of d*(x) using the trial data. Based on this preliminary decision boundary d (x), we 

can estimate μ j
† and Σ j

†, j = ± 1, denoted as μ j and Σ j, for a target population using the pilot 

data. Then we can set ρ j = b Σ j F
, and ν = ∑ j bμ j

⊤ Σ j
⊤ − 1 bμ j /2, where b is a constant 
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characterizing the potential differences between two population means, as well as the norm 

of the covariance matrix. If relevant data is not available, we can conduct sensitivity analyses 

on different combinations of (ν, ρj), and assess how the changes in (ν, ρj) will influence the 

resulting decision rules and the worst-case allocation rates.

3 Theoretical results

In this section, we will establish some theoretical properties of the proposed MiLD method. 

Assume that (Xi,Ai, Ti), i = 1, …, n, are i.i.d observations from the trial. Additionally, we 

assume that

Assumption 1

All covariates are bounded such that |X| ≤ M.

Assumption 2

Let β1* be the unique solution to (1). β1* lies in the interior of a compact set B.

We assume the following condition on f*(x) = E(T|X = x,A = 1) − E(T|X = x,A = −1):

Assumption 3

Margin condition: there exist K1, γ > 0 such that for all t > 0

P f * (X) ≤ t ≤ K1tγ .

Assumption 4

f  converges to fm, which could be different from f*. The convergence rate of estimated f  to 

fm satisfies f − f * 2 = Op rn , where ∥f∥2 = E{f(X)2}1/2 and the expectation is taken with 

respect to the distribution in the trial data.

Assumption 5

The difference of the covariates is uniformly bounded

max
i, i′ ≤ n

Xi − Xi′ ≤ CX,

for some constant CX > 0.

Assumption 6

Let f i(x) be the estimate of f*(x) using the Step 1 data except that the ith observation (xi, ai, 

ti) is replaced by an independent observation xi, ai, t i . We assume that

sup
X

f i(X) − f (X) ≤ ρ/n
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for some constant ρ.

Assumption 3 is an analogue of the well-known margin condition (Tsybakov, 2004), which 

is commonly used to characterize the noise around the decision boundary in a binary 

classification problem. Here, the assumption describes the distribution of f*(X) when X is 

near the boundary {x : f*(x) = 0} in the target population, which usually contains more 

noise, and γ controls the size of these regions. Particularly, larger values of γ mean that the 

two treatment effects are less likely to be similar, and it is easier to distinguish patients who 

would have benefited from one treatment from those who would have benefited from the 

other. Usually, γ ∈ [0,m] for a smooth contrast function f*(x), unless f*(x) does not cross 0 

at any point, i.e., all the patients benefit from one treatment (Audibert et al., 2007). For 

example, if X ~ Uniform[−1, 1], P(A = 1|X = P(A = −1|X) = 1/2) and E(T|X,A) = XA, then 

γ = 1. The bounded covariate assumption, Assumption 5, is satisfied in most real 

applications. Assumption 6 indicates that small changes in the data will only lead to small 

changes in the estimates. For example, if we use Cox regression with nonlinear basis 

functions, or nonparametric kernel estimators, this condition will be satisfied (Devroye et al., 

2013). The following results are proved in the supplementary materials.

Theorem 1

Under the Assumptions 1-6, it holds that 

β1 − β1* = Op f * − f m
2
min 1, 2γ

γ + 2 +rn
min 1, 2γ

γ + 2 + n−1/2 .

The first term reflects the approximation error due to the initial estimator f . If f  is a 

consistent estimator of f*, where f* = fm, then the first term will disappear. The other terms 

bound the stochastic error, which arises from the variability inherent in a finite sample size, 

which captures the efficiency loss due to the first stage estimation. As an example, if we use 

random forest to estimate the required quantities, rn = n−θ with θ = 0.75
2 Slog(2) + 0.75  under 

some mild assumptions, where S denotes the number of strong features used in the 

estimating process (Biau, 2012). The theorem indicates that the convergence rate of the 

estimated linear treatment rules depends on the the initial treatment rule, and the behavior of 

f*(x) in the neighborhood of the boundary. For example, if a kernel estimator is used, the 

optimal rate of rn would be n−2/(m+4), and the conclusion rate is n−4γ/(m+4)(γ+2).

4 Simulation Studies

We conduct extensive simulations to evaluate the proposed methods. In all scenarios, the 

dimension of the covariate space is 10. Binary treatments A are generated from {−1, 1} with 

equal probability. Three different scenarios are presented, with outcomes generated as 

follows.

Scenario 1. We simulate the first half of patients from X1,X2 ~ N(1, 1),X3, …, X10 ~ N(0, 1) 

and the second half of patients with X1, …, X10 from N(0, 1). The survival time is the 

minimum of τ = 0.5 and T, where T is generated with
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logT = exp 0.6 * X1 − 0.8 * X2 + A * c(X) + logϵ .

Here, c(X) = 1 for the first half of patients and c(X) = −1 for the other half, and is generated 

from an exponential distribution with mean 1. Censoring time C is generated from 

Uniform[0,1]. The censoring percentage is around 24%. The optimal decision boundary is 

d*(X) = sign(X1 + X2 − 1).

Scenario 2. X1, …, X10 are generated from N(0, 1). The survival time is the minimum of τ = 

4 and T, where T is generated with the hazard rate function

λ
T

(t X, A) = exp 0.6X1 + 0.8X2 − 1 + 2X1 + 3 X2 + 1 2 − 2 A .

Censoring time C is generated from Uniform[0, 5]. The censoring percentage is around 

42%. The optimal decision boundary is d*(X) = −sign{2X1 + 3(X2 + 1)2 − 2}.

Scenario 3. X1, …, X10 are generated from N(0, 1). The survival time is the minimum of τ = 

4 and T, which is generated with

log(T) = X1 + X2 + 1 + A 2X1
3 + 2X2 + 0.5 + N(0, 1) .

Censoring time C is generated from

log(C) X1 + X2 + X3 + N(0, 1) .

The censoring percentage is around 51%. The optimal decision boundary is 

d * (X) = sign 2X1
3 + 2X2 + 0.5 .

We also consider settings where there is a mismatch between the trial participants and the 

target population, and we will denote these mismatch scenarios as Scenarios 1’, 2’, and 3’ 

respectively. In Scenario 1, half of the patients will gain benefits from treatment 1 in both 

populations. We modify it in Scenario 1’ such that the proportion of patients with d*(x) = 1 

is 1/3 in the trial population, and 1/2 in the target population. In Scenario 2’, we let the 

covariate distribution in the trial data with X1 ~ N(−0.25, 1.5) and other covariates following 

N(0, 1.5), which are different from the distribution in the target population with all 

covariates generated from N(0, 1). Eligibility criteria are usually applied for the trial 

recruitment, and thus trials might selectively enroll patients from the target population. 

Instead of randomly choosing patients for participation in the trial, patients are selectively 

enrolled with certain probability, denoted by π(X), into the trial data. In Scenario 3’, the 

model for the enrollment is logit π(X) = − 2X1
3 − 1, where logit(t) = log{t/(1−t)}. Hence, 

covariates predictive of participation in the trial could be predictive of treatment effects, 

where patients with d*(x) = 1 are less likely to participate in the trial. Subsequently, the 

covariate distributions in trial data and the target population are not the same.

Zhao et al. Page 12

Electron J Stat. Author manuscript; available in PMC 2019 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We hope to discover a simple linear decision rule of high quality even if the true treatment 

effect might be nonlinear. MiLD will be evaluated for this purpose. In this paper, we utilize 

random survival forest to obtain the initial estimate of d*(x), but other methods can also be 

applied. Then we apply both W1(x) and W2(x) ≡ 1 in MiLD, targeted to optimize the value 

and the allocation rate to the optimal rule, respectively. We denote them as MiLD-V and 

MiLD-P. The results might be affected with possible deviations between the target and the 

trial populations. When we do not have prior information on the target population, we can 

vary (ν, ρj) to evaluate the resulting changes. As suggested in Section 2.5, we set 

ρ j = b Σ j F
, ν = ∑ j bμ j

⊤ Σ j + b Σ j F
I p bμ j /2, j = ± 1. Here, Σ j F

 is the Frobenius 

norm of Σ j, and b is a constant that reflects the deviations relative to the covariance matrix 

norms and the means, in the trial populations. We consider two cases with b = 0 and b = 0.1 

for both MiLD-V and MiLD-P.

We compare the proposed methods to the following two approaches.

1. OWL (outcome weighted learning): we find the best linear decision rule by 

directly targeting maximizing the overall expected outcome (Zhao et al., 2012).

2. COX: we find the linear decision rule based on a Cox regression model, where 

interactions between X and A are included.

All methods are performed by deriving the best linear treatment rules using trial data. We 

then calculate the misclassification rate under the estimated rules via Monte Carlo methods. 

Specifically, a large testing dataset of 10,000 from the target population is generated. 

Training datasets representing the trial population are repeatedly simulated, and each time 

the rules yielded by various methods are evaluated on this testing set. Different training data 

sample sizes n = 250,500 and 1000 are considered. We report the average misallocation to 

non-optimal treatments over 500 replicates. We also report the expected overall survival of 

the estimated rules using the derived treatment rules by different methods in the 

supplementary materials.

The results in Figures 1–3 present evidence that the proposed methods perform well 

compared with the other methods. The Cox regression method relies on model fitting, and 

thus many subjects are recommended the wrong treatments by the resulting linear decision 

rule, labeled as misallocation rates in Figures 1 - 3. Even in Scenarios 1 and 1’ where the 

optimal treatment rule is linear, the non-proportional hazards model negatively impacts the 

performance of Cox regression. The OWL method in general leads to a larger variability. On 

the other hand, both MiLD-V and MiLD-P perform well throughout, and the results are 

insensitive to the value of b. The limits of misallocation rates that MiLD-V and MiLD-P 

converge to are the lowest among all competitors. It can be seen that when the trial 

population is not representative as illustrated in Scenarios 1’, 2’ and 3’, MiLD-V and MiLD-

P are robust to the bias, and they yield favorable results. We note that the results in MiLD 

with b = 0.1, which allows a larger deviation between the trial and the target population, give 

a slightly better result most of the time in these cases. We also illustrate the efficiency loss 

due to the first stage estimation of f*(x) numerically. Details can be found in supplementary 

material.
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5 Data Analysis

Prior studies suggest that elevated markers of bone turnover are prognostic for poor survival 

in castration-resistant prostate cancer, but their predictive value for the bone-targeted therapy 

has not been fully investigated. We illustrate the proposed methods using data from SWOG 

0421 study, a North American Intergroup phase III trial (participants: SWOG, Eastern 

Cooperative Oncology Group, Cancer and Leukemia Group B/Alliance) for men with 

metastatic castration-resistant prostate cancer. They were randomly assigned in a blinded 

fashion in a 1:1 ratio to docetaxel administered every 21 days at a dose of 75 mg/m2 with or 

without the bone-targeted oral agent atrasentan taken daily for up to 12 cycles (Quinn et al., 

2013; Lara et al., 2014). S0421 enrolled 1038 eligible patients; of these, 855 submitted 

serum for the bone biomarkers and 778 patients had usable specimens at baseline. After 

removing missing observations, the sample size for our analysis is 751, where 371 patients 

are in the docetaxel + atrasentan arm and 380 patients are in the docetaxel + placebo arm.

Co-primary endpoints in this study were progression-free survival and overall survival. In 

our analysis, we use overall survival as our outcome, which is truncated at the end of the 

study, and could be censored due to loss of follow-up. We use 10 baseline covariates to 

inform the optimal treatment rule, including age (range 40–92), serum prostate-specific 

antigen (PSA, range 0.1–10414.1), indicator of bisphosphonate usage (61%), indicator of 

metastatic disease beyond the bones (55%), indicator of pain at baseline (60%), indicator of 

performance status (2–3 versus 0–1, 56% 2–3), and bone marker levels. Four bone markers 

are measured, including Bone alkaline phosphatase (BAP, range 1.9–1761.0 u/L), C-terminal 

of type 1 collagen (CICP, range 1.4–273.6 ng/mL), N-telopeptides of type 1 collagen (NTx, 

range 1.4–480.0 nM) and pyridinoline (PYD, range 0.3–15.0 nmol/L). The distribution of 

bone marker concentrations and serum PSA were skewed with a wide range; therefore, we 

use log transformation for these variables. All covariates are then standardized for analysis. 

We intend to find the optimal linear treatment rule that is robust to a potential difference 

between the trial population and the future population.

We compare the proposed methods with Cox regression and OWL method. Practitioners 

often directly generalize the results from a clinical trial to the general patient population. 

However, It is not uncommon that the participants in clinical trials are in general more 

healthier than the patient population, due to the restrictions on patient eligibility. Hence, in 

our data analysis, we mimic this phenomenon by changing the distribution of healthier 

patients in the trial population and the target population. We categorize patients to healthier 

patients whose serum PSA is below the median level and sicker patients whose serum PSA 

is above the median level. We employ a cross-validated type analysis. At each run, we 

partition the whole data set into 5 pieces, where 2 parts of the data are used as training data 

to estimate the optimal rules, and the remaining part as the validation set for evaluating the 

estimated rules. Specifically, each training data set consists of 2/3 healthier patients and 1/3 

sicker patients; on the other hand, each validation set contains 1/3 healthier patients and 2/3 

sicker patients. Thus, there is a substantial discrepancy between the training set and the 

validation set, which represents the trial population and the target population, respectively. 

The cross-validated values are obtained by averaging the empirical value on all 3 validation 

subsets. To adjust for censoring when calculating the empirical values, we use inverse 
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probability of censoring weighting techniques, where the empirical value for a treatment 

decision rule d is calculated by ℙn[YI A = d(X) ]/ℙn[I A = d(X) ], with Y equaling to 

ΔY /SC(Y | A, X) . We use a kernel estimator developed in Li et al. (1999) to obtain SC(t | A, X),

which does not require a model assumption. The procedure is repeated 200 times. The 

averages and standard errors of these values are reported in Table 1, where a larger value 

corresponds to a longer expected survival time. The results show better performances of both 

MiLD-V and MiLD-P procedures compared to other methods. MiLD-V performs the best 

perhaps because it targets to optimize the value directly.

We then apply the proposed methods to the whole data set. The coefficients in the treatment 

decision rule recommended by MiLD-V and MiLD-P are presented in Table 2. The results 

yielded by MiLD-V and MiLD-P are close, where 80% of the patients receive the same 

treatment recommendation. In Figure 4(a), we compare the Kaplan–Meier curves for overall 

survival between two treatment arms. There does not appear to be separation. However, 

when comparing the group whose treatment assignments were in accordance with the 

treatments recommended by MiLD-V or MiLD-P with the other group, the Kaplan–Meier 

survival curves show a clear separation, as shown in Figures 4(b) and (c).

6 Discussion

In practice, it is preferable to use interpretable decision rules when communicating with 

clinical practitioners about treatment recommendation. A canonical example is linear 

decision rule, which is attractive because it can be easily understood, and thus can be used to 

guide future research. Our present work shows that it is possible to identify high-quality 

linear decision rule that leads to a greater overall benefit, even if the truth may be nonlinear. 

Furthermore, the proposed method is robust across future populations, taking into account 

the fact that the study sample may not be representative.

We consider survival time outcomes in this paper. Such endpoints are critical in many 

settings especially in oncology. However, MiLD can be readily applied for binary or 

continuous outcomes, provided that we can use existing nonparametric methods to obtain 

preliminary estimates of the decision boundaries. Popular methods for binary outcomes 

include support vector machine and boosting (Hastie et al., 2009), and for continuous 

outcomes, we can apply random forest (Breiman, 2001) and support vector regression 

(Vapnik et al., 1997). Our current proposal suggests an L2 penalty for handling high-

dimensional covariates. However, this does not provide sparse solutions. In certain 

circumstances, several important variables characterize the optimal treatment rules, where 

the means and covariance matrices of those unimportant variables do not matter. It would be 

interesting to develop robust methods that conduct variable selection simultaneously, which 

would eliminate the unimportant variables and further improve the ease of interpretation. 

Another interesting extension of the current work is to consider settings involving more than 

two treatments. While it is straightforward to conduct a series of pairwise comparisons, 

further development is required to identify the best rule among all treatments. It will also be 

interesting to investigate extensions to Boolean combination of linear rules, i.e., rules of the 

form {X1β11 + β01 ≥ 0} ∩ {X2β21 + β02 ≥ 0}.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

7: Appendix

Solving minimax linear decisions

It follows from the generalized Chebychev inequality (Marshall and Olkin, 1960) that (2) is 

equivalent to

max
α, β1, β0

α s . t . inf
X† μ1

†, Σ1
† ∈ 𝒰1

†
β0 + μ1

† ⊤β1 ≥ κ(α) β1
⊤Σ1

†β1

inf
X† μ−1

† , Σ−1
† ∈ 𝒰−1

†
− β0 − μ1

† ⊤β1 ≥ κ(α) β1
⊤Σ−1

† β1,

where κ(α) = α/(1 − α) . As shown in Lanckriet et al. (2003), 

min
μ j: μ j

† − μ j
† ⊤Σ j

† − 1 μ j
† − μ j

†
≤ ν2

β1
⊤μ j

† = β1
⊤μ j

† − ν β1
⊤Σ j

†β1, and 

max
Σ†: Σ† − Σ†

F ≤ ρ
β1

T Σ†β1 = β1
T Σ† + ρI p β1, where Ip is the identified matrix. Recall that 

𝒰 j
† = μ j

†, Σ j
† : μ j

† − μ j
† ⊤Σ j

† μ j
† − μ j

† ≤ ν2, Σ j
† − Σ j

†
F

≤ ρ j , j = ± 1, We have 

β0 + β1
⊤μ j

† = β0 + β1
⊤μ j

† − ν β1
⊤Σ j

†β1, and β1
⊤Σ j

†β1 = β1
⊤ Σ j

† + ρ jI p β1 . We thus further rewrite 

the optimization problem to

max
α, β1, β0

α s . t . β0 + β1
⊤μ1

† ≥ κ(α) β1
⊤ Σ1

† + ρ1I p β1

− β0 − β1
⊤μ−1

† ≥ κ(α) β1
⊤ Σ−1

† + ρ−1I p β1 .

We will assume that μ1
† ≠ μ−1

† ; otherwise, the above problem is not identifiable. We also 

assume that Σ j
†, j = ± 1 are both positive definite. Since κ(α) is a monotone increasing 

function of α, we can rewrite our problem as

max
κ

κ s . t . , β1
⊤μ−1

† + κ β1
⊤ Σ−1

† + ρ−1I p β1 ≤ β0 ≤ β1
⊤μ1

† − κ β1
⊤ Σ1

† + ρ1I p β1,

and these inequalities will become equalities at the optimum. We can eliminate the equality 

constraint by letting β1 = β10 + Fu, where u ∈ ℝp−1, β10 = μ1
† − μ−1

† / μ1
† − μ−1

†
2
2, and F ∈ 

ℝp×(p−1) is an orthogonal matrix whose columns span the subspace of vectors orthogonal to 

μ1
† − μ−1

† . Hence, the optimization problem can be written as in (2). The optimal
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β0* = β1
* ⊤μ1

† − κ* β1
* ⊤ Σ1

† + ρ1I p β1* = β1
* ⊤μ−1

† + κ* β1
* ⊤ Σ−1

† + ρ−1I p β1*,

where κ* is the optimal value of κ with 

κ* = β1
* ⊤ Σ−1

† + ρ−1I p β1* + β1
* ⊤ Σ1

† + ρ1I p β1*
−1

. The lower bound on the worst case 

allocation rate α* = (κ* − ν)2/{1 + (κ* − ν)2}, and ν should not exceed κ*.

Proof of Theorem 1

We first show that μ j
† − μ j

† = Op rn

2γ
γ + 2 + n−1/2  and Σ j

† − Σ j
† = Op rn

2γ
γ + 2 + n−1/2 , j = ± 1,

where W(X) = W1(X) = | f (X)| and A = supx ∈ 𝒳 Ax 2 . For the convergence rate in means,

μ j
† − μ j

† = ℙnX f (X)I d (X) = j − ℙX f * (X)I d * (X) = j

≤ ℙnX f (X)I d (X) = j − ℙX f (X)I d (X) = j

+ ℙX f (X)I d (X) = j − ℙX f m(X)I d (X) = j

+ ℙX f m(X)I d (X) = j − ℙX f * (X)I d (X) = j

+ ℙX f * (X)I d (X) = j − ℙX f * (X)I d * (X) = j

= (I) + (II) + (III) + (IV) .

We will use McDiarmid’s inequality to bound (I).

1
n ∑

k = 1

n
xk f xk I d xk = j − 1

n ∑
k = 1, k ≠ i

n
xk f i xk I d xk = j − 1

n xi f i xi I d xi = j

≤ 1
n ∑

k = 1

n
xk f xk − f i xk I d xk = j + 1

n ∑
k = 1

n
xk f i xk I d xk = j − I d xk = j

+ 1
n xi − xi f xi I d xi = j + xi f xi − f i xi I d xi = j

+ xi f i xi I d xi = j − I d xi = j ≤ Mρ/n,

where Mρ depends on M,CX and ρ. The last inequality follows from Assumptions 1, 5 and 6.

By McDiarmid’s inequality,

P ℙnX f (X)I d (X) = j − ℙX f (X)I d (X) = j ≥ ϵ ≤ e
−2nϵ2/Mρ

2
.

Then with probability ≥ 1 − δ,

Zhao et al. Page 17

Electron J Stat. Author manuscript; available in PMC 2019 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ℙnX f (X)I d (X) = j − ℙX f (X)I d (X) = j ≤ cM
log(1/δ)

n . (7)

For (II), by Cauchy-Schwaz inequality and the boundedness of X,

ℙX f (X)I d (X) = j − ℙX f m(X)I d (X) = j

≤ ℙ f (X) − f m(X) 2 ℙ X2

= Op rn ,

where the last step follows from Assumption 4. For (III),

ℙX f m(X)I d (X) = j − ℙX f * (X)I d (X) = j

≤ ℙ f m(X) − f * (X) 2 ℙ X2

≤ M f * − f m
2 .

For (IV),

ℙX f *(X)I d (X) = j − ℙX f * (X)I d * (X) = j

= ℙX f * (X)I d * (X) = j, d (X) ≠ d * (X)

≤ ℙX f * (X)I d * (X) = j I 0 < f * (X) ≤ f * (X) − f (X)

≤ ℙ X f * (X)I d * (X) = j ℙ 0 < f * (X) ≤ f * (X) − f (X)

≤ ℙ X f * (X)I d * (X) = j ℙ 0 < f * (X) ≤ f * (X) − f (X) ≤ ϵ

≤ ℙ X f * (X)I d * (X) = j ℙ I 0 < f * (X) ≤ ϵ I f * (X) − f (X) ≤ ϵ

+I f * (X) − f (X) > ϵ

≤ μ j
† f * − f 2

2

ϵ2 + ϵγ ,

where ∥f∥2 = E{f(x)2}1/2. Choosing the optimal ϵ as f * − f 2

2
γ + 2 , we have that
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ℙX f * (X)I d (X) = j − ℙX f * (X)I d * (X) = j ≤ μ j
† f * − f 2

2γ
γ + 2

≤ M rn

2γ
γ + 2 + f * − f m

2

2γ
γ + 2 .

(8)

Combining the above results, we obtain that with probability ≥ 1 − δ,

μ j
† − μ j

† ≤ M f * − f m
2
min 1, 2γ

γ + 2 + rn
min 1, 2γ

γ + 2 + cM
log(1/δ)

n .

Therefore, μ j
† − μ j

†  is Op f * − f m
2
min 1, 2γ

γ + 2 + rn
min 1, 2γ

γ + 2 + n−1/2 .

We then consider the bound on Σ j
† − Σ j

† , j = ± 1. Let F(X) = ∑i = 1
n f Xi I d Xi = j  and 

Fm(X) = ∑i = 1
n f m Xi I d Xi = j  and F * (X) = ∑i = 1

n f * Xi I d Xi = j . With probability ≥ 1 

− δ,

Σ j
† = ∑

i = 1

n W Xi I d Xi = j

∑i = 1
n W Xi I d Xi = j

2
Xi − μ j

† ⊤
Xi − μ j

† .
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Σ j
† − Σ j

† ≤ ℙn − ℙ f (X)
F(X)

2
X − μ j

† ⊤
X − μ j

† I d (X) = j

+ ℙ f (X)
F(X)

2
X − μ j

† ⊤
X − μ j

† I d (X) = j

− ℙ f * (X)
F * (X)

2
X − μ j

† ⊤
X − μ j

† I d * (X) = j

≤ cδ
log(1/δ)

n + ℙ f (X)
F(X)

2
X − μ j

† ⊤
X − μ j

† I d (X) = j

− ℙ f (X)
F(X)

2
X − μ j

† ⊤
X − μ j

† I d (X) = j

+ ℙ f (X)
F(X)

2
X − μ j

† ⊤
X − μ j

† I d (X) = j

− ℙ f (X)
F(X)

2
X − μ j

† ⊤
X − μ j

† I d (X) = j

+ ℙ f (X)
F(X)

− f * (X)
F * (X)

2
X − μ j

† ⊤
X − μ j

† I d (X) = j

≤ cδ
log(1/δ)

n + 2 ℙ f (X)
F(X)

2
X − μ j

† ⊤
μ j

† − μ j
† I d(X) = j

+ ℙ f (X)
F(X)

2
μ j

† − μ j
† ⊤

μ j
† − μ j

† I d(X) = j

+ ℙ f (X)
F(X)

2
X − μ j

† ⊤
X − μ j

† d * (X) = j, d (X) ≠ d * (X)

+ ℙ f (X)
F(X)

2
− f m(X)

Fm(X)

2
X − μ j

† ⊤
X − μ j

† I d*(X) = j

+ ℙ f m(X)
Fm(X)

2
− f * (X)

F * (X)
2

X − μ j
† ⊤

X − μ j
† I d * (X) = j

≤ Op f * − f m
2
min 1, 2γ

γ + 2 + rn
min 1, 2γ

γ + 2 + n−1/2 .

Now we prove Theorem 1’s result. Define

M(u) = β10 + Fu ⊤ Σ1
† + ρ1I p β10 + Fu + β10 + Fu ⊤ Σ−1

† + ρ−1I p β10 + Fu ,

and

Mn(u) = β10 + Fu ⊤ Σ1
† + ρ1I p β10 + Fu + β10 + Fu ⊤ Σ−1

† + ρ−1I p β10 + Fu ,
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where we use the estimated Σ±1, F and β10 in M(u). Since u belongs to a compact set, 

β10 β10, Σ j Σ j and F F, supu Mn(u) − M(u) 0 in probability. Given that M(u) has a 

unique maximizer and u is in a compact set, we have sup
u − u* ≥ ϵ

M(u) < M u* . Hence the 

conditions of Theorem 5.7 of van der Vaart (1998) are satisfied, and it follows that u u* in 

probability, and subsequently β1 β1* in probability.

We now show the convergence rate of β1 to β1* . Given that u ↦ M(u) is twice differentiable 

at u*, we have M(u) − M(u*) ≲ −c∥u − u*∥2 for all u in the neighborhood of u* and some c 
> 0, where u* is the unique maximizer of M(u). Since 

μ j − μ j = Op Op f * − f m
2
min 1, 2γ

γ + 2 + rn
min 1, 2γ

γ + 2 + n−1/2  and 

Σ j − Σ j = Op f * − f m
2
min 1, 2γ

γ + 2 +rn
min 1, 2γ

γ + 2 + n−1/2 ,

Mn − M (u) − Mn − M u*

= Mn(u) − Mn u* − M(u) − M u* ≲
∂Mn(u)

∂u − ∂M(u)
∂u

u = u*
u − u* ≈

f * − f m
2
min 1, 2γ

γ + 2 + rn
min 1, 2γ

γ + 2 + n−1/2 u − u* .

Thus,

E* sup
u − u′ < δ

Mn − M (u) − Mn − M u* ≲ f * − f m
2
min 1, 2γ

γ + 2 + rn
min 1, 2γ

γ + 2 + n−1/2 δ .

When δ ϕ(δ) = n f * − f m
2
min 1, 2γ

γ + 2 + rn
min 1, 2γ

γ + 2 + n−1/2 δ, ϕ(δ)/δη is decreasing for 

any η ∈ (1, 2). In addition, u u* in probability, and u maximize Mn(u). The conditions of 

Theorem 14.4 in Kosorok (2008) are satisfied with 

ϕ(δ) = n f * − f m
2
min 1, 2γ

γ + 2 + γn
min 1, 2γ

γ + 2 + n−1/2 δ . Hence, 

u − u* = Op f * − f m
2
min 1, 2γ

γ + 2 + rn
min 1, 2γ

γ + 2 + n−1/2 , and the desired result follows.
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Figure 1: 
Misallocation rates in Scenarios 1 and 1’ using trial data with sample sizes varying from 250 

to 1000. The misallocation rate is evaluated by using 500 Monte Carlo repetitions.
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Figure 2: 
Misallocation rates in Scenarios 2 and 2’ using trial data with sample sizes varying from 250 

to 1000. The misallocation rate is evaluated by using 500 Monte Carlo repetitions.
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Figure 3: 
Misallocation rates in Scenarios 3 and 3’ using trial data with sample sizes varying from 250 

to 1000. The misallocation rate is evaluated by using 500 Monte Carlo repetitions.
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Figure 4: 
Kaplan–Meier survival curves of overall survival in castration-resistant prostate cancer 

patients: (a) by treatment received; (b) by accordance between treatment recommended by 

MiLD-V and treatment received; (c) by accordance between treatment recommended by 

MiLD-P and treatment received.
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Table 1:

Mean (s.e.) cross-validated values (days)

COX OWL MiLD-V MiLD-P

b = 0 b = 0.1 b = 0 b = 0.1

749.2 (69.8) 711.1 (71.2) 764.6 (70.2) 765.0 (68.9) 753.5 (69.4) 753.7 (69.4)

“s.e.” denotes standard errors.
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Table 2:

Coefficients for the estimated linear decision rules by MiLD-V and MiLD-P using the SWOG0421 data

MiLD-V MiLD-P

Intercept 0.021 0.037

Age 0.538 0.150

Baseline serum PSA −0.510 −0.734

Bisphosphonate usage (YES = 1) 0.787 1.235

Metastatic disease beyond the bones (YES = 1) −0.301 0.008

Pain (YES = 1) −0.272 0.050

Performance Status (‘2–3’ = 1) 0.515 0.796

BAP 0.382 0.972

CICP −0.023 0.302

NTx 0.137 0.657

PYD −0.339 −0.326
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