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Modern computational models of attention predict fixations using saliency maps and target maps, which prioritize locations for fixation
based on feature contrast and target goals, respectively. But whereas many such models are biologically plausible, none have looked to the
oculomotor system for design constraints or parameter specification. Conversely, although most models of saccade programming are
tightly coupled to underlying neurophysiology, none have been tested using real-world stimuli and tasks. We combined the strengths of
these two approaches in MASC, a model of attention in the superior colliculus (SC) that captures known neurophysiological constraints
on saccade programming. We show that MASC predicted the fixation locations of humans freely viewing naturalistic scenes and per-
forming exemplar and categorical search tasks, a breadth achieved by no other existing model. Moreover, it did this as well or better than
its more specialized state-of-the-art competitors. MASC’s predictive success stems from its inclusion of high-level but core principles of
SC organization: an over-representation of foveal information, size-invariant population codes, cascaded population averaging over
distorted visual and motor maps, and competition between motor point images for saccade programming, all of which cause further
modulation of priority (attention) after projection of saliency and target maps to the SC. Only by incorporating these organizing brain
principles into our models can we fully understand the transformation of complex visual information into the saccade programs under-
lying movements of overt attention. With MASC, a theoretical footing now exists to generate and test computationally explicit predictions
of behavioral and neural responses in visually complex real-world contexts.
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Introduction
Saccades and fixations are essential for efficient perception and ac-
tion, making these behaviors key to understanding selective atten-
tion in the brain. Modern computational models of attention predict
fixations using saliency maps (Itti and Koch, 2001) and target maps
(Zelinsky, 2008), which prioritize locations for fixation based on

bottom-up feature contrast and top-down target goals, respectively.
These models are powerful in that they are image based, meaning
that they can be applied to any pattern that can be depicted in the
pixels of an image, and this versatility has led to their widespread
adoption and use by researchers studying the allocation of visual
attention in realistic contexts. But whereas many models in this class
are biologically plausible, none have looked to the oculomotor sys-
tem for design constraints or parameter specification. Consequently,
these models, although broadly inspiring research into the brain
mechanisms coding priority, have not generated predictions of
presaccadic neural activity in specific brain structures.

Conversely, models of saccade programming are tightly cou-
pled to underlying neurophysiology. Indeed, these are primarily
models of a particular brain area, the superior colliculus (SC; for
review, see Girard and Berthoz, 2005). The SC is a multilayered
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Significance Statement

The superior colliculus (SC) performs a visual-to-motor transformation vital to overt attention, but existing SC models cannot
predict saccades to visually complex real-world stimuli. We introduce a brain-inspired SC model that outperforms state-of-the-art
image-based competitors in predicting the sequences of fixations made by humans performing a range of everyday tasks (scene
viewing and exemplar and categorical search), making clear the value of looking to the brain for model design. This work is
significant in that it will drive new research by making computationally explicit predictions of SC neural population activity in
response to naturalistic stimuli and tasks. It will also serve as a blueprint for the construction of other brain-inspired models,
helping to usher in the next generation of truly intelligent autonomous systems.
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midbrain structure implicated in saccade programming and vi-
sual attention (Krauzlis et al., 2013). SC cells have visual, visuo-
motor, and motor responses and are topographically organized
into what can be described as visual and motor maps, each dis-
torted by foveal magnification. Central to SC architecture is the
coding of responses as point images, which are roughly circularly
symmetric and size-invariant neural populations that activate in
response to a visual point stimulus or before a saccade, depending
on whether cells in the point image have visual or motor re-
sponses (McIlwain, 1975, 1986; Ottes et al., 1986; Munoz and
Wurtz, 1995; Anderson et al., 1998; Moschovakis et al., 2001;
Goossens and Van Opstal, 2006). Saccades are programmed by
integrating over movement vectors in the motor point image
(Lee et al., 1988). Saccade programming models capture these
core neurophysiological constraints and have been hugely influ-
ential in stimulating research into the mechanism of overt atten-
tion, but they are limited in that they can accept as input only
isolated coordinates in space (Ottes et al., 1986) or hypothetical
distributions of neural activity (Trappenberg et al., 2001), leaving
open the question of how the brain programs saccades to visually
complex targets.

Saccade programming models and image-based models of at-
tention therefore have complementary strengths and weaknesses;
the former predict the neural processing leading up to a saccade
but are not applicable to real-world stimuli and tasks, and the
latter predict fixations in a variety of real-world contexts but are
not specified at a level useful to understanding saccade program-
ming in the brain and its interplay with attention.

Here we introduce MASC, a model of attention in the superior
colliculus. MASC bridges the cognitively oriented literature fo-
cused on understanding attention allocation in complex environ-
ments with the lower-level literature focused on understanding

the mechanism of overt attention in the brain, combining the
strengths (and offsetting the weaknesses) of both. It does this by
using image-based computational methods to create an intelli-
gent “front end” for a primarily neural-level model of the SC,
making possible the prediction of SC population activity preced-
ing saccades to visually complex common objects and scenes.
MASC generates sequences of saccades to categorically diverse
real-world stimuli in the context of free-viewing and search tasks,
and we test these predictions against the behavior of human par-
ticipants viewing the identical stimuli and performing the same
tasks. We show that MASC outperforms existing state-of-the-art
models of scene viewing and visual search in its prediction of
overt attention movements, a performance boost that can be at-
tributed directly to MASC’s inclusion of constraints and opera-
tions known to exist in the SC. We conclude that, although the
cortical prioritization of visual information is obviously impor-
tant for predicting shifts of overt attention, additional prioritiza-
tion occurs in the SC, making an understanding of this structure
essential to a complete understanding of overt attention.

Materials and Methods
Model methods. MASC is a high-level model of the SC, meaning that our
intent was to capture well accepted organizational principles and opera-
tions known to exist in the SC but not the fine-grained collicular cir-
cuitry. This was done so as to keep MASC simple with relatively few
parameters, essential for the model to have widespread appeal among
visual attention researchers. MASC is therefore a proof of concept show-
ing that a brain-inspired model reflecting core aspects of SC organiza-
tion, such as the foveal magnification of space and the use of population
averaging, can predict the allocation of overt attention as well or better
than state-of-the-art competitors. With respect to behavior, MASC is
fixation based. Underlying each of its fixations is a repeating sequence of
processing stages, starting with an image input and ending with the gen-

Figure 1. Anatomy of MASC. a, Input is an image, blurred to reflect retinal acuity limitations. b, This image shown projected onto the SC. c, A priority map (here a saliency map) generated from
the blurred image. d, The priority map projected into SC space, where it is averaged over visual point images computed throughout the visual map. The ring indicates the size of one visual point
image; the visual receptive field for the neuron at the center of this point image is shown in c. e, Activity from d after a second stage of averaging over the larger motor point images. Shown is the
maximally active point image, with the vector average of this population (indicated by the cross) determining the end point of MASC’s initial saccade in visual space. f, Initial saccades from the four
models tested and 8 (randomly selected from the 15) subjects.

1454 • J. Neurosci., February 8, 2017 • 37(6):1453–1467 Adeli et al. • An Image-Based Model of the Superior Colliculus



eration of a saccade. Figure 1 illustrates the general model pipeline. All
models, like all biological systems, need parameters to work, and this is
especially true for models applied to real-world tasks and stimuli. Find-
ing good parameters is a daunting challenge for modelers, but MASC
points to a simple solution. In it we assume that the brain has already
found highly optimized parameters for directing overt attention and that
it is in the brain that we should focus our search for design inspiration
and parameter specification. Here we provide details about these param-
eters, each grounded in estimates from neurophysiology, for MASC’s key
processing stages.

To better equate the visual information used by MASC to human
observers, at the start of each new fixation, the method from Geisler and
Perry (2002) was used to blur the input image to reflect the visual acuity
limitations that would exist if that image was viewed from a given fixation
location (Fig. 1a). This method uses a multiresolution pyramid (Burt and
Adelson, 1983) to create a resolution map indicating the degree of low-
pass filtering applied to each image point relative to its distance from
current fixation. The current implementation used fixed parameters that
provide a reasonable estimate of human contrast sensitivity as a function
of viewing eccentricity for a range of spatial frequencies (Geisler and
Perry, 2002). The resulting retina-transformed version of the input im-
age approximates the progressive blur that occurs in human vision with
increasing distance from the high-resolution fovea. Both the scenes in
Experiment 1 and the object arrays in Experiment 2 were dynamically
retina transformed after each change in fixation, and this was done for
MASC and the other image-based models to which it was compared.
Note, however, that the images of targets used as cues in the exemplar
search task were not retina transformed, as these objects were viewed
foveally by participants.

These retina-transformed images were then used to create a priority
map, a construct for capturing the biasing or prioritization of each loca-
tion of visual space for the purpose of directing visual attention (Bisley
and Goldberg, 2010; Zelinsky and Bisley, 2015). This prioritization can
be based on many factors, two of which are considered here. One is a
low-level and task-independent biasing of basic hue, orientation, and
luminance feature maps at different spatial scales to obtain a single map
reflecting the overall bottom-up feature contrast in an image. This pri-
oritization of visual space is commonly referred to as a saliency map (Itti
et al., 1998; Itti and Koch, 2001). There are many methods of construct-
ing saliency maps (Borji et al., 2013), but in this study we adopted the
Itti–Koch implementation from Harel et al. (2006) because it consis-
tently outperforms other versions and because it is part of the widely

accessible GBVS (Graph-Based Visual Saliency) Matlab package. This
saliency map (Fig. 1c) was used in Experiment 1 by both MASC and the
Itti–Koch model to prioritize the selection of saccades during the free
viewing of naturalistic scenes. Experiment 2 used a search task, and in
search the prioritization of visual information is captured by a target map
(Zelinsky, 2008; Zelinsky and Bisley, 2015). A target map is a top-down
and task-dependent (i.e., cortical) biasing of information to reflect visual
similarity to a target goal. Two types of target maps were used in Exper-
iment 2, exemplar target maps and categorical target maps.

An exemplar target map reflects a visual similarity estimate (Zelinsky,
2008) between an image of a cued target and every location in an image of
a search display (Fig. 2a), obtained in the current implementation by a
top-down weighting (Navalpakkam and Itti, 2007) of orientation (Bay et
al., 2006) and color (Swain and Ballard, 1991) features. These features
were first extracted from 450 Hemera objects (Hemera Technologies),
none of which were used as targets or distractors in the search displays, to
learn a Bag of Words (BoW) dictionary consisting of 200 orientation and
200 color visual words. The BoW method uses feature clustering and
dimensionality reduction to obtain histogram-based descriptors for
complex visual patterns (for additional details, see Csurka et al., 2004). At
the start of each new fixation on every trial, we obtained the dot product
between the BoW histogram representation of the cued target and the
BoW histogram for each object in the retina-transformed search display
and created from these values a target map (Fig. 2e). Pixel intensity on
this map codes target– distractor visual similarity; thus, as illustrated in
Figure 2e, the brightest points are at the location of the cued leaf exemplar
target in the search display. Differences in intensity also exist between the
distractors, but these more subtle differences in target– distractor simi-
larity are less visible in this figure.

A categorical target map prioritizes locations in a search display based
on their visual similarity to a cued target category and is used to predict
the preferential fixation of categorically defined targets during search
(Schmidt and Zelinsky, 2009; Alexander and Zelinsky, 2011). A categor-
ical target map differs from an exemplar target map in that its target–
distractor similarity estimates cannot be derived directly from the
target cue, now a category name (Fig. 2c, “leaf”), as the features of
the text cue bear no resemblance to the features of the target object
in the search display. Using the above-described BoW method and the
same orientation and color features used for exemplar search, we
trained 25 target/nontarget linear Support Vector Machine (SVM)
classifiers (Chang and Lin, 2011) for each of 25 target categories
(Fig. 3). Positive training samples were 12 target exemplars from each

Figure 2. Search experiments. a, Procedure for exemplar search. b, Representative exemplar search scanpaths from subjects and the models. c, Procedure for categorical search. d, Categorical
search scanpaths. e, Target map for a specific leaf exemplar (shown enlarged in a). f, Motor map activity resulting from the target map in e projected onto the SC. The red cross indicates the center
of the most active motor point image. Not shown is the preceding averaging over the visual map. g, Target map for the “leaf” category. h, Categorical target map projected onto the SC motor map.
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category, none of which appeared as targets in the search displays.
Negative samples were 450 Hemera objects (same objects used to
train the exemplar BoW dictionary), also a disjoint set from the test-
ing objects. For each trial, the classifier corresponding to the cued
target category was selected and distances were computed between its
classification boundary and each object appearing in the search dis-
play (see also Zelinsky et al., 2013a,b,c). These distances were con-
verted into probabilities (Platt, 1999) and plotted as a categorical
target map (Fig. 2 g). Similar to an exemplar target map (Fig. 2e),
intensity on this map indicates the probability of an object being the
cued target, now a category of object. Note that the leaf target is less
bright in Figure 2g compared with Figure 2e, resulting in a less effi-
cient guidance of MASC’s search behavior to the categorical target on
this trial, similar to what was observed in the participants’ behavior
(Fig. 2, compare b, d).

Preceding each of MASC’s saccades, a saliency map or a target map is
projected onto the flipped and foveally magnified map of SC space. Fig-
ure 1b illustrates these distortions, although note that the priority map,
and not the raw image, is actually projected onto the SC. The projection

from visual to collicular space was made using the anisotropic logarith-
mic mapping function from Ottes et al. (1986), which takes a pixel loca-
tion in the image of radius/eccentricity R and angle/direction � and maps
it to a millimeter coordinate u (distance from the rostral pole represen-
tation of the fovea) and v (distance from the midline representation of
the horizontal meridian) in collicular space:

u � Bu In ��R2 � 2AR cos���

A
�, (1)

v � Bv tan�1 � R sin���

R sin��� � A
�, (2)

where Bu � 1.4 mm, Bv � 1.8 mm, and A � 3°. The collicular map was
modeled as a two-dimensional array of neurons (640 � 480 pixels),
where 1 mm 2 of the SC mapped to 76 � 76 square pixels of the collicular
map.

Once in the SC, the prioritized visual information is segregated into
abstracted maps of SC visual and motor activity. The motor map in

Figure 3. The 125 objects appearing as targets in the search displays from Experiment 2. Note that in the exemplar search task these identical objects were used as picture cues to indicate the
specific target before each search display, whereas in the categorical search task the target was cued by presenting one of the 25 category names. Each of the five search set size conditions used a
different target from the five target exemplars per category.
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MASC reflects the responses of neurons in intermediate SC (SCi) and
deeper layers showing premotor selectivity (Sparks and Hartwich-
Young, 1989). Visually responsive neurons can be found in both super-
ficial SC (SCs) and SCi (Sparks and Hartwich-Young, 1989), and the
visual map reflects these responses from neurons in both layers. Treating
these combined visual responses as a single map is, in part, a modeling
convenience; visual biases are used identically in the programming of
saccades regardless of whether they arise from salience or top-down tar-
get goals. However, this simplifying assumption also reflects the fact that
several cortical areas project what appear to be saliency signals to both
SCs and SCi (Schall and Cohen, 2011), making it premature, in our
opinion, to be more specific in our segregation of saliency signals to
particular SC layers. Although it may be the case that salience and top-
down priority are represented in SCs and SCi, respectively (White and
Munoz, 2011), should evidence become definitive on this point it will be
trivial to implement more specialized visual maps in a future generation
of MASC.

The core version of MASC assumes two cascading stages of population
averaging over its visual and motor maps. Averaging first occurs over the
visual point images in the SC visual map (Fig. 1d), believed to reflect
short-range excitatory connections (McIlwain, 1982). Visual point im-
ages were computed by convolving the SC visual map with a Gaussian
window, which we estimated from data by Marino et al. (2008) to have a
diameter of 1.6 mm and a � of 0.4 mm based on a total average area of 2
mm 2. Note that a visual point image is computed for each point in the
projected priority map (not just the one point at the center of the ring in
Fig. 1d), with this first stage of averaging being functionally equivalent to
mapping out the receptive field (RF) of each neuron in the SC visual map
(as shown for the RF in Fig. 1c, corresponding to a neuron at the center of
the point image in Fig. 1d) and averaging activity within these RFs. The
second stage averages SC activity over motor point images computed
throughout the SC motor map, again the convolution of a Gaussian with
the map activation (Fig. 1e). MASC’s motor point image size, 2.4 mm in
diameter with a � of 0.6 mm, was also estimated from data by Marino et
al. (2008) based on a total area of 4.5 mm 2.

To generate a saccade, MASC assumes competition between the sac-
cade vectors coded by the motor point images. MASC is agnostic to the
detailed collicular circuitry specifying where and how this competition
for saccade vectors takes place, whether it is exclusively mediated by
inhibitory interactions in the SCs or SCi (or both; Munoz and Istvan,
1998; Phongphanphanee et al., 2014), or perhaps even through interac-
tions between SC layers (Vokoun et al., 2014; Bayguinov et al., 2015). We
model this competition as a winner-take-all (WTA) computation per-
formed across the landscape of motor map activity, the purpose of which
is to isolate the maximally active motor point image. Averaging the
movement vectors (Lee et al., 1988) over this winning ensemble of neu-
rons in the SC motor map determines the subsequent saccade vector. For
example, the red cross in Figure 1e (and Fig. 2f,h) is the coordinate in
collicular space corresponding to the center of the maximally active mo-
tor point image. The corresponding coordinate in visual space, the land-
ing position of the subsequent saccade, is indicated by the red arrow in
Figure 1f and is obtained by taking the inverse of the transformation used
to convert visual space to collicular space (Ottes et al., 1986). To code
vertical or nearly vertical saccades MASC assumes that a motor point
image, and the averaging occurring within the point image, extends
across the two colliculi, consistent with the suggestions of Van Gisbergen
et al. (1987) and Van Opstal et al. (1990).

Finally, after each fixation inhibition is injected into the priority map
at the fixated location before its projection to the SC, implementing a
form of inhibition of return (IOR; Posner and Cohen, 1984) known as
inhibitory tagging (Klein, 1988; Mirpour et al., 2009; Wang and Klein,
2010). Inhibitory tagging is widely used in models of scene viewing (Itti
and Koch, 2001; Garcia-Diaz et al., 2012) and visual search (Wolfe, 1994;
Zelinsky, 2008) as a mechanism for breaking current fixation and gener-
ating sequences of saccades. MASC implemented inhibitory tagging by
adding Gaussian-distributed activity, with a diameter of 6° and a � of
1.5°, to the location of each fixation on a separate inhibition map of visual
space, which accumulates and maintains this activity [perhaps coded by
lateral intraparietal cortex (LIP); Mirpour et al., 2009]. With each new

fixation, MASC then subtracts activity on the current inhibition map
from activity on the new priority map before its projection onto the SC,
thereby biasing the competition for the next winning motor point image
against previously fixated locations. MASC’s parameters were identical
in Experiments 1 and 2, and the same fixation-based blurring and IOR
was used in all models to which MASC was compared.

Behavioral data collection. Two sets of behavioral data were used in this
study, corresponding to Experiments 1 and 2. However, the new behav-
ioral data collection was limited to Experiment 2, as the data from Judd et
al. (2009) were used for Experiment 1. Experiment 1 stimuli were 1003
images of random-category real-world scenes, each having a horizontal
visual angle of �30° during testing. The 15 Experiment 1 participants
freely viewed each of these scenes for 3000 ms (starting from central
fixation), during which their eye movements were recorded using an
ISCAN ETL 400 eye-tracker (Judd et al., 2009). The original source
should be consulted for additional details. Data from Experiment 2 are
divided into exemplar search and categorical search tasks, which used
different participants but the identical search displays. The only differ-
ence between the two was the cue used to designate the target (as
shown in Fig. 2a,c). Therefore, only general methods will be provided,
with task-specific methods included as they pertain to the target cue
manipulation.

Experiment 2 used images of common objects (Hemera Technolo-
gies). Targets were from a dataset provided by Konkle et al. (2010), where
subsets of Hemera objects were organized into categories consisting of 17
exemplars. From these, we selected five high-typicality exemplars to be
used as targets from each of 25 target categories. Figure 3 shows the target
categories and the specific exemplars presented to participants. Distrac-
tors were 3770 objects selected at random and without replacement from
the Hemera collection, and no distractor was an exemplar of any of the 25
target categories. Objects averaged 3.5 � 3.5° in size and were arranged
into 5, 10, 15, 20, or 25 object displays. Objects were placed randomly in
a display with the constraints that they could not overlap or appear
within 2° of the display center, a location corresponding to starting fixa-
tion. In total, 260 unique search arrays were generated (250 experimental
and 10 practice), each subtending 47° horizontal and 28° vertical based
on a viewing distance of 57 cm (fixed using a chinrest and headrest).
Neither targets nor distractors repeated across these search displays.
Stimuli were presented in color against a white background on a flat-
screen CRT monitor set at a 1680 � 1049 pixel resolution and operating
at a refresh rate of 100 Hz. Eye movements were recorded using an
EyeLink 1000 (SR Research; tower-mount configuration) eye-tracker,
which sampled the right-eye position every millisecond with an esti-
mated accuracy of 0.25– 0.50° of visual angle. Saccades and fixations were
defined using the eye-tracker’s default settings. Nine-point calibrations
were not accepted until average and maximum tracking errors were
�0.46 and 0.98°, respectively. Manual responses were made using a
gamepad controller.

Participants in Experiment 2 were 30 Stony Brook University under-
graduates (of either sex), 15 in the exemplar search task and 15 in the
categorical search task. The number of participants in each Experiment 2
task was chosen so as to match the number of participants in Experiment
1. All had normal or corrected-to-normal vision, by self-report, and
informed consent was obtained before participation in accordance with
Stony Brook University’s institutional review board responsible for over-
seeing research conducted using human subjects. Each trial began with
the presentation of a target cue for 2500 ms at the center of the display,
followed by a central fixation cross for 500 ms and finally by presentation
of a search array. In the exemplar search task, the cue was an image of the
target that was identical in size and appearance to the target in the target-
present search display (Fig. 2a). In the categorical search task, the cue was
the name of the target category (Fig. 2c). Participants indicated their
target-present or target-absent judgment by pressing the right or left
triggers of the game pad, respectively. Accuracy feedback was not pro-
vided. The 250 experimental trials, randomized for each participant and
separated into two blocks (with a short break between the two), were
evenly divided into five set sizes (distributed over the five exemplars per
category) and target-present and target-absent trials, all randomly inter-
leaved, leaving 25 trials per cell of the design.
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Results
Free viewing
Experiment 1 tested MASC against the scene-viewing dataset
from Judd et al. (2009). For clarity in making model compari-
sons, we will hereafter refer to this version of MASC as MASC-S,
reflecting the use of only saliency information in its priority map.
The 1003 scenes shown to participants were input to MASC-S in
their original sizes. For each scene, MASC-S made a series of “free
viewing” saccades based on the corresponding visual-saliency
map projected onto the SC (see Materials and Methods, Model
methods), thereby generating the data for the following analyses.
Figure 4 shows representative scanpaths, each truncated to the
first six saccades, from MASC-S and 6 (of 15) participants, super-
imposed over the scenes that were viewed. Note that only a subset
of the behavioral data is visualized for each scene so as to reduce
clutter and make individual scanpaths more discernable; partic-
ipants were selected randomly for visualization, not to maximize
agreement with the model. In all cases, MASC-S’s behavior seems
well within the scanpath variability of the participants. From
these qualitative visualizations, it is also clear that MASC-S is not
generating odd or patently artificial viewing behavior (behavior
that can sometimes be hidden in more quantitative analyses).

Movie 1 provides a more detailed, but still qualitative, look at
MASC-S’s behavior. It shows the first 10 saccades from the model
for the scene illustrated in Figure 1, along with visualizations of
key processing stages underlying each of these movements of
overt attention. In the top left panel, a cross indicating MASC-S’s
current fixation location is superimposed over a dynamically
changing retina-transformed image of the scene. Note that scene
locations near the cross are not blurred, whereas locations farther
from the cross are. In the top right panel, a priority map (in this
case a saliency map) is generated at the start of each new fixation
based on the retina-transformed image from the current fixation.
Note also that after each change in fixation, inhibition is injected
into this map at the previously fixated location, causing the ap-
pearance of darker regions of dampened activity. The buildup of

this inhibition over fixations creates a form of inhibitory tagging
(Klein, 1988; Mirpour et al., 2009; Wang and Klein, 2010) that
motivates the model to fixate new regions of the scene. The bot-
tom right panel shows the predicted neural activity on the SC
visual map after projection of the priority map into SC space and
averaging activity over the visual point images. Note how the
distribution of activity on this map changes with each saccade,
reflecting fixation at a new location in visual space and the
buildup of inhibition. Similarly, the bottom left panel shows pre-
dicted SC motor map activity after averaging visual map activity
over the motor point images. The cross indicates the center of the
most active point image, which corresponds to the landing posi-
tion of the subsequent saccade (the new fixation appearing in the
top left panel).

To evaluate MASC-S more quantitatively, we compared its
behavior with the behavior generated from two saliency models
applied to the dataset of Judd et al. (2009). One of these was an
Itti–Koch model (Itti and Koch, 2001), implemented by Harel et
al. (2006). The other was the Adaptive Whitening Saliency (AWS)
model (Garcia-Diaz et al., 2012), a top performer in a saliency
model evaluation by Borji et al. (2013). These models used WTA
to select points from their saliency maps for fixation, with each
fixated region then tagged with inhibition to generate scanpaths.
There was also a Subject model, formed by having the mean
behavior of n � 1 subjects predict the behavior of the subject left
out, and a Random model, which randomly selected points in an
image to fixate.

Each of the first six saccades were evaluated using two mea-
sures of prediction error: saccade landing position, the Euclidean
distance between the predicted and behavioral saccade landing
positions from each subject, averaged over scenes and then over
subjects, and a similar measure computed for saccade amplitude.
Both measures are commonly used in the scanpath comparison
literature (Cristino et al., 2010; Dewhurst et al., 2012). The Sub-
ject and Random models provide lower and upper limits, respec-
tively, on these prediction-error measures. In particular, because

Figure 4. Representative scenes and scanpaths from MASC-S (red) and six participants (cyan), randomly selected from 15, showing the first six saccades made during the Experiment 1
free-viewing task.
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the Subject model captures the fixation agreement among partic-
ipants that could potentially be predicted by a model, the success
of a model’s predictions would not be expected to exceed the
predictive success of the Subject model.

Figure 5 shows plots of prediction error for each model as a
function of saccade number for the saccade landing position (Fig.
5a) and saccade amplitude (Fig. 5c) measures. Smaller errors
mean better model predictions of fixation behavior. Of first note
is the general tendency for predictions to become worse with an
increasing number of saccades. Agreement in participants’ fixa-
tion behavior lessened with each saccade, and all of the models,
except Random, captured this trend in both saccade landing po-
sitions and saccade amplitudes. To evaluate MASC-S’s predictive

success, and to compare its predictions with the other models, for
each model we obtained the area under its prediction-error curve
(prediction-error AUC), an estimate of prediction error that col-
lapses over saccades. Doing this for all 15 participants produced
15 prediction-error AUC estimates for each model. The box and
whisker plots in Figure 5b show prediction-error AUC for the
saccade landing position measure. Figure 5d shows the same plots
for saccade amplitude. MASC-S’s prediction errors were smaller
than Itti–Koch, AWS, and Random for both saccade landing po-
sition (p values �0.001) and amplitude (p values �0.001), al-
though larger than the Subject model for both measures (p values
�0.05). Notably, MASC-S outperformed the Itti–Koch model
despite sharing the identical saliency information (a point that we
return to in the Discussion).

Exemplar and categorical search
Experiment 2 tested MASC against behavioral data from exem-
plar (Fig. 2a,b) and categorical (Fig. 2c,d) search tasks. Extending
MASC to a search task involved simply replacing the Itti–Koch
saliency map used in Experiment 1 with either an exemplar or
categorical target map. We will refer to this version of the model
as MASC-T, reflecting its sole use of a target map to estimate
priority. Except for the type of target map that it computed and
used, MASC-T’s underlying operations were identical in the ex-
emplar and categorical search tasks, as were the search displays
used as input (Fig. 2, compare b, d).

Movies 2 and 3 show MASC-T’s behavior and key operations
for exemplar and categorical search, respectively. In the two illus-
trated trials the model is searching for a leaf target embedded in
the same array of nine random-category distractors (top left).
The cross indicates the current fixation location, which was al-
ways at the display’s center at the start of a trial. Note the blurring
of objects from this central viewing location and that this blurring
changes with each fixation. A target map (top right) is generated
from the retina-transformed image of the search display based on
the current viewing location. To compute the target map in the
exemplar search task, the image of the target exemplar shown to
participants at cue is compared with the objects in the search
display. This was done by taking the dot product between BoW
histograms derived from orientation and color features extracted
from the cue and search display images. Note from Movie 2 and
Figure 2e that the location of the leaf target in the search display
appears bright on this target map, indicating a strong target-
guidance signal. Note also that fixation on the screw object re-
sulted in inhibition that largely removed its associated activity

Figure 5. Evaluation of MASC-S in the Experiment 1 free-viewing task. a, Mean error in predicting the landing positions of the first six saccades, plotted for MASC-S (red), an Itti–Koch model
(blue), the AWS model (green), a Random model (pink), and a Subject model (cyan). Error bars indicate 1 SEM. Note that the small error bars reflect stability obtained in the data after averaging over
1003 images for each subject. b, Model comparison showing for each a box and whisker plot of the area under its prediction-error curve (AUC from the curves in a) for saccade landing position.
c, Similar plot of prediction errors for saccade amplitude. d, Similar model comparison for saccade amplitude.

Movie 1. MASC performing a representative free-viewing task. Top
left, A cross indicating current fixation location superimposed over a
dynamically changing retina-transformed image of the scene. Note that
scene locations near the cross are not blurred whereas locations far from
the cross are blurred. Top right, The priority map (in this case a saliency
map) generated from the retina-transformed image based on the cur-
rent fixation location. After each change in fixation, inhibition is injected into this map at the
previously fixated location, needed to motivate the model to fixate different parts of the scene.
Note the buildup of this inhibition creating darker regions of dampened activity. Bottom right,
The SC visual map is generated by projecting the priority map into SC space and averaging
activity over the visual point images. Note how the distribution of activity on this map changes
with each saccade, reflecting fixation at a new location in visual space and the buildup of
inhibition. Bottom left, The SC motor map is generated by averaging visual map activity over the
motor point images. The cross indicates the center of the most active point image, which
determines the landing position of the subsequent saccade (top left).
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from the target map and the SC maps. The creation of a categor-
ical target map differs from exemplar search in that MASC-T no
longer inputs an image of the target shown at cue: knowledge of
the target is provided instead in the form of a trained SVM clas-
sifier. Orientation and color features are again extracted from
each object in a search display, only now they are compared with
the target category’s SVM classification boundary to derive the
categorical target map. Priority estimates on the categorical target
maps were generally lower than those on the exemplar target
maps. Comparing Movies 2 and 3, this difference in priority re-
sulted in the fixation of two distractors before the target in the
categorical search task, one more than the number of distractors
fixated for this same image shown in the exemplar search task.
The exemplar or categorical target map is then projected onto the
SC visual map (bottom right), exactly as described for the free-
viewing task, where activity is averaged over the visual point
images. Note that the relatively small visual point images enable
individual objects to be largely resolved on the visual map (most
evident at starting fixation). Finally, the SC motor map is gener-
ated by averaging visual map activity over the larger motor point
images (bottom left). This second stage of averaging causes the
previously individuated objects to become merged into larger
populations of neural activity. The cross indicates the center of
the most active motor point image, which determines the landing
position of the subsequent saccade (top left). Note from Movies
1-3 that the only thing differing among the scene-viewing, exem-
plar search, and categorical search tasks is the prioritization of
visual information projected onto the SC; operations occurring
within the SC, cascaded population averaging across the distorted
visual and motor maps and the selection of the maximally active
motor point image, were identical.

Behavioral eye movement data from both the exemplar and cat-
egorical search tasks were analyzed using two measures of search
guidance: distance traveled, computed by summing saccade ampli-
tudes until gaze reached the target, and target-first-fixated, the pro-
portion of trials in which the target was the first fixated object during
search. The distance-traveled measure captures weak guidance ef-
fects that accumulate over multiple search saccades, while the target-
first-fixated measure captures strong and immediate guidance to a
target. Note that these are not the same measures used in Experiment
1, and the reason for this is because the tasks themselves differ. Fun-
damental to a search task is the concept of a target, requiring that
dependent measures of performance be relative to the target goal.
Our focus on measures of search guidance is therefore appropriate;
changes in guidance reflect different representations of the cued
target and the match between this target representation and the
target’s actual appearance in a search display. Targets are unde-
fined in a free-viewing task, making measures of target-related
guidance impossible.

Although goal-directed biases, to the extent that they exist
in free viewing, are unknown, in the case of search top-down
prioritization and bottom-up salience might both affect
movements of overt attention. We therefore consider another
version of MASC that combines bottom-up and top-down
biases into a single priority map that is then projected onto the
SC, rather than just a target map or just a saliency map. We
refer to this combined model as MASC-T.S, with the T.S des-
ignation indicating a dot product (Peters and Itti, 2007) be-
tween the target map (either exemplar or categorical) and the
bottom-up saliency map (Harel et al., 2006). Except for its use

Movie 2. MASC performing an exemplar search task for a specific leaf
target. Top left, Dynamically changing retina-transformed search dis-
play. The cross indicates the current fixation location, which was always
initially at the center. Top right, The priority map (in this case an exem-
plar target map) generated from the retina-transformed image based
on the current fixation location. Note that fixation on the screw object
resulted in inhibition that largely removed its associated activity from the target and SC maps.
Bottom right, The SC visual map is generated by projecting the priority map into SC space and
averaging activity over the visual point images. Note that the relatively small visual point
images enable individual objects to be largely resolved on the visual map (most evident at
starting fixation). Bottom left, The SC motor map is generated by averaging visual map activity
over the larger motor point images. Note that this second stage of averaging causes individual
objects to become merged into larger populations of neural activity. The cross indicates the
center of the most active point image, which determines the landing position of the subsequent
saccade (top left).

Movie 3. MASC performing a categorical search task for the target
category of “leaf.” Top left, Dynamically changing retina-transformed
search display, with the cross indicating current fixation location. Top
right, The priority map (in this case a categorical target map) generated
from the retina-transformed image based on the current fixation loca-
tion. Note that two distractors were fixated before the target, one
more than the number of distractor fixations occurring for this same image presented in
the exemplar search task. Bottom right, The SC visual map is generated by projecting the
priority map into SC space and averaging activity over the visual point images. Bottom
left, The SC motor map is generated by averaging visual map activity over the larger motor
point images; the cross indicates the center of the most active point image and the landing
position of the subsequent saccade (top left). Note that the only thing differing among the
scene-viewing, exemplar search, and categorical search tasks is the prioritization of visual
information projected onto the SC; operations occurring within the SC, cascaded popula-
tion averaging across the visual and motor maps and the selection of the maximally active
motor point image, were identical.
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of both salience and top-down target goals to determine pri-
ority, MASC-T.S and MASC-T are identical, thereby enabling
a meaningful analysis of how saliency biases affect target guid-
ance in the context of search.

Turning first to the exemplar search data, of the 1875 target-
present behavioral trials (125 � 15 subjects), 4% were excluded
because of participants making a target-absent response (scored
as a “miss”). Trials were also excluded if initial fixation was not at
the display’s center or if a participant failed to fixate the target
before making a judgment, leaving 1427 trials for analysis. Mean
saccade distance traveled and the proportion of target-first-
fixated trials were calculated for MASC-T and MASC-T.S just as
they were for the behavioral data. Figure 6a shows saccade dis-
tance traveled for both versions of MASC and all 15 participants
as a function of set size. Although there is high variability in the
behavioral responses, clear evidence exists for a positive set size
effect in this measure; gaze moved a greater distance as objects
were added to the search display (p � 0.001). To test whether
MASC-T and MASC-T.S exhibited a comparable set size effect,
we correlated their predicted distance traveled at each set size
with the behavior of individual participants. Combining these
using a Fisher z-transformation, we obtained significant correla-
tions of 0.67 (p � 0.01) for MASC-T and 0.51 (p � 0.05) for
MASC-T.S, indicating that MASC captured the same positive
trend. Figure 6c plots the proportion of trials in which the target
was the first fixated object, again as a function of set size. Repli-
cating a previously reported pattern (Zelinsky et al., 2013a), here
we found a negative set size effect; immediate guidance to the
target decreased with increasing set size. Moreover, this trend
existed in the behavioral data (p � 0.001), for MASC-T (r � 0.64;
p � 0.01), and for MASC-T.S (r � 0.78; p � 0.01), based again on
an averaged correlation after Fisher z-transformation. Compar-
ing the two versions of MASC, MASC-T better captured the
behavioral trend in saccade distance traveled. Both models suc-
cessfully predicted target-first-fixated, although MASC-T.S pre-
dicted a slightly lower proportion of immediate target fixations.
These differences can be explained by bottom-up salience
interfering with the efficient top-down guidance of attention to a
search target, supporting previous work showing that humans
largely discount salience in their prioritization of attention move-
ments when knowledge exists about an exemplar-specific target
goal (Chen and Zelinsky, 2006; Zelinsky et al., 2006).

We also evaluated MASC by comparing its performance with
a WTA model that made its saccades to maximally active points

on the same target map used by MASC-T. The inputs to WTA
were also the same retina-transformed search images input to
MASC, and the model used the identical inhibitory tagging pro-
cess to generate scanpaths. The behavior of WTA is shown by the
blue functions in Figure 6, a and c, where it can be seen that this
model captured neither the positive set size effect observed in
saccade distance traveled to the target (Fig. 6a) nor the negative
set size effect observed in the proportion of target-first-fixations
(Fig. 6c). Moreover, WTA predicted an unrealistically strong level
of target guidance. This was expressed as an underestimation of
saccade distance traveled and an overestimation of the propor-
tion of cases in which the target was fixated first, where WTA
predicted that this should happen on nearly every target-present
trial. In contrast to WTA’s unrealistic behavior, MASC produced
more human-like levels of target guidance for both measures.
The reason why MASC did not similarly outperform participants
in this regard, despite the model having perfect knowledge of the
target’s appearance, stems from its use of Gaussian convolution
over foveally magnified SC visual and motor maps. This Gaussian
averaging, combined with the retina-transformed visual inputs,
resulted in a blurring of the priority signals and, in turn, the
frequent fixation of distractors that appeared at less eccentric
visual locations than the target. As was the case for its conceptual
predecessor (Zelinsky, 2008), the assumption of a foveated retina,
now in combination with constraints introduced by the SC, was
essential to MASC’s generation of realistic search behavior.

As in Experiment 1, we also conducted a more quantitative
analysis comparing MASC-T and MASC-T.S with both WTA
and the Subject model. To make this comparison, we obtained
prediction-error curves for our two measures by subtracting the
behavior of each model from each of the 15 subjects and taking
the absolute value of the error. For the Subject model, each sub-
ject’s behavior was subtracted from the average behavior of the
remaining subjects. We then computed prediction-error AUC
for each model, which we show as bar and whisker plots in Figure
6b for distance traveled and in Figure 6d for target-first-fixated.
For both of these measures, MASC-T’s behavior did not differ
reliably from the Subject model (p values �0.3). MASC-T.S dif-
fered from the Subject model for distance traveled (p � 0.01) but
not for target-first-fixated (p � 0.5). This better performance by
MASC-T suggests that a target map is a better predictor of fixa-
tions than a combined target–saliency map in the context of ex-
emplar search. Salience may play less of a role in the direction of
the later saccades in a sequence, resulting in a greater prediction

Figure 6. Evaluation of MASC in the Experiment 2 exemplar search task. a, Plots showing mean distance traveled to the target for all subjects (cyan), MASC-T (solid red), MASC-T.S (dashed red),
and WTA (blue), as a function of set size. b, Box and whisker plots comparing prediction-error AUC computed from MASC-T, MASC-T.S, WTA, and a Subject model for distance traveled to the target.
Note that AUC was calculated from prediction-error curves (not shown) derived from the data in a. c, Plots showing the proportion of trials in which the target was the first fixated object for
participants and the models. d, Box and whisker plots comparing MASC-T, MASC-T.S, WTA, and Subject model prediction-error AUC for the conservative target-first-fixated measure of search
guidance.
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error for MASC-T.S in distance traveled. In contrast, WTA was
significantly less predictive of target-first-fixated than MASC-T,
MASC-T.S, or the Subject model (p values �0.01), suggesting
that either version of MASC is preferable to a model that simply
makes saccades to the peaks on a target map.

Figure 7 shows parallel analyses conducted on data from the
categorical search task. Behavioral data were trimmed as before to
exclude misses (8%) and cases in which fixation did not start at
the display’s center or end on the target, leaving 1508 of the
original 1875 target-present trials for analysis. Participants again
varied greatly in saccade distance traveled (Fig. 7a), but the same
positive trend of distance increasing with set size was observed
(p � 0.001). In fact, this trend was more pronounced than in the
exemplar search task (note the different y-axis scale), reflecting
the greater difficulty of categorical search. Both versions of
MASC captured this set size effect, indicated again by significant
correlations with individual participants (average r after Fisher
z-transformation was 0.87 for MASC-T, p � 0.01, and 0.87 for
MASC-T.S, p � 0.01). In contrast, the WTA model now under-
estimated search efficiency by predicting too steep of a set size
effect. For the more conservative target-first-fixated measure
(Fig. 7c), all of the models captured the observed decrease in
guidance with increasing set size (averaged r � 0.88 for MASC-T,
p � 0.01; 0.83 for MASC-T.S, p � 0.01; and 0.75 for WTA, p �
0.01). However, the models all overestimated the proportion of
target-first-fixated trials, with the relatively low immediate target
fixation rate for MASC-T.S making it best aligned with the be-
havioral data in this more challenging search task.

Prediction-error curves were again computed for MASC-T,
MASC-T.S, WTA, and a Subject model, as described for exemplar
search, and the area under these curves is plotted for saccade
distance traveled (Fig. 7b) and target-first-fixated (Fig. 7d).
MASC-T and MASC-T.S outperformed WTA for both measures
(p values �0.001; comparing AUC against behavior) and did not
differ reliably from the Subject model in predicting distance trav-
eled to the target (p 	 0.5). As in the case of exemplar search,
MASC-T was more predictive than WTA despite both models
using the same target maps. MASC-T.S outperformed
MASC-T for target-first-fixated ( p � 0.01), although it was
still significantly less predictive of behavior than the Subject
model ( p � 0.01).

In summary, whereas MASC-T and MASC-T.S performed
similarly and both better than WTA, MASC-T.S’s predictions
were as good or better than MASC-T, except in the case of the
distance-traveled measure for the exemplar search task. The fact
that MASC-T.S performed best in the context of categorical

search dovetails nicely with the relatively weaker level of guidance
observed in this task; as top-down guidance from the target goal
became weaker, bottom-up guidance likely played a larger role.
Finally, although this general preference for MASC-T.S is not
intended to suggest that bottom-up and top-down priority sig-
nals are combined before their projection to the SC (as opposed
to being combined within the SC itself), the observed improve-
ment in prediction does suggest that both sources of bias are
ultimately integrated and used by the SC to guide overt attention.

Predicting weakly guided searches
The analyses so far showed that MASC successfully predicted the
proportion of trials in which participants first fixated the target
during their search. However, these were the trials in which the
target generated a strong guidance signal, the easy trials with
respect to search difficulty. Here we evaluate model predictions
on the more difficult search trials, ones where the target was not
the first fixated object. These difficult trials provide a more strin-
gent test of the models, requiring them to predict the directions of
the initial saccades when participants failed to look immediately
to the target. For each subject, we isolated the trials in which the
target was not the first fixated object and determined the propor-
tion of those trials where the models’ initial saccade was in the
same direction (
/�22.5°) of the participant’s initial saccade
axis, a measure we refer to as proportion of agreement. We also
calculated the level of fixation agreement among subjects to es-
tablish an upper limit on prediction success. This Subject model
was calculated on a subject-by-subject and trial-by-trial basis;
for a given trial in which subject x made his or her initial
saccade in direction y, where y is a direction away from the
target, what proportion of the other subjects also looked ini-
tially in direction y?

The results are shown in Figure 8 for both exemplar and cat-
egorical search tasks. To the extent that direction predictions are
above chance, based on a random selection of 45° segments over
360°, this would be evidence for a model capturing agreement in
where participants looked initially when not looking toward the
target. Moreover, to the extent that predictions do not differ from
the Subject model, this would be evidence that these predictions
are as good as could be expected given the variability in the par-
ticipants’ looking behavior. The MASC models were above
chance in predicting the direction of participants’ initial saccades.
This was true for exemplar (p values �0.01) and categorical (p
values �0.01) search, although this agreement was slightly but
significantly less than the agreement among participants (p val-
ues � 0.05, except in the case of exemplar search where MASC-T

Figure 7. Evaluation of MASC in the Experiment 2 categorical search task. a, Plots showing mean distance traveled to the target for all subjects (cyan), MASC-T (solid red), MASC-T.S (dashed red),
and WTA (blue), as a function of set size. b, Box and whisker plots comparing MASC-T, MASC-T.S, WTA, and Subject model prediction-error AUC for distance traveled to the target. c, Plots showing
the proportion of trials in which the target was the first fixated object for subjects and the models. d, Similar model comparison for the conservative target-first-fixated measure of search guidance.
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did not differ from the Subject model, p 	 0.1). Compared with
either version of MASC, WTA was significantly worse at predict-
ing participants’ initial saccade direction during exemplar search
(p � 0.01), largely because of its over-prediction of immediate
target fixations on these difficult search trials. No reliable differ-
ences were found between WTA and MASC for categorical
search. To summarize, the MASC models passed a very difficult
test; they predicted where participants initially shifted their atten-
tion on trials in which the target was not immediately fixated,
and they did this nearly as well as could be expected given the
agreement in search behavior.

Dissecting MASC: one versus two stages of averaging
We know that MASC generally outperformed its competitors and
that this better performance stemmed from its inclusion of core
principles of SC organization in its design. But which of its col-
licular constraints is responsible for this improvement? Here we
explore one of these, the role played by a second stage of popula-
tion averaging. MASC’s architecture includes two cascading
stages of population averaging, first over visual point images and
then a second over motor point images. This design choice was
motivated by neurophysiological studies, spanning monkey, cat,
and rodent, showing different-sized visual and motor point im-
ages in the same SC layer (SCi; Marino et al., 2008) and across
different layers (McIlwain, 1975; see also Phongphanphanee et
al., 2014). However, recent work by Vokoun et al. (2014) has
called this assumption into question. Recording from slices of
rodent SC, they observed integration of neural responses in SCs
after stimulation of neurons in SCi. This provocative finding sug-
gests that there may be only one stage of population averaging in
the SC, not two.

To speak to this possibility, we dissected MASC to deter-
mine the effect of one versus two stages of population averag-
ing on its prediction of fixations. We did this by comparing the
two-stage version of MASC described in Materials and Meth-
ods, Model methods, with versions of MASC that used only a
single stage of Gaussian averaging. To settle on a single aver-
aging window for comparison with MASC, we varied window
size to best predict the critical separation between two stimuli

leading to the breakdown of saccade averaging reported by
Vokoun et al. (2014) using a saccade-targeting task. We define
this breakdown in averaging by at least 50% of the initial
saccades landing on one or the other of the dual targets rather
than at an intermediate location between the two. Given that
the emergence of bimodality in the landing position distribu-
tion was gradual, a range of averaging window sizes predicted
their psychophysical data equally well. Coincidentally, we
found that the motor point image estimated from Marino et al.
(2008) and already used by MASC fell within this range, so we
adopted this window size for our single stage of averaging. We
refer to these single-averaging models, otherwise identical to
MASC-S and MASC-T, as MASC-Sm and MASC-Tm, with the
“m” designation indicating that there is only one stage of av-
eraging over a window corresponding to the motor point im-
age (2.4 mm in diameter with a � of 0.6 mm). For
completeness, we also included single-averaging versions of
MASC having a smaller averaging window (1.6 mm in diam-
eter with a � of 0.4 mm) corresponding to the estimated visual
point image. We refer to these versions as MASC-Sv and
MASC-Tv.

Figure 9 shows an evaluation of these models for the Experi-
ment 1 free-viewing data. MASC-S numerically outperformed
MASC-Sm and MASC-Sv, but the only difference in prediction-
error AUC attaining statistical significance was between MASC-S
and MASC-Sv for the saccade landing position measure (p �
0.05). Results for the two search tasks from Experiment 2 are
shown in Figure 10. Here again, MASC-T generally outper-
formed MASC-Tm and MASC-Tv, although only the compari-
sons of distance traveled for exemplar search were statistically
significant (MASC-Tm, p � 0.05; MASC-Tv, p � 0.01). Collec-
tively, these data suggest a predictive advantage for two stages of
population averaging in the SC rather than just one. Specifically,
a version of MASC implementing the architecture suggested by
Vokoun et al. (2014), one using a single averaging window that
best predicted the saccade averaging observed in a behavioral
dataset, cannot be preferred over dual-averaging versions of
MASC. However, the small differences observed make the results
from this computational experiment inconclusive; additional ex-

Figure 8. Model evaluation of predicted initial saccade direction for exemplar and categorical search trials in which saccades were not directed initially to the target. a, Box and whisker plots
comparing WTA, MASC-T, MASC-T.S, and a Subject model in their ability to predict initial saccade direction on difficult exemplar search trials. The proportion of agreement in initial saccade direction
is calculated between participants and each model and averaged over trials in which the target was not the first fixated object. The dashed line indicates the chance level of agreement based on 45°
angular segments and a random direction of initial saccades. b, A similar model evaluation performed for categorical search.
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perimental work is needed to gain clarity on how rodents and
primates differ with respect to integration and competition op-
erations occurring within the SC circuit.

Discussion
MASC is an image-based computational model of attention in
the superior colliculus. We tested its predictions against fixa-
tion behavior observed in free-viewing, exemplar search, and
categorical search tasks, and for all three tasks found that these
predictions were as good or better than those from more spe-
cialized, state-of-the-art models. Such generalization across
tasks is uncommon and speaks to MASC’s robustness. But
what most distinguishes MASC from other image-based
models of attention is that it was inspired by the brain. MASC
outperformed comparable competitors despite using the iden-
tical, cortically derived attentional priority signals (the same
priority maps), a finding that highlights the role played by
processing internal to the SC in predicting fixations. Part of
MASC’s predictive success stems from its adoption of organiz-
ing principles central to the SC, a structure that programs the
behaviors being predicted (saccades). MASC’s parameters and
their values were also firmly grounded in SC neurophysiology,
and herein lies another core reason for its success. Whereas

other models adopt the less principled approach of searching
large spaces to find parameters that best fit data, in MASC we
assume that this search is unnecessary—that the brain already
found the best parameters.

MASC follows other brain-inspired models of attention in
that it is grounded in a biased-competition framework (Desi-
mone and Duncan, 1995; Desimone, 1998). Making a saccade to
a location in visual space requires selecting one motor vector
from the many thousands of others that would have brought
attention to different scene locations (Zelinsky, 2012). This selec-
tion is not random, but rather is biased by priority maps (Bisley
and Goldberg, 2003, 2010; Zelinsky and Bisley, 2015) toward
patterns matching a high-level goal (Zelinsky, 2008) or having
pronounced low-level feature contrast (Itti and Koch, 2001). Al-
though MASC assumes the existence and use of cortically derived
priority maps for directing visual attention, it also incorporates
into its design core principles of the SC that are fundamental to its
organization and function: an over-representation of foveal in-
formation, size-invariant population codes, population averag-
ing over visual and motor maps, and competition between motor
point images for saccade vectors. Under MASC, these factors
further modulate priority internal to the SC, a position that dove-

Figure 9. Evaluation of how the number of SC averaging operations (1 vs 2) and the profiles of the averaging windows (corresponding to motor and visual point image estimates) affect model
predictions in the Experiment 1 free-viewing task. a, Box and whisker plots of prediction-error AUC for saccade landing position comparing dual-averaging (MASC-S) and single-averaging (MASC-Sm
and MASC-Sv) versions of the model. b, Similar model comparison for saccade amplitude.

Figure 10. Evaluation of how the number of averaging windows and their profiles affect model predictions in the Experiment 2 search tasks. a, Box and whisker plots comparing MASC-T,
MASC-Tm, and MASC-Tv prediction-error AUC for saccade distance traveled to the target during exemplar search. b– d, Similar model comparisons for target-first-fixated in exemplar search (b),
distance traveled in categorical search (c), and target-first-fixated in categorical search (d).
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tails with evidence suggesting that the SC plays a causal role in
selective attention (Carello and Krauzlis, 2004; McPeek and
Keller, 2004). In particular, the population-averaging operations
performed over the distorted visual and motor SC maps repriori-
tize the cortically derived priority signals and ultimately change
the programming of saccades. MASC’s mechanism for selection
is also brain inspired. Rather than having a saccade’s landing
position be determined by the location of peak activity on a pri-
ority map, under MASC the selection of a saccade vector is deter-
mined by a competition between neural populations in the SC
motor map. The competition for where attention should be
shifted in space is therefore biased both by priority signals origi-
nating in the cortex (Fecteau and Munoz, 2006) and by process-
ing occurring subsequent to the projection of these biases to
the SC.

MASC differs from other biased-competition models of atten-
tion in that it is a proof of concept for how neural population
averaging in the SC, a principle at the core of saccade program-
ming (Lee et al., 1988), can be realized in the form of an image-
based model. It shows that the averaging of priority signals before
the competition for selection results in different, and better, pre-
dictions of saccade landing positions, a demonstration arguing
against the continued neglect of population averaging in the
image-based modeling of attention. MASC also provides a theo-
retical framework for studying the relationship between popula-
tion averaging and the attentional modulation of neural activity
in the context of realistic stimuli and tasks. For example, the
current implementation of MASC assumed that averaging oc-
curred over fixed-size point image populations, but what if this
assumption was wrong? The literature is relatively settled on the
translation-invariant property of SC point images (McIlwain,
1986; Munoz and Wurtz, 1995; Goossens and Van Opstal, 2006),
but the profile of this translation-invariant averaging window has
not been systematically explored outside the context of simple
saccade-targeting tasks using highly impoverished stimuli. In-
deed, given the ample evidence that attention can modulate the
sizes of RFs in V4 and LIP (Connor et al., 1997; Ben Hamed et al.,
2002; Anton-Erxleben and Carrasco, 2013), the opposite as-
sumption is more likely: that point image profiles in the SC can
similarly be modulated by attention and task demands. Following
Ottes et al. (1986), MASC also assumed that SC point images are
circularly symmetric. However, more recent studies have chal-
lenged this notion, suggesting that population-activity profiles
might be biased toward the fovea (Munoz and Wurtz, 1995; Mer-
edith and Ramoa, 1998; see also Anderson et al., 1998) or away
from it (Phongphanphanee et al., 2014; Bayguinov et al., 2015), as
a result of rostrocaudal asymmetries in lateral inhibitory connec-
tions. MASC can drive research into these questions by generat-
ing testable predictions for how differently sized attention-
modulated point images should be expressed in neural and
behavioral responses and by testing different population-activity
profiles to determine which best accounts for saccadic behavior.

Finally, MASC differs from other models of saccade program-
ming in that it is computational, meaning that its predictions can
be derived from the same images shown to participants (Tsotsos
and Rothenstein, 2011). This is a significant contribution.
MASC’s versatile image-based “front end” allows for computa-
tionally explicit predictions of behavioral and neural responses to
visually complex objects and scenes, something that was not pre-
viously possible. Specifically, it predicts sequences of behavioral
responses (saccade scanpaths) and the neural landscapes of activ-
ity across the SC’s visual and motor maps preceding each eye
movement. Although testing MASC’s behavioral predictions was

the focus of the present study, its predictions linking neural
activity to attentional priority can also be tested by recording
from the SC and directly observing neural responses, potentially
revealing dissociations between saliency and goal-directed activ-
ity at different anatomical layers. The fact that these and other
predictions would be possible using common objects and scenes
as stimuli means that it will no longer be necessary to sacrifice
visual complexity for prediction specificity; MASC allows for
both.

But the current implementation of MASC is not without lim-
itations. For one, MASC makes the simplifying assumption that
there exist saliency maps and target maps of visual space without
addressing the various cortical origins of these maps (Fecteau and
Munoz, 2006). MASC also fails to consider the potentially differ-
ent organizations of different priority maps, and how each might
project to the SC. For example, MASC assumed that priority
maps respect the same logarithmic transformation from visual to
SC space described by Ottes et al. (1986). This assumption is
partially justified by work showing consistencies in the gross cor-
tical representation of visual space (Schwartz, 1980; Van Essen et
al., 1984; Bruce and Goldberg, 1985; Sommer and Wurtz, 2000),
but it may nevertheless prove to be false. MASC would need to be
modified should new neurophysiological studies of these cortical
areas show different visual mappings and/or afferent connectivi-
ties to the SC. Relatedly, MASC’s predictions of fixation behavior
were based on a visuomotor transformation identified in mon-
keys (Ottes et al., 1986), not humans. However, the fact that
MASC performed as well as it did despite potential species differ-
ences in the structure and dimension of the SC means that its
predictions might improve once this transformation is specified
in humans and incorporated into MASC. It would be interesting
to compare the saccadic behavior of humans and monkeys per-
forming the same scene-viewing and search tasks to see which is
best described by the model. Another limitation of MASC is that
it neglects the time course of activation buildup in the SC, making
MASC currently unable to predict saccade latencies or other
time-dependent processes affecting the orienting of overt atten-
tion. This omission was intentional, as our goal in developing
MASC was to provide a proof of concept before introducing
temporal dynamics that might obscure the model’s simplicity. A
related limitation is that MASC is only a high-level model of the
SC, one capturing its core organizing principles but not its de-
tailed circuitry. This, too, was intentional so as to maintain sim-
plicity and encourage widespread use. It would be an interesting
direction for future work to systematically add in these details
and determine how each contributes to even better predictions of
saccade target selection in the context of visually complex stimuli
and tasks. Finally, the SC is only one structure in a much larger
attention network. We focused on the SC so as to highlight the
unique role this structure plays in integrating cortically derived
priority signals into a saccade program, but future work will need
to adopt a more systems-level perspective that better situates
MASC alongside the other brain structures implicated in overt
attention. These limitations and simplifying assumptions will be
addressed in future work, where the next generation of MASC
will attempt to predict not just where activity should, and should
not, be highest across the SC, but also the time course of this
neural activity and from where top-down biases originate in the
larger network of brain areas serving selective attention.
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