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Abstract

Human fluid intelligence emerges from the interactions of various cognitive processes.

Although some classic models characterize intelligence as a unitary “general ability,”

many distinct lines of research have suggested that it is possible to at least partially decom-

pose intelligence into a set of subsidiary cognitive functions. Much of this work has focused

on the relationship between intelligence and working memory, and more specifically

between intelligence and the capacity-loading aspects of working memory. These theories

focus on domain-general processing capacity limitations, rather than limitations specifically

linked to working memory tasks. Performance on other capacity-constrained tasks, even

those that have typically been given the label of “attention tasks,” may thus also be related

to fluid intelligence. We tested a wide range of attention and working memory tasks in 7- to

9-year-old children and adults, and we used the results of these cognitive measures to pre-

dict intelligence scores. In a set of 13 measures we did not observe a single “positive mani-

fold” that would indicate a general-ability understanding of intelligence. Instead, we found

that a small number of measures were related to intelligence scores. More specifically, we

found two tasks that are typically labeled as “attentional measures”, Multiple Object Tracking

and Enumeration, and two tasks that are typically labeled as “working memory” measures,

N-back and Spatial Span, were reliably related to intelligence. However, the links between

attention and intelligence scores were fully mediated by working memory measures. In con-

trast, attention scores did not mediate the relations between working memory and intelli-

gence. Furthermore, these patterns were indistinguishable across age groups, indicating a

hierarchical cognitive basis of intelligence that is stable from childhood into adulthood.

Introduction

The construct of fluid intelligence captures the general ability to reason, to flexibly engage with

the world, to recognize patterns, and to solve problems in a manner that does not depend

upon specific previous knowledge or experience. This construct has been of particular interest

within the domain of psychology for a host of reasons, most notably the fact that individual
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differences in fluid intelligence have been associated with real-world outcomes, including aca-

demic and occupational success [1–3]. Indeed, fluid intelligence as a construct originated with

the need for educators and employers to assess the aptitudes of their students or employees

[4,5].

The psychometric basis of fluid intelligence has also been informed by a growing under-

standing of its psychological underpinnings. It has long been observed that when participants

perform a large battery of cognitive tasks, a dominant latent factor of “general ability” emerges

that explains a high degree of individual-level variation on these tasks [6]. In particular, high

correlations are ubiquitously found between working memory measures and reasoning mea-

sures [7–11]. Working memory refers to the short-term maintenance and manipulation of

mental information. The distinctions between working memory and short-term memory have

been inconsistent across tasks and theories (e.g., [12–14]. In particular, when relating these

processes to fluid intelligence, there is evidence that distinctions between the two constructs

may not be wholly clear (see Methods). For consistency, we use the label “working memory”

here, although we recognize the potential for dissociation between working memory and

short-term memory. These strong correlations between working memory and fluid intelli-

gence have, in turn, led to many distinct lines of research that further probe this relationship.

These research tracks include investigations of the utility of working memory over and above

fluid intelligence as a predictor of academic success [15] and the possibility of improving

working memory and then observing concomitant improvements in fluid intelligence [16].

Researchers have also closely examined the specific aspects of working memory that are

most related to fluid intelligence [8]. Results indicate that working memory capacity is predic-

tive of fluid intelligence, implying a general processing-capacity limitation for both categories

of tasks [9,10,17]. This area of inquiry is grounded in theories of working memory proposing

an interacting set of lower level processes, including the control of attention, that together give

rise to short-term maintenance and manipulation of mental representations. Indeed, the most

popular formulations of working memory share, at their core, an interaction between memory

stores and attention [18,19].

Those theories of working memory that have addressed the role of attention are mirrored

by numerous theories of attention that have likewise recognized the role of information main-

tenance over time. Not surprisingly, many tasks that are putatively assessing “attention” none-

theless have a memory component. Whether intentional (e.g., goal selection) or unintentional

(e.g., implicit learning), and whether via a long-term store (e.g., statistical learning) or via a

short-term store (e.g., priming), memory representations guide and interact with attentional

selection [20–24]. Further, memory for contexts or goals, or even stimuli within a series of pre-

sentations, clearly influences the allocation of attention.

Both attention and working memory have limited capacities. The relationship between

these two limited-capacity processes is often characterized as being hierarchical, in which low-

level perceptual and attentional processing is restricted to a very small amount of information

[25,26]. In turn, the capacity of attention constrains the capacity of working memory, which is

itself related to fluid intelligence [25,27–29]. Interestingly, the interplay between working

memory and attention is arguably also reflected within a number of computational models

which do not make a qualitative distinction between memory and attention processes per se
(e.g., [30,31]). Instead these models can be used to fit behavioral data both from tasks that

would typically be associated with “attention” as well tasks that would typically be associated

with “memory.” For instance, Ma and Huang [31] compared multiple object tracking perfor-

mance against simulations of various theoretical models of capacity. Multiple object tracking,

in which participants must attend to the identity of some moving targets amidst identical mov-

ing distractors, has typically been approached as a test of attention [23,32]; but see [30].
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However, various theories of working memory make explicit predictions regarding expected

patterns of performance on this task. Ma and Huang [31] treated these models’ predictions as

being driven by domain-general capacity constraints, which themselves have been proposed to

be the linking process between working memory and fluid intelligence (see, e.g., [17]).

Despite the clear interconnectedness of attention and working memory processes, and

between working memory processes and fluid intelligence, the possibility of direct correlations

between fluid intelligence and attention have received far less study. Those relations between

attention and intelligence that have been reported have largely been focused on attention in

the context of canonical "executive function" tasks, rather than canonical attention tasks (e.g.,

attentional control—[8,27]; behavioral inhibition—[11]). Direct evidence for correlations

between visuo-spatial attention measures and fluid intelligence is rarer (with the notable

exception of a large literature on intelligence and processing speed, which could potentially be

framed in terms of attention, e.g., [33–35]. One goal of the present work is to examine whether

similar correlations are observed between canonical visuo-spatial attention tasks and fluid

intelligence tasks, and, if so, whether the underlying mechanisms appear similar as those that

have been shown to link working memory tasks with fluid intelligence tasks.

Developmental comparisons

Beyond the high-level question above, there is also significant interest in the extent to which

cognitive functions and their interrelations shift through development [36]. Our understand-

ing of cognition is inextricably linked to an understanding of development [37]; in order to

understand the relations between specific abilities and behavioral tasks (as well as other mea-

sures that can clarify them), we should ensure that we are able to model the changing nature of

this over the lifespan [36,38–40].

Developmental change from childhood to adulthood is associated with quantitative

improvements in processes as diverse as reading, reasoning, motor skills, and working mem-

ory. Despite the ubiquity of quantitative improvements, evidence for qualitative changes in

patterns of performance is more equivocal (e.g., in terms of the way that performance on dif-

ferent tasks correlate/load together). While there is some evidence suggesting that certain pat-

terns may shift through development [27,41], the stability of cross-construct patterns of

performance between age groups has provided the foundation for influential theories of cogni-

tion and intelligence (e.g., [38]).

If correlations between abilities are present across individuals within age groups, the most

parsimonious expectation is that similar correlations would be present in other age groups.

Age-related differences in the interrelations of cognitive abilities would precipitate a need for a

mechanism of age-related change not only in the component processes but also in how they

relate. On the contrary, the null hypotheses (i.e., stability across development) does not require

a mechanism of change for the relation, only the shared component process. This stability in

the structure of cognition across ages has been observed in previous longitudinal studies in

childhood (e.g., [15]). If each individual’s cognitive abilities have stable interrelations over

development, we expect cross-sectional results of the structure of cognition to likewise be simi-

lar in both children and adulthood.

Current work

Given existing computational and developmental accounts of cognition, there remains a need

to examine the interrelations between measures of working memory, attention, and intelli-

gence. Here we test the relations between performance on a variety of basic psychological tasks

and Raven’s Progressive Matrices (a common measure of fluid intelligence) in both children
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and adults. We compare relations between cognitive abilities in middle childhood (~ 8 years

old) with those in early adulthood by measuring performance on 13 computerized tasks. These

tasks ranged from simple visuo-spatial attention tasks to measures of vocabulary and working

memory span.

Correlations have been observed in previous work between some of these measures, such as

between fluid intelligence and working memory tasks (e.g., N-back, spatial span). In the case

of the N-back task, this relationship appears based upon the strong capacity-loading dimen-

sion [17]. In other words, there are many ways one can potentially alter the difficulty of the N-

back task (e.g., altering presentation speed, altering the prevalence of recently seen items, etc.),

yet differences in how performance changes as a function of load (i.e., “N” in the case of N-

back) is most strongly related to differences in measured intelligence. We expect to replicate

these findings in both children and adults. Following Ma and Huang [24], one specific novel

interest here is the relation between performance on multiple object tracking (MOT) and fluid

intelligence. Although this relation has not been previously explored, a theoretical link between

capacity-loading tasks (which MOT is, despite typically being considered an attention task)

and fluid intelligence suggest that a significant relation will be found.

Given the full set of measurements from the task battery, our first goal was to identify the

degree to which the measures are generally related to fluid intelligence and the degree to which

these relations are stable across development. Although consistently positive cross-task corre-

lations are cited as evidence for a common latent general ability, our battery was explicitly

designed to test independent aspects of visual attention and working memory. Thus, our

expectation was that some, but not all the tasks in the battery would be related to fluid intelli-

gence. Our second goal was to test the conventional separation of cognitive tasks into attention
and memory categories. Although these literatures are often distinct, theories regarding the

link between processing capacity and fluid intelligence suggest that tasks with a significant

capacity loading should correlate with fluid intelligence (even if that task is typically consid-

ered an attentional task). Here we use the differential relatedness to reasoning scores found in

the previous analyses to specify model comparisons using Bayesian regression and mediation.

We use these models to quantify the moderating role of age and the mediating role of attention

or memory.

Method

Participants

This study was approved by the University of Wisconsin-Madison Education and Social/

Behavioral Sciences Institutional Review Board (#2014–0283). Written consent was obtained

from each adult participant, and from a parent or legal guardian of each child participant. The

final reported sample includes 42 children (age range = 7.1–9.2 years, M = 7.9, SD = .57; 19

females) and 80 young adults (age range = 18.0–23.1 years, M = 19.3, SD = 1.03; 58 females).

Individual demographic data were not collected from these families, but the community from

which we sampled is primarily white, non-Hispanic, middle- to upper-middle-class, and

monolingual English-speaking. An additional 2 children and 12 adults participated but were

excluded based upon performance that indicated either task misunderstandings or some other

form of non-compliance (see S1 File for information on exclusions). Child participants were

recruited from a university participant database of parent volunteers from a small city in the

Midwestern United States. Young adult participants were recruited from Introduction to Psy-

chology courses at a large public university. Participants were not screened for language profi-

ciency. Families of child participants received $40 for their participation. Adults received

course credit for their participation.
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Apparatus and procedure

All tasks were programmed in MATLAB using the Psychophysics Toolbox [42,43]. Tasks were

presented on a 22-inch Dell widescreen monitor by a Dell Optiplex computer running Win-

dows 7, at approximately 60 centimeters of viewing distance. Stimulus details are included

below within the description of each task.

Participants completed 13 tasks in a pre-specified order (Attention Network Task, Change

Detection, Change Detection with Filtering [CD filter], Orientation Delayed Match to Sample,

N-back, Peabody Picture Vocabulary Test, Spatial Span, day break for children, Position

Delayed Match to Sample, Color Delayed Match to Sample, Useful Field of View, Multiple

Object Tracking, Raven’s Progressive Matrices, Enumeration; see details below). The task

order was chosen to vary the cognitive demands of temporally adjacent tasks and reduce the

potential for cognitive fatigue. Child participants completed the tasks in two 2-hr sessions

across different days while adult participants completed the tasks in one 2-hr session. All tasks

had short (approximately 5-trial) practice components consisting of very easy trials. Before

each task, an experimenter read the instructions for the task to child participants, then pre-

sented the practice trials and answered any questions the child had. After the experimenter

judged that the child understood the task instructions, he or she began the test trials. Instruc-

tions were presented in writing at the beginning of each task for adults, who then initiated the

task when they were ready to proceed. Participants were given the opportunity to ask questions

and to take breaks between or during tasks.

Selection of tasks for the battery

Our battery included tasks intended to have a wide variety of cognitive processing demands.

These included tasks canonically related to reasoning scores, such as N-back, as well as tasks

that were less likely to be related to reasoning scores. The inclusion of tasks known to be

related to reasoning scores allows for confirmation of the reliability of our measures and esti-

mation of informal upper bounds of our expected cross-task associations. The inclusion of

tasks unlikely to be related to reasoning scores served several important purposes. For

instance, it allowed us the opportunity to examine a number of potentially subtler inter-rela-

tions between processes inherent in our tasks of interest and fluid intelligence. As a possible

example, if a positive relation was observed between MOT and fluid intelligence, some of these

additional attention or memory tasks could allow us to test mediations regarding what sub-

processes might underlie the relation.

Further, the tasks included in the overall battery together represent a reasonable cross-sec-

tion of visuospatial processing tasks, providing “coverage” of alternative hypotheses regarding

individual differences. For example, the presence of tasks that do not significantly correlate

with fluid intelligence is necessary in order to demonstrate that any positive relations that are

observed (e.g., between MOT and fluid intelligence), are process-specific. We tested this pro-

cess-specificity with the first set of analyses focusing on the possible presence of widespread

positive correlations (a “positive manifold”; [6,36]). Such positive manifold is often observed

in cognitive batteries, particularly when the battery is constructed to include only tasks that

one might a priori predict would be related to fluid intelligence. However, given the composi-

tion of our battery, the expectation is instead to observe large variation in the strengths of cor-

relations between individual cognitive measures and intelligence.

Visuo-spatial working memory measures. These tasks were designed to test visual work-

ing memory at varying levels of precision and capacity. None of these involve classic dual-task

(i.e., “maintenance” plus “manipulation”) working memory tasks due to the relative difficulty

of implementing these complex tasks in child populations. However, at high difficulty levels,
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previous work suggests a commonality between dual- and single-tasks’ relations to matrix rea-

soning measures [17,44]. Indeed, in populations of children and older adults, single-task spans

are often utilized as measures of working memory (e.g., [45–48]).

1] N-Back task (see Fig 1A): The N-back task is a common running span measure in which

a series of stimuli are presented and the participant has to compare the current stimulus to the

stimulus that was presented N items prior; for example, on 2-back trials, participants are

required to compare the identity of the third item to the first item, the fourth item to the sec-

ond item, the fifth item to the third item, and so on [49]. We utilized a variation of the stan-

dard N-back working memory task that has previously been used to assess differences across

distinct groups or across the lifespan [50–52]. Minor modifications were made to the standard

design to ensure the task was easily understood by children. In this task, the screen space was

evenly divided into 7 columns from left to right, and 21 rows from top to bottom. Although

the column/row divisions were not explicitly displayed on the screen, the participants were

made aware of this fact during the task explanation and this setup aided participants in keeping

track of the temporal position of items [50]. Each trial began by indicating the number of col-

umns that were going to be used on that trial (the ‘N’ in the N-back–i.e., on a 2-back trial, 2

columns would be used; see Fig 1]; this allowed the vertical spatial alignment of items to serve

as a cue for which items should be compared. For ease of exposition, we will briefly describe a

2-back trial–with the other levels of ‘N’ being simple extrapolations of this base description.

Participants pressed a key to begin each run. After 1 s, a cartoon animal was presented on a

blue background in the first column of the first row. All the animals were visually distinct and

presented in nameable different colors (brown beaver, blue fish, red crawfish, tan clam, yellow

duck, green turtle) and subtended approximately 1.3˚ of visual angle. Then, after 2 s, the first

animal disappeared and a new animal appeared in the second column of the first row. After a

2 s delay, the second animal disappeared and an animal was presented in the first column of

the second row. The participant then indicated via a keypress whether this animal matched the

one that had appeared directly above it (i.e., the animal that had been presented in the first col-

umn of the first row, or 2-back). After the participant entered a response, the third animal dis-

appeared and an animal appeared in the next location (second column of the second row),

with the response now indicating whether the animal matched that which had been presented

in the second column of the first row. The next animal appeared in the first column of the

third row, and so on until the participant had made a total of 20 responses. The other values of

“N” progressed in the same manner across N number of columns. Adults completed set sizes

(“N”) 1 through 7 followed by 7 through 1 [20 trials per run), while children completed set

sizes 1 through 5 followed by 5 through 1 (15 trials per run). Overall percent correct was then

calculated from all trials.

2] Spatial span task (see Fig 1B): The spatial span task that was utilized was a variant of the

Corsi block-tapping task, a classic measure of visuospatial short-term memory [53–56]. Each

trial began with the presentation of an array of outlined squares (each subtended 1.25˚ visual

angle) in 12 locations selected pseudo-randomly from a virtual 5 x 5 grid of possible locations

on a blue (RGB = 153, 217, 234) background. Then, a subset of these squares (corresponding

to set size) were briefly filled in, one at a time, for 0.6 s before turning back to unfilled. After

the final square changed back to unfilled, the participant was prompted to use the mouse to

click on the squares in the order that they had changed color (with the squares changing color

when clicked to verify each choice). Children completed 25 trials consisting of 5 each of set

sizes 2 through 6. Adults completed 20 trials consisting of 4 each of set sizes 4 through 8. In

both age groups, set sizes were randomly shuffled and intermixed.

The dependent variable for this task was calculated using two criteria. The ‘strict’ criterion

credited only exact location/temporal matches between the presentation and response (i.e., a
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response out of order was considered incorrect). The ‘lax’ criterion credited responses that

corresponded to any item from the presentation, regardless of order. This measure recognizes

that, for example, a participant may forget the first item but then reproduce the sequence accu-

rately starting with the second item. Such a response would result in a score of 0 using the strict

criterion, but clearly indicates some memory for the array. For all statistics, we used the aver-

age (per trial) between strict and lax scores; however, we note that the results are not qualita-

tively different when using only strict or lax scores.

3] Visual array change detection (CD): One-shot visual change detection involves the

sequential presentation of two arrays of colored items, with the participant’s task being to

detect the presence of a change between the two arrays [25,57,58]. Here stimuli were cartoon

fish, subtending 1.8˚ of visual angle wide and separated by at least 0.9˚ on a blue background,

drawn without replacement from the following colors (R,G,B): white [236, 236, 236], red [255,

0, 4], purple [136, 12, 146], orange [255, 127, 39], green [98, 249, 44], blue [0, 35, 255], yellow

[255, 255, 0], brown [113, 56, 0]. Stimuli were randomly placed at locations in a virtual grid

(adults: 5 x 5, children: 4 x 4] and presented for 250 ms immediately after a brief auditory cue.

All stimuli then disappeared for a 1-s delay, after which a test array was presented until the par-

ticipant responded. The test array was either identical to the first array, in which case partici-

pants were instructed to press a key labeled “same,” or one item changed color, in which case

participants were instructed to press a key labeled “different.” Children completed 4 “different”

trials and 4 “same” trials each for set sizes 2, 3, 4, 5, and 6, and adults completed 6 “different”

and 6 “same” trials each for set sizes 2 through 7. Trial order was randomized. Overall percent

correct was calculated and used in all analyses; A’ measures were also calculated [59] but the

results were not qualitatively different than percent correct, so we report the simpler measure

(percent correct) here.

4] Change detection task with distracting irrelevant items (“CD filter” task): This was based

on the change detection task described above, but manipulated the number of distracting

items rather than target items [25,60]. The target set size was fixed at 3 for children and 4 for

adults on all trials. In addition to the colored cartoon fish targets on the screen there were cir-

cles with the same dimensions as the fish. These circles were described as “rocks” to partici-

pants, and were drawn from a non-overlapping color set from the fish. Adults completed 80

trials and children completed 60 trials, which were evenly divided between high-distractor

(adults = 10, children = 6] and low-distractor (adults = 3, children = 2) condition. The depen-

dent measure was the percent correct on low-distractor trials minus the percent correct on the

high-distractor trials, indicating a decrement in change detection ability with additional task-

irrelevant distractors.

5a-c) Delayed Match to Sample (position, color, orientation): Three separate visual short-

term memory precision tasks were completed (memory for color, position, and full-contrast

Gabor orientation respectively; see [61]). In the position memory task, participants saw a circle

on the screen for 1000 ms, which was followed by a blank screen. After a delay of 500 ms, an

identical circle appeared offset 0, .2, .7, and 1.5 degrees to the right or left. Participants pressed

arrow keys to identify the direction of offset, and completed 80 of these trials. The dependent

Fig 1. Examples of tasks. Examples of 3 tasks. All parameters remained the same for both children and adults except set size. Children were given

the verbal prompts shown here, while adults were given instructions prior to the tasks. (A) In the N-back task, a series of cartoon animals were

presented in an invisible grid. Participants responded whether the item that had appeared above the current item was the same or different than

the current item. Set size (i.e., ‘N’) was identical to the number of columns. (B) In the Spatial Span task, participants saw a series of items filled in

within a randomly-generated set of squares. They then reproduced the sequence they saw. (C) In Multiple Object Tracking (MOT), participants

tracked several blue target faces moving amidst many yellow distractor faces. The targets then became identical to the distractors and all items

continued to move. After 4 seconds of motion, one item was cued and the participant had to identify whether the cued item started as a blue or

yellow face.

https://doi.org/10.1371/journal.pone.0221353.g001
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variable in this task was a 79% threshold calculated from a logistic fit to responses. The color

and orientation tasks followed the general procedure of [61], with timing identical to the posi-

tion memory task. In these two memory tasks, the post-delay stimulus could be the same or

different than the original stimulus; if different, the difference was defined by either an orienta-

tion offset or an offset in a standardized 360-degree color space (see [61]). Offsets increased

when participants responded that the stimuli were the same and decreased when participants

responded that the stimuli were different, according to the procedure in [61]. The dependent

variable on these tasks was the mean of the smallest color space distances for which partici-

pants responded that the colors were different.

Attention measures. 1] Visual enumeration task: The visual enumeration task required

participants to identify the number of stimuli that were briefly presented. While many founda-

tional applications of this paradigm have emphasized the speed with which participants could

identify the correct number of items (e.g., [62–65]), we were instead interested in participants’

ability to correctly identify the number of items after a short presentation [66]. On each trial, a

number of yellow cartoon fish (modeled after [67] were presented in random locations within

a virtual 5x5 grid in the middle of the screen for 250 ms (children) or 150 ms (adults) on a blue

background. Each fish stimulus was 1.9˚ of visual angle wide, and at least 0.95˚ of visual angle

separated each stimulus. After stimulus presentation, participants responded by typing the

number of fish they saw using the number keys on a standard keyboard. All participants com-

pleted four trials per set size (one through ten, randomly intermixed), and the percent correct

for all trials was used as the aggregate performance score.

2] Multiple Object Tracking (MOT; see Fig 1C): The MOT task involves attending to a

number of moving targets amidst identical distractors [23]. The version employed here was a

child-friendly version of the task similar to that which has been described previously [68].

Fourteen cartoon faces (each subtending .8˚ of visual angle) for child participants, or sixteen

cartoon faces for adult participants, were presented inside a gray circle on the screen that sub-

tended 10˚ of visual angle from its center. All faces were yellow circles with black lines depict-

ing a ‘happy face’, except for a variable number of faces, which were blue circles with black

lines depicting a ‘sad’ face. The blue ‘sad’ faces were identified as the targets that the participant

should track (and thus the yellow ‘happy’ faces were distractors). Each trial consisted of all the

cartoon faces moving within the gray circle at a speed of 5 deg/s, with direction of movement

determined stochastically. The faces never overlapped or touched, and were programmed to

‘bounce’ off each other and the walls of the gray circle. After 2 s, the blue target faces changed

to match the yellow, happy distractor faces. After an additional 4 s of movement, the faces

halted and a white circle containing a question mark replaced one of the faces. The question

mark had a 50% chance of appearing over a target face. Participants were required to indicate

whether the indicated face had been a blue target face at the onset of the trial. Children were

tested on 10 trials each of set sizes 1, 2, 3, and 4 targets. Adults were tested on 5 trials of set size

1 and 10 trials each of set sizes 2, 3, and 4, and 5. These set sizes were chosen to ensure that no

participants would perform at chance, due to tracking 1 item being very easy, but capacity-

related individual differences would be evident at higher set sizes. Trial order was fully ran-

domized. Overall percent correct was calculated and used in all analyses.

3] The Attentional Network Task (ANT; [67,69]: The ANT is a measure of several dimen-

sions of visual attention involving a directional response to an oriented central stimulus that is

flanked by response-compatible or response-incompatible stimuli. These central and flanking

stimuli are presented in combinations of location cues as well as response-compatible and

response-incompatible distractors. Subtracted mean response times (e.g., incompatible-dis-

tractor trials minus compatible-distractor trials), normalized by individual participants’ overall

mean response time, are intended to index attentional orienting, alerting and conflict
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resolution. We utilized a 96-trial version of the task adapted from [56] using yellow fish as the

directional stimuli. All task parameters (e.g., size of stimuli) were modeled directly from [56].

4] The Useful Field of View (UFOV) visual search task: The UFOV task [70] is designed to

test individuals’ ability to identify briefly-presented peripheral information. In this task partici-

pants see a display of items (white squares) arranged in two concentric circles and along 8

lines radiating from the center of the screen. The participant must identify the line on which

an oddball item (a white star) occurred. A concurrent task, designed to encourage central fixa-

tion and ensure the peripheral nature of the main task, involved an identification of a central

stimulus, a small cartoon face, as having long hair or short hair. Adults and children each com-

pleted 50 trials of a 3 down/1 up adaptive staircase. The staircase procedure converges on a

threshold value; these threshold values were log-transformed to approximate normality then

sign-flipped to make better performance be associated with higher values for consistency with

other tasks.

Intelligence measures. 1] Raven’s Progressive Matrices were utilized as our measure of

fluid intelligence. These matrices are a measure of reasoning commonly used in cognitive

training paradigms (e.g., [71–73] as well as cross-sectional studies of the cognitive bases of rea-

soning [74]. Despite the fairly small number of trials, Raven’s Matrices have long been the gold

standard for reasoning measures. Nonetheless, our use of only one measure of this construct

does limit the conclusions we can draw.

In this task, a series of pattern completion problems are presented to the participant. The

rules for the patterns (e.g., perceptual matching, mutual exclusivity) become more difficult as

items progress later in the series. We presented a selection of 4 items from set A, 6 items each

from sets B, C and D, and 4 items from set E of Raven’s Standard Progressive Matrices to chil-

dren (26 items total), and even-numbered items from Raven’s Advanced Progressive Matrices

to adults (18 items total). All participants were limited to 10 minutes in completing the task,

although as they completed items they were unaware of the amount of time remaining. The

adults’ selection was patterned from previous cognitive training work that divided reasoning

tests into two halves for pre- and post-tests [17,71], while the children’s selection was designed

to maximize individual differences by presenting a large range of difficulty in stimuli in a rela-

tively brief amount of time. Our outcome measure for this task was percent correct of the total

items.

2] As a test of verbal knowledge that could covary with Raven’s scores (particularly in chil-

dren), each participant completed a non-progressive selection of items from the Peabody Pic-

ture Vocabulary Test (PPVT; [75], a standardized 4-alteranative-choice test of vocabulary.

Stimuli were presented on the full screen and a recording was played directing the participant

to choose a certain cartoon picture (e.g., the participant would see 4 pictures on the screen and

would hear a phrase like “point to cupola”). Children were provided the opportunity to ask the

experimenter to repeat the word if they desired. Children completed items 109–156 while

adults completed items 169–216.

Results

Univariate and bivariate descriptive statistics are reported in S2 File.

Full-dataset results

Analytical approach. We first used the full covariance structure of our data to test for the

presence of a positive manifold. We examined the magnitudes of bivariate correlations as well

as the degree to which our data could be explained by a single underlying latent variable.

These two methods provided evidence regarding the hypothesis that a positive manifold in
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task performance was present. If correlations between tasks were uniformly large and positive,

and if the majority of variation could be explained with a single latent variable, that would be

evidence for the classic general-ability definition of fluid intelligence [6,39]

In contrast, if cognitive tasks were not generally positively correlated with Raven’s scores,

this would be evidence for some degree of process-specificity of reasoning (i.e., that reasoning

is not reliably related to all possible tasks–which was our a priori assumption). Indeed, our

methods involved the intentional inclusion of a wide variety of cognitive tasks which them-

selves were designed to demand a variety of processes. Process-level heterogeneity by design

should lead to a performance covariance structure that is likewise heterogeneous, and we did

not expect a strong positive manifold or single-component latent variable structure. However,

our analyses in this section also provide initial evidence for which tasks that are most related to

our measure of reasoning, Raven’s. We end this section by examining the evidence for a subset

of reasoning-related tasks, which can then inform more specific model comparisons in the

next section.

Bivariate correlations. As an initial measure of a positive manifold, we calculated the pro-

portion of all pairwise correlations that were higher than a series of possible thresholds. We

did this by resampling our dataset 10,000 times with replacement and calculating the percent

of above-threshold product-moment correlations for each threshold. Task scores were sign-

flipped, if necessary, so that larger values would indicate better performance in these analyses.

When this threshold was restricted to only correlations that were positive (i.e., > 0), a slight

majority of correlations appeared to demonstrate a positive manifold (see Fig 2). In contrast, if

a threshold was introduced such that tasks must share just 1% of their variance (i.e., correlation

at or above 0.1), then fewer than 50% of correlations satisfied the expectation of a positive

manifold. Bootstrapped Spearman rank-order correlations followed the same qualitative pat-

tern (see S3 File). Since there was no clear positive manifold, with many very small correlations

in our data, it was more likely that certain key tasks should be the focus of our comparisons

here. Indeed, only a sub-set of measures appeared to be related to domain-general fluid intelli-

gence ability. This was the expected result, in that some tasks were chosen for the battery that

were unlikely to load particularly strongly on fluid intelligence abilities.

Latent variable decompositions. In order to confirm the lack of a positive manifold

found above we conducted a second analysis to test the extent to which a single factor could

explain performance across all tasks in the battery. To this end, we examined the components

produced by an eigenvalue decomposition of the correlation matrices when excluding Raven’s

(i.e., Principal Components Analysis; PCA). This analysis was able to provide evidence sup-

porting our observed lack of a positive manifold. In addition, we used this analysis to identify

certain tasks most likely to be related to fluid intelligence.

As was true in the general patterns seen in the bivariate correlation matrices, PCA also did

not support a single-component latent structure. In the dataset including both children and

adults and looking only at tasks other than Raven’s, 5 eigenvalues were above 1, with 2 being

above the parallel-analysis cutoffs (actual eigenvalues: 2.96, 1.44). Yet, while 2 components sur-

vive the parallel analysis cutoff, we feel caution is warranted in interpreting these components

[76,77]. For instance, when splitting the data by age group, only one component in each age

group survived a parallel-analysis component comparison. This implied a possible dissociation

between adults’ and children’s patterns of cognitive correlates of intelligence. Age-related dif-

ferences between the tasks associated with high first-component loadings would provide evi-

dence for developmental changes in the relations of cognitive abilities. Below, we examine

each age group’s first-component loadings in order to understand these patterns in more

detail.
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Identifying target cognitive tasks. Examining the first component in each age group, it

was clear that tasks with high working memory demands had consistently large loadings (see

Table 1). In addition, several attentional tasks had high loadings as well, with enumeration

loading the most strongly onto this first component.

The construct of fluid intelligence describes a latent general ability to perform on tasks, par-

ticularly novel ones on which prior knowledge would not help. The tasks in this battery over-

whelmingly fit this description (apart from PPVT, which is specifically designed to test prior

knowledge, a central aspect of crystallized intelligence). As such, the general component just

described should be related to a general performance factor such as fluid intelligence. Further

evidence may be derived from an examination of bivariate correlations. Specifically, we were

Fig 2. Test of positive manifold in children and adults. As the threshold for identifying a “positive manifold” increased, the number of correlations that satisfy that

threshold decreased. Error bands denote 95% percentiles from 10,000 bootstrapped samples for each of 26 evenly spaced correlation thresholds. Thresholds for statistical

significance, at alpha = .05, are r = 0.304 (children) and r = 0.219 (adults).

https://doi.org/10.1371/journal.pone.0221353.g002
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interested in whether correlations between cognitive measures and Raven’s scores were high

for the same tasks with high component-1 loadings. Further, differences between children’s

and adults’ correlations would provide initial evidence for development-related qualitative dif-

ferences in the cognitive correlates of reasoning. To test this, we examined the correlations

between each task and Raven’s scores (see Table 2; see S2 File for the full correlation matrices).

Table 1. PCA component-1 task loadings for each age group.

Adult Component 1 Child Component 1 Difference in Loadings

Enum. 0.719 0.803 -0.084

Spat.Span 0.715 0.740 -0.026

N-back 0.684 0.686 -0.002

UFOV 0.629 0.491 0.138

MOT 0.546 0.659 -0.114

PDMS 0.486 0.457 0.029

CD 0.451 0.466 -0.015

PPVT 0.156 0.419 -0.263

ANT alert -0.016 0.320 -0.337

ANT conflict -0.100 -0.219 0.118

CD filter -0.140 -0.344 0.204

CDMS -0.255 -0.344 0.089

ODMS -0.442 0.141 -0.583

Tasks are sorted according to adults’ loadings. Children’s loadings follow a qualitatively similar pattern. Abbreviations: Enum = Enumeration; Spat.Span = Spatial Span;

UFOV = Useful Field of View; MOT = Multiple Object Tracking; PDMS = Position Delayed Match-to-Sample; CD = Change Detection; PPVT = Peabody Picture

Vocabulary Test; ANT alert = Attention Network Task alerting score; ANT conflict = Attention Network Task conflict score; CD filter = Change detection with

distracting items; CDMS = Color Delayed Match-to-Sample; ODMS = Orientation Delayed Match-to-Sample

https://doi.org/10.1371/journal.pone.0221353.t001

Table 2. Correlations of cognitive tasks with Raven’s, separated by age group.

PCA rank Adult Raven’s correlations Child Raven’s correlations Difference in correlations Difference

p-value

Spat.Span 2 0.412 0.414 -0.001 0.994

N-back 3 0.383 0.298 0.085 0.624

Enum. 1 0.214 0.313 -0.098 0.590

MOT 5 0.167 0.377 -0.210 0.247

PDMS 6 0.123 0.139 -0.016 0.932

ANT alert 9 0.112 0.239 -0.126 0.507

UFOV 4 0.087 0.154 -0.067 0.728

CD 7 0.051 0.326 -0.274 0.145

PPVT 8 0.040 0.603 -0.563 0.001

ANT conflict 10 0.026 -0.171 0.198 0.311

ODMS 13 -0.020 0.066 -0.086 0.660

CD filter 11 -0.050 -0.123 0.074 0.705

CDMS 12 -0.057 -0.296 0.239 0.207

Tasks are sorted according adults’ correlations. “PCA rank” refers to the ordering, from Table 1, of adults’ first-component task loadings. Thresholds for statistical

significance, at alpha = .05, are r = 0.304 (children) and r = 0.219 (adults). Abbreviations: Spat.Span = Spatial Span; Enum = Enumeration; MOT = Multiple Object

Tracking; PDMS = Position Delayed Match-to-Sample; ANT alert = Attention Network Task alerting score; UFOV = Useful Field of View; CD = Change Detection;

PPVT = Peabody Picture Vocabulary Test; ANT conflict = Attention Network Task conflict score; ODMS = Orientation Delayed Match-to-Sample; CD filter = Change

detection with distracting items; CDMS = Color Delayed Match-to-Sample

https://doi.org/10.1371/journal.pone.0221353.t002
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In particular, we compared these correlations to the patterns seen in the component analysis

reported above, and we statistically test the differences between children’s and adults’

correlations.

As Table 2 shows, the tasks with the highest correlations with Raven’s generally had the

highest loadings on the common component. These included spatial span, N-back, enumera-

tion, and MOT. Despite this qualitative pattern of similarity, neither the enumeration nor the

MOT correlations reached conventional statistical significance in adults. The correlations

between these four tasks generally were similar between age groups, while certain other corre-

lations are quite different. Most notably, the correlation of PPVT scores and Raven’s scores

was significantly higher in children than adults (p< .01).

Of these four top tasks that were both correlated with Raven’s and loaded highly onto the

common latent component, two were canonical memory tasks (i.e., spatial span and N-back)

and two were canonical attention tasks (i.e., enumeration and MOT; note that UFOV had rela-

tively high component loadings while having weak correlations with Raven’s). This provided

evidence that the relations between cognitive tasks and intelligence measures are not divisible

into strictly memory or attention categories, but specific processing demands of tasks may be

related to measured intelligence. Further analyses explored these tasks in greater detail.

Testing specific relations between reasoning and cognitive measures

The preceding analyses, including Pearson product-moment correlations and PCAs associated

with these correlations, provided an exploratory sense of the relations between cognitive mea-

sures in our battery as well as developmental differences. The overall covariance structure of

cognitive performance did not indicate a positive manifold nor strong developmental changes

in the structure of cognition.

We next fit specific regression models, allowing for more specific characterizations of the

relations between age and cognition. In this section, we report generalized linear models

which allowed for tests of the reliability of cognitive measures in predicting Raven’s scores. In

these models, interactions with age provide evidence regarding the presence or absence of age-

related changes in the cognitive correlates of intelligence. We tested specific tasks, informed by

the previous analyses, as well as composites of these tasks categorized as attention or working
memory. Given reliable results, we next tested the uniqueness of these cognitive correlates of

intelligence. Finally, we used mediation models to assess the degree to which attention or

memory measures predict Raven’s scores over and above the other category of task.

Analytical approach. Each of the following analyses was the output of one Bayesian

regression using the brms package in R [78]. A beta response distribution was used because

Raven’s accuracy scores are bounded between 0 and 1, and for interpretability coefficients are

reported on log-odds scales. Results are reported here in terms of two numbers, the regression

coefficient (i.e., expected value [b]) and the proportion of the posterior distribution with the

same sign as that expected value (congruent density [cD], e.g, a positive expected value is

paired with the percent of posterior samples that were positive). This provides a simple and

intuitive sense of the probability of the hypothesis that a given parameter is non-zero. We

adopt a threshold value of cD = 0.975, roughly corresponding to a two-tailed frequentist

alpha = 0.05. Note that the main effect of age is not reported in this section because it is likely

to be a theoretically-unimportant artifact of task-difficulty differences across ages. More

detailed information about each model’s results can be found in tables in S3 File.

Each of these regressions sampled 5 chains for 20,000 samples each, with the first 10,000 of

each chain’s samples being discarded as warm-up. A thinning interval of 2 was implemented.

Default priors from brms were used in each model. In every case, the precision parameter phi
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was estimated as a random effect that varied by age, thereby controlling for age-related distri-

butional differences in Raven’s scores. All models converged with r-hat values below 1.02, indi-

cating a very small potential scale reduction factor across chains.

In S3 File frequentist fits of these models are reported. Also, reported there are bootstrapped

frequentist estimates of parameters from models which randomly sample an equal number of

children and adults, thereby mitigating possible bias in parameter estimates due to unequal

sample sizes (see S3 File).

Predicting reasoning using measures of visuospatial working memory. We start by

looking at relations between working memory measures and Raven’s as moderated by age (see

Fig 3). Given the lack of age-related differences in the previous analyses, despite our expecta-

tion of reliable main effects of cognitive predictors, we did not expect any reliable interactions

between cognitive measures and age group. When predicting Raven’s scores spatial span scores

and age group, spatial span scores were a reliable predictor (b = 2.089, cD = 0.997) while the

interactions between spatial span score and age were not reliable (b = 0.872, cD = 0.801).

When predicting Raven’s scores with N-back scores and age group, N-back scores were a reli-

able predictor (b = 3.845, cD = 0.976) while the interactions between N-back score and age

were not reliable (b = 0.538, cD = 0.594).

Bivariate relations between task scores (e.g., between N-back and Raven’s) are influenced

by task-specific random variation; we mitigated this variation by calculating a composite

score. We calculated composite scores as geometric means in order to minimize the effects of

distributional differences between predictor tasks. When predicting Raven’s scores using a

working memory (WM) composite score (i.e., geometric mean of N-back and spatial span

scores) and age group, WM composite scores were a reliable predictor (b = 3.424, cD = 0.999)

while the interactions between WM composite score and age were not reliable (b = 1.228,

cD = 0.797). This composite score regression provides further support for close and develop-

mentally-stable links between working memory and reasoning.

Predicting reasoning scores using measures of visual attention. Next, we examined the

relations between age, Raven’s scores, and attention measures (see Fig 4]. When predicting

Raven’s scores using enumeration scores, and age group, enumeration scores were a reliable

predictor (b = 1.606, cD = 0.979) while the interactions between enumeration score and age

were not reliable (b = -0.375, cD = 0.65). When predicting Raven’s scores using MOT scores

and age group, MOT scores were a reliable predictor (b = 3.729, cD = 0.991) while the interac-

tions between MOT score and age were not reliable (b = -2.265, cD = 0.887). When predicting

Raven’s scores using attention composite (i.e., geometric mean of enumeration and MOT

scores) and age group, attention composite scores were a reliable predictor (b = 1.653,

cD = 0.999) while the interactions between attention composite and age were not reliable (b =

-0.737, cD = 0.817). As we found with working memory measures, attention is also linked to

reasoning in a developmentally-stable pattern.

Does working memory mediate the relations between attention and reasoning?. Next

we tested whether attention measures are uniquely related to Raven’s scores or whether their

relations are mediated by the same capacity constraints as the working memory measures.

Theories of memory and intelligence (e.g., [26]), suggest that the relations between attention

and reasoning would be mediated by working memory scores. To test this hypothesis we fit

Bayesian mediation models, using the same basic modeling methods described above, to esti-

mate the degree to which relations between WM composite scores explain the effects of enu-

meration and MOT predicting reasoning scores. Age was included as a covariate for both

expected value and precision parameters, but the interaction between age and other predictors

was omitted in order to simplify model interpretation and because no interactions were evi-

dent in previous analyses.
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The model parameters are reported in each of the tables below, which provide evidence that

the relations between attention measures and reasoning scores are in fact mediated by a com-

mon ability captured by the WM composite scores (see Tables 3 and 4). Each of the indirect

effects were reliably above zero, the proportions mediated were essentially 100%, and the direct

effects of attention measures on reasoning scores was reduced to be indistinguishable from

zero.

Importantly, the reverse mediation effect was not observed (see S3 File for full tables). The

direct effects of N-back and MOT on Raven’s each remained reliable. The reliability was lower

for the effect of attention composite scores mediating the relations between memory measures

and Raven’s scores. The estimated proportion mediated in these models was approximately

50%. Because links between attention and reasoning were fully mediated by memory, but not

the reverse, this implies a hierarchical structure of cognition and reasoning in which atten-

tional processes underlie working memory, which in turn underlies higher-level abilities.

Discussion

Fluid intelligence varies widely across individuals, and this variance predicts both real-world

behaviors and performance on psychological tasks designed to tap core cognitive processes

Fig 3. Effects of key working memory measures in predicting Raven’s scores. Main effects of each memory measure were reliably predictive of reasoning scores. No

interactions with age were reliable.

https://doi.org/10.1371/journal.pone.0221353.g003

Fig 4. Effects of key attention measures in predicting Raven’s scores. Main effects of each attention measure were reliably predictive of reasoning scores. No

interactions with age were reliable.

https://doi.org/10.1371/journal.pone.0221353.g004
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[15,79]. Working memory has been particularly associated with fluid intelligence [8,10,33,80].

Specifically, the controlled-attention aspect of working memory capacity has been consistently

related to reasoning processes. Here we report tests of the generality of fluid intelligence abili-

ties in children and adults, and we examine the specificity of the present relations between cog-

nitive measures and reasoning scores.

Developmental stability in relations between attention, memory, and fluid

intelligence

In our sample of adults and children, there were no notable effects of age outside of main

effects. When comparing correlations between scores on Raven’s matrices and scores on all

other cognitive measures, the pattern of adults’ and children’s correlations were not different.

The only difference in correlations was evident in a vocabulary measure which was correlated

with reasoning in children but not adults [81]. Our findings stand in contrast to some previ-

ously published evidence for a variety of developmental relations between intelligence and cog-

nitive demands. For instance, Cowan et al. [27] found that certain measures of children’s

working memory (e.g., verbal and visual span task scores) had higher correlations with intelli-

gence than adults’ correlations. In this same work the authors found that adults’ intelligence

was better explained by the relative benefits of focused attention. It is possible that the differ-

ences between our tasks and theirs, specifically regarding our inclusion of canonical attention

tasks, may have led to divergent results.

Our results, in general, point to qualitative stability in the cognitive bases of intelligence

from middle childhood to early adulthood. One possible cause for developmental stability

would be that fluid intelligence, by definition, is associated with a general latent factor of per-

formance. That is, if Raven’s is a measure of fluid intelligence by this definition, then cognitive

measures should generally correlate with Raven’s at any age. In stark contrast, in our data only

a small number of cognitive tasks appeared to be strongly related to fluid intelligence (rather

Table 3. Effect of enumeration on Ravens when mediated by WM composite, controlling for age-related main

effects.

Effect Estimate HDI 2.5% HDI 97.5%

Direct effect -0.03 -0.96 0.93

Indirect effect 8.45 4.86 11.88

Proportion mediated 1.01 0.89 1.13

HDI indicates Highest Density Interval quantiles. Direct effect indicates the remaining effect of enumeration after

accounting for the mediation of WM composite. Indirect effect indicates the strength of the mediation. Proportion

mediated indicates the amount of the enumeration effect explained by the mediation.

https://doi.org/10.1371/journal.pone.0221353.t003

Table 4. Effect of MOT on Ravens when mediated by WM composite, controlling for age-related main effects.

Effect Estimate HDI 2.5% HDI 97.5%

Direct effect 0.55 -0.86 1.97

Indirect effect 9.27 4.68 13.90

Proportion mediated 0.94 0.79 1.10

HDI indicates Highest Density Interval quantiles. Direct effect indicates the remaining effect of MOT after

accounting for the mediation of WM composite. Indirect effect indicates the strength of the mediation. Proportion

mediated indicates the amount of the MOT effect explained by the mediation.

https://doi.org/10.1371/journal.pone.0221353.t004
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than all tasks). When examining those measures’ prediction of Raven’s in more detail, there

was a consistent absence of age-related differences in parameters (i.e., null interactions).

In the subset of cognitive tasks highly related to fluid intelligence, several were canonical

measures of attention while several were measures of working memory. It was a priori unclear

whether the shared processes giving rise to correlations between reasoning and working mem-

ory measures would be the same processes underlying correlations between reasoning mea-

sures and attention. Using mediation models we found evidence that these processes are likely

to be largely overlapping; a working memory composite measure fully mediated the relations

between attention measures and reasoning (see Fig 5 for a conceptual representation of this

pattern).

Relevance to experimental studies of cognition

In addition to correlational designs such as the one presented here, experimental evidence for

shared processes between tasks has come from inducing a change in performance in one area

and subsequently observing changes in another area. This has the potential to be a very

Fig 5. Summary of study results. Attention and working memory were each reliably associated with reasoning scores (A, B). Working memory fully mediated the effect

of attention (C), but attention did not fully mediate the effect of working memory (D). Note that, because no differences in these patterns due to age were found, age-

related effects are not represented in this Fig.

https://doi.org/10.1371/journal.pone.0221353.g005
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powerful method of investigating the low-level commonalities between complex behaviors.

For example, in the field of perceptual learning and generalization, tests of generalization are

frequently utilized for the purpose of identifying a locus of learning-related changes [82,83].

As early as Thorndike [84], tests of generalization were used to assess the degree to which

tasks’ shared properties were learned. This in turn allowed for inferences regarding the pro-

cesses demanded by those tasks.

This is also the theoretical basis for cognitive training paradigms involving practice with

working memory tasks that have then been linked to improvements in fluid intelligence scores

(e.g., including both spatial span tasks; [73,85], and complex working memory tasks;

[17,72,86]; for reviews see [16,87]). This approach has been implemented using "controlled

attention" training as well, but less frequently (for a review see [88]. The body of cognitive

training results is highly contentious [85,87,89–91], but these studies are well-constructed to

address questions of shared processes between tasks.

It is interesting, then, that attention tasks have been used as the control group in cognitive

training studies [48,92]. An alternative theoretical approach would be the assumption of a gen-

eral cognitive-capacity perspective (e.g., modeling capacity-constraint theories as applicable to

both attention and memory, see [31]. To the degree that attention is a necessary aspect of

working memory, and has been related to fluid intelligence, there is theoretical reason to pre-

dict that training on attention-demanding tasks may lead to improvements on working mem-

ory tasks or even fluid intelligence. In fact, Thompson [92] observed a significant

improvement in matrix reasoning scores after training on an adaptive MOT task, although the

authors note that similar improvements were not observed in a different matrix reasoning

task. Our results indicate that these results may be due to overlapping processes in MOT and

matrix reasoning tasks, and that the links between attention and reasoning should be further

studied. In particular, relating reasoning scores to both canonical attention tasks and canonical

memory tasks may allow us to identify the underlying capacity-constraining processes that

give rise to individual differences in each of these tasks. Although our results provided evi-

dence for a common capacity-constraining process in children and adults, our conclusions

would benefit from more thorough sampling of certain constructs. We were only able to

address reasoning as it is measured by Raven’s scores, which is a somewhat coarse measure

due to a limited number of test items. Future work would benefit from a more thorough exam-

ination of reasoning tasks themselves (e.g., [80]) as well as a wider range of these tasks.

Conclusions

The relations between measures of attention, memory, and reasoning, which are reliable across

a wide age range, provide evidence for developmental stability in the structure of cognitive

processes. This stable pattern includes direct links between canonical measures of reasoning

and of visual attention. The observed links are in turn mediated by working memory scores,

indicating shared processes giving rise to the observed variance in each of these tasks. These

mediations indicate support for a hierarchical model in which reasoning is related to attention,

but only to the degree that attention supports effective memory. Despite the evidence for

shared processes between reasoning and certain measures of attention and working memory,

various other tasks were much less related to reasoning scores. While this may be unexpected

from the perspective of fluid intelligence as a general latent factor of performance, the presence

of a core set of predictors in our data indicates specificity in the cognitive bases of reasoning

across developmental time. Capacity limitations in attention tasks as well as in memory tasks

are closely related to fluid intelligence.
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