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Aging Affects Adaptation to Sound-Level Statistics in Human
Auditory Cortex
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Optimal perception requires efficient and adaptive neural processing of sensory input. Neurons in nonhuman mammals adapt to the
statistical properties of acoustic feature distributions such that they become sensitive to sounds that are most likely to occur in the
environment. However, whether human auditory responses adapt to stimulus statistical distributions and how aging affects adaptation
to stimulus statistics is unknown. We used MEG to study how exposure to different distributions of sound levels affects adaptation in
auditory cortex of younger (mean: 25 years; n � 19) and older (mean: 64 years; n � 20) adults (male and female). Participants passively
listened to two sound-level distributions with different modes (either 15 or 45 dB sensation level). In a control block with long interstimu-
lus intervals, allowing neural populations to recover from adaptation, neural response magnitudes were similar between younger and
older adults. Critically, both age groups demonstrated adaptation to sound-level stimulus statistics, but adaptation was altered for older
compared with younger people: in the older group, neural responses continued to be sensitive to sound level under conditions in which
responses were fully adapted in the younger group. The lack of full adaptation to the statistics of the sensory environment may be a
physiological mechanism underlying the known difficulty that older adults have with filtering out irrelevant sensory information.
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Introduction
Optimal behavior requires that perceptual systems process
physical acoustic stimulation efficiently and adaptively (Le-
wicki, 2002; Wark et al., 2007; Kluender et al., 2013; Whitmire

and Stanley, 2016). However, neurons supporting perceptual
inferences are inherently limited in the range with which they
respond to sensory inputs (Laughlin, 1981). One way to over-
come this limitation is to adjust dynamically a neuron’s
response range (input– output function) to statistical distri-
butions of acoustic features in the environment in a process
called adaptation to stimulus statistics, dynamic range adap-
tation, or gain control (Salinas and Thier, 2000; Dean et al.,
2005, 2008; Nagel and Doupe, 2006; Wark et al., 2007; Robin-
son and McAlpine, 2009; Wen et al., 2009, 2012; Dahmen et
al., 2010; Hildebrandt et al., 2011; Rabinowitz et al., 2011;
Herrmann et al., 2014). Neural adaptation to stimulus statistics
has been studied almost exclusively in nonhuman mammals and
whether the results generalize to humans, particularly to older hu-
mans, is unknown.
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Significance Statement

Behavior requires efficient processing of acoustic stimulation. Animal work suggests that neurons accomplish efficient processing
by adjusting their response sensitivity depending on statistical properties of the acoustic environment. Little is known about the
extent to which this adaptation to stimulus statistics generalizes to humans, particularly to older humans. We used MEG to
investigate how aging influences adaptation to sound-level statistics. Listeners were presented with sounds drawn from sound-
level distributions with different modes (15 vs 45 dB). Auditory cortex neurons adapted to sound-level statistics in younger and
older adults, but adaptation was incomplete in older people. The data suggest that the aging auditory system does not fully
capitalize on the statistics available in sound environments to tune the perceptual system dynamically.
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Adaptation to the statistics of acoustic environments is often
studied using paradigms in which the sound-level statistics vary
over different distributions (“environments”). Subcortical and
cortical neurons in animals (guinea pigs, crickets, cats, songbirds,
monkeys) adjust their response sensitivity to the mean sound
level of a stimulus distribution (Dean et al., 2005, 2008; Nagel and
Doupe, 2006; Watkins and Barbour, 2008; Wen et al., 2009, 2012;
Hildebrandt et al., 2011; Robinson et al., 2016). In other words, a
neuron’s firing threshold shifts to a distribution’s mean level such
that the neuron is sensitive to sound levels above that mean level
while avoiding response saturation. Adaptation to sound-level
statistics ensures high sensitivity to a wide range of sound levels
despite the limited range of a neuron (Dean et al., 2005; Robinson
et al., 2016).

In humans, neural responses (measured using EEG or MEG)
adapt to different sound–frequency distributions (Garrido et al.,
2013; Herrmann et al., 2013a, 2014). Adaptation to sound-level
(as opposed to sound-frequency) statistics has not been investi-
gated despite this being crucial for avoiding neural response sat-
uration in loud sound environments. Furthermore, older people
and people with hearing impairment demonstrate phenomena
such as hyperacusis (Baguley, 2003; Tyler et al., 2014) and loud-
ness recruitment (Harris, 1953; Epstein and Marozeau, 2006)
that are thought to be related to altered gain control along the
auditory pathway (Knipper et al., 2013; Zeng, 2013). Dynamic
control of neural gain is required for adaptation to stimulus sta-
tistics, but this may be impaired in older people.

Little is known about the extent to which adaptation to stimulus
statistics may be affected by aging. Sensitivity to sound-frequency
statistics appears to be unaffected in older people (Herrmann et al.,
2013a). However, auditory cortex neurons of older adults seem to
recover faster from neural adaptation compared with younger peo-
ple (consistent with observations in older animals; de Villers-Sidani
et al., 2010; Herrmann et al., 2016a). A consequence of reduced
adaptation recovery times is that the history of sound stimulation is
less reflected in the response to a current sound; that is, reduced
recovery times would manifest as a smaller effect of sound-feature
distributions on neural responses.

The current study uses MEG to investigate whether aging af-
fects neural adaptation to sound-level statistics in auditory cor-
tex. Younger and older adults listened to tones with sound levels
that were drawn from sound-level distributions with different
modes (either 15 or 45 dB). Analyses focus on responses to tones
for which the sound level, and the sound level of the directly
preceding tone, are identical across sound-level distributions;
this allows us to investigate the effects of longer-term sound-level
statistics on neural adaptation.

Materials and Methods
Experimental design and statistical analysis. This study was not preregis-
tered. Details of the critical variables and statistical tests for each specific
analysis can be found in the subsections devoted to each analysis. In
general, age group differences were either tested using an independent-
samples t test or via a between-subject factor in an ANOVA. Experimen-
tal manipulations (e.g., sound-level distributions) were dependent
(repeated) factors. Differences between experimental manipulations
were thus tested using a paired-samples t test, a one-sample t test, or via
a within-subject factor in an ANOVA.

Herein, effect sizes are provided as partial �-squared (�p
2) when an

ANOVA is reported and as requivalent (re) when a t test is reported
(Rosenthal and Rubin, 2003). re is equivalent to a Pearson product-
moment correlation for two continuous variables, to a point-biserial
correlation for one continuous and one dichotomous variable, and to the
square root of partial � 2 for ANOVAs.

Participants. Nineteen younger (mean: 25 years; range: 18 –31 years; 10
female) and 20 older (mean: 64 years; range: 54 –71 years; 10 female)
adults participated in the current study. Participants reported no neuro-
logical disease or hearing impairment, gave written informed consent,
and were paid for their participation. Data from one additional younger
individual were excluded from the analysis because no response to a
sound was observed even in blocks in which neurons could recover from
adaptation. The study was conducted in accordance with the Declaration
of Helsinki and approved by the Nonmedical Research Ethics Board of
the University of Western Ontario (protocol ID: 106570).

Assessment of hearing abilities. Pure tone audiometric data were avail-
able for 14/19 younger and 16/20 older participants (Fig. 1A). For these
participants, the pure tone average (i.e., the mean across the 0.25, 0.5, 1,
2, and 4 kHz frequencies) was �25 dB HL.

For each participant, we measured the hearing threshold (i.e., sensa-
tion level [SL]) for the tone frequency used in the current study (1300 Hz;
see below). The mean hearing threshold was slightly elevated for older
compared with younger adults (difference of 5.7 dB; Fig. 1B; t37 � 3.33,
p � 0.002, re � 0.480), which is consistent with previous studies investi-
gating hearing in healthy aging populations (Herrmann et al., 2013b,
2016a; Presacco et al., 2016) and with the audiometric data we acquired.
No individual in the experiment (younger and older adults) had a hear-
ing threshold �20 dB above the mean hearing threshold of the younger
adults.

To estimate the audiometric pure tone average in the participants for
whom we were unable to measure audiometry, a linear function was fit to
the pure tone average data from the 30 participants for which we had
obtained the pure tone average as a function of the measured hearing
threshold (in dB SL) for the 1300 Hz tone frequency. Based on the esti-
mated coefficients from the linear function fit, we predicted the pure tone
average for each of the remaining participants to be �25 dB HL.

No statistically significant difference between age groups was observed
in self-rated hearing abilities (t36 � 0.29; p � 0.776, re � 0.048; assessed
using a rating scale ranging from 0 to 10) or in self-reported speech
perception (t37 � 0.88; p � 0.382, re � 0.144), spatial hearing abilities
(t37 � 1.02; p � 0.314, re � 0.166), or quality of hearing (t37 � 1.24; p �
0.224, re � 0.199) as measured by a short German version of the Speech,
Spatial, and Qualities of Hearing Scale (Gatehouse and Noble, 2004).
Groups also did not differ on self-rated music abilities/experience (t35 �
1.63; p � 0.113, re � 0.265; rating scale range 0 –10).

The data suggest that the people who participated in the current study
have clinically normal hearing relative to their age (despite the slight
threshold elevation for older people).

Acoustic stimulation and procedure. All experimental procedures were
performed in an electromagnetically shielded, sound-attenuating room.
Sounds were presented via in-ear phones and the stimulation was con-

Figure 1. Hearing assessment. A, Results from audiometric testing for 14/19 younger and
16/20 older participants. The solid gray line at 1300 Hz marks the frequency of the tones used in
the current study. B, Histogram of sensation levels (for a 1300 Hz tone) for younger and older
participant groups. Dots and error bars reflect the mean level and SEM, respectively, for each
group (*p � 0.05). The sensation levels reflect dB values from the threshold estimation proce-
dure written in MATLAB.
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trolled by a PC (Win XP, 64 Bit) running Psychtoolbox (version 3.0.11)
in MATLAB (version 7.8.0.347).

In the beginning of the experimental session, the hearing threshold for
a 1300 Hz sine tone was determined for each participant using a method-
of-limits procedure (Leed, 2001). Tones of 15 s duration either decreased
or increased in intensity by 4 dB/s over time (decreasing and increasing
trials were interleaved) and participants indicated when they could no
longer hear the tone (intensity decrease) or when they started to hear the
tone (intensity increase). The mean sound intensity at the time of the
button press was noted for six decreasing trials and six increasing trials
and these were averaged to determine the individual hearing threshold.
All sounds in the MEG experiment were presented relative to the indi-
vidual threshold (SL).

Tones were presented in two different types of stimulation blocks in
the MEG experiment. Stimulation blocks differed with respect to the
sound-level distributions from which a tone’s sound level was drawn: for
one block type, the modal sound level was 15 dB SL; for the other block
type, it was 45 dB SL (Fig. 2). Critically, to investigate the effects of
sound-level distribution (i.e., stimulus statistics) on neural responses, we
eliminated the confounding effects of different acoustics by ensuring that
the tones for which we analyzed neural responses as well as their local
context (i.e., directly preceding tones) were identical across block types
(i.e., 15 vs 45 dB SL), whereas the longer-term statistics were different
between the two types of blocks.

The details of the sound stimulation during the MEG recordings were
as follows. Participants listened to six blocks of sound stimulation, each
700 s long. In each block, 1400 tones were presented that had a frequency
of 1300 Hz and a duration of 100 ms. The onset-to-onset interval was
kept constant at 500 ms.

In each block, 8 tones with sound levels ranging from 5 to 55 dB SL
(step size: 7.143 dB SL) were each presented 30 times, yielding 240 tones
per block. These stimuli were identical across all six blocks (black dots in
Fig. 2, middle/right). The 240 tones immediately preceding each of these
8 � 30 � 240 tones were also fixed such that, for each of the 30 presen-
tations of 1 of the 8 sound levels, the sound level of the preceding tone
took on 1 of 30 sound levels (range: 5–55 dB SL; step size: 1.724 dB SL)
without replacement. Therefore, the same 240 pairs of experimental
tones were presented in each block.

The sound levels for the remaining 920 tones (of the 1400 tones per
block) were chosen randomly (range: 5–55 dB SL; step size: 0.1 dB SL)
depending on the sound-level distribution (Fig. 2). For three of the six
blocks, sound levels were randomly chosen from a sound-level distribu-
tion with a 15 dB high-probability region (purple dots in Fig. 2, middle).
For the other three blocks, sound levels were randomly chosen from a
sound-level distribution with a 45 dB high-probability region (green dots
in Fig. 2, right). High-probability regions had a width of 10 dB centered
on 15 or 45 dB SL (Fig. 2, left). The 480 experimental tones (i.e., 240
pairs) and the 920 filler tones were intermixed randomly in each block
and presented such that at least one filler tone occurred between each of
the 240 pairs of experimental tones. Blocks with different sound-level
distributions alternated, and the starting sound-level distribution was
counterbalanced across participants. Hereafter, we use “context” when

referring to stimulus presentations based on the different sound-level
distributions.

Analysis of the influence of sound-level context (statistics) on neural
responses focused on the second tone in each pair of experimental tones:
these were identical across the two sound-level distributions (black dots
in Fig. 2, middle/right).

In a seventh block of trials (the “no-adaptation” block), participants
were presented with the 1300 Hz tone 40 times at an onset-to-onset
interval of 7 s and a sound level of 55 dB SL. Neural populations were
assumed to be fully or almost fully recovered from adaptation during the
time between the two tone presentations (Hari et al., 1982; Lü et al., 1992;
Mäkelä et al., 1993; Sams et al., 1993; Budd et al., 1998; Zacharias et al.,
2012). Therefore, we used this block to assess neural responses to tones
when neurons are in a nonadapted state (see also Herrmann et al., 2014,
2015b).

MEG recordings and preprocessing. MEG data were recorded using a
306-channel Neuromag Vectorview MEG (Elekta; sampling rate: 1000
Hz, online filter: DC-330 Hz) at the Max Planck Institute for Human
Cognitive and Brain Sciences in Leipzig, Germany. The signal space sep-
aration method was used to suppress external interference, interpolate
bad channels, and transform individual data to a common sensor space,
which allows comparison of topographical distributions across partici-
pants (Taulu et al., 2004, 2005).

Data were high-pass filtered (0.7 Hz; 2391 points, Hann window),
low-pass filtered (30 Hz, 45 points, Kaiser window), downsampled to 500
Hz, and divided into 500-ms-long epochs time locked to sound onset
(from 100 ms before to 400 ms after sound onset). Independent compo-
nents analysis was used to remove noisy channels and activity related to
eye movements and the heart (based on 120 randomly chosen data snip-
pets of 10 s duration from the same preprocessing pipeline). Epochs
comprising a signal change larger than 5 picoteslas (pT) in any magne-
tometer channel or a signal change larger than 200 pT/m in any gradi-
ometer channel were excluded.

Combination of magnetometer and gradiometer channels. To account
for all data recorded, we combined signals from magnetometer and gra-
diometer channels. The Vectorview MEG device (Elekta) records mag-
netic fields using 102 magnetometers and 204 gradiometers in 102
locations distributed around the head. Magnetometers and gradiometers
differ in their configuration, such that magnetometers measure magnetic
fields in tesla (T), whereas gradiometers (a coupled pair of magnetome-
ters) measure differences in (the same) magnetic fields over a specified
distance (i.e., 0.0168 m) in tesla per meter (T/m). The combination of
channel types requires accounting for their different units and thus re-
quires scaling of the channels. For the current data, we rescaled all chan-
nels to tesla (i.e., to magnetometer channels) because such a model only
requires a simple linear interpolation and it results in the same scaling for
all channels. To this end, we applied the following rescaling matrix to
each of the 102 sensor triplets (i.e., one triplet comprises two gradiometer
channels and one magnetometer channel):

Xscaled � S � X

Figure 2. Experimental stimulation. Left, Example probability distributions used for acoustic stimulation for the two contexts: one with a modal sound level of 15 dB SL and the other with a modal
sound level of 45 dB SL. Middle/right, 1400 tones with different sound levels (y-axis) were presented within a 700 s block (x-axis). Each dot reflects the sound level of one tone. Black dots are the
stimuli of interest: their level, and the level of the directly preceding tone, were identical across contexts.
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where X consists of a 3 � n matrix (with n being the number of data
samples). The three rows of X refer to the two gradiometers and one
magnetometer (i.e., one triplet). S refers to a 5 � 3 scaling matrix with the
following elements (the value 0.0084 reflects half of the distance between
the two gradiometer loops measured in meters and the rescaling consti-
tutes a linear approximation of the magnetic field at each of the triplets)
as follows:

S �

� 0.0084 0 1
0.0084 0 1

0 � 0.0084 1
0 0.0084 1
0 0 1

(1)

The rescaling replaces the sensor triplet by a sensor quintet of magne-
tometers. The columns of S refer to the triplet of two gradiometers and
one magnetometer and the rows of S refer to the resulting five
magnetometers.

Note that the results of this analysis combining sensor types yielded
results very similar to those obtained by analyzing data from each chan-
nel type separately (figures for results from separate analyses of magne-
tometers and gradiometers can be found at https://osf.io/y5d4u/; see also
Garcés et al., 2017).

Spatial filtering and source localization. To focus our analysis on audi-
tory cortex activity, a spatial filter was calculated separately for each
participant. To this end, a singular value decomposition was computed
using the difference between a signal covariance matrix (based on data
from 0 –200 ms time locked to tone onset; averaged across the 40 trials in
the “no-adaptation” block) and a noise covariance matrix (based on data
from �100 to 0 ms before tone onset; averaged across the 40 trials in the
no-adaptation block). The elements of the first eigenvector were used as
spatial filter weights (for similar approaches, see Tesche et al., 1995;
Uusitalo and Ilmoniemi, 1997; de Cheveigné and Simon, 2008; Garrido
et al., 2013; Herrmann et al., 2016b). Spatial filtering reduced the high-
dimensional MEG data to a single virtual channel, mainly reflecting ac-
tivity from auditory cortex. All subsequent analyses were performed
using the data from this single virtual channel.

Anatomically constrained source localization was used to confirm the
auditory cortex source underlying the spatial filter distribution. This analysis
was performed for 14/19 younger adults and for 12/20 older adults for which
individual T1-weighted MR images (3T Magnetom Trio; Siemens AG) were
available. The MR images were used to construct inner skull surfaces (vol-
ume conductor) and midgray matter cortical surfaces (source model; using
Freesurfer and MNE software; https://surfer.nmr.mgh.harvard.edu/; http://
www.martinos.org/mne/). The MR and the MEG coordinate systems were
coregistered using MNE software that included an automated and iterative
procedure that fitted the�300 digitized head surface points (Polhemus FAS-
TRAK 3D digitizer) to the MR-reconstructed head surface (Besl and McKay,
1992). Lead fields were calculated from a boundary element model (inner
skull; Nolte, 2003) using MNE software and Fieldtrip software and
sLORETA inverse solutions (Pascual-Marqui, 2002) were calculated using
custom MATLAB scripts. Differences in overall brain activation strength
between participants were reduced by global mean normalization, which
involved dividing the activation at each vertex by the mean activity across all
vertices (separately for each participant). Neural activity was spatially
smoothed across the surface using an approximation to a 6 mm FWHM
Gaussian kernel (Han et al., 2006). Individual cortical representations were
transformed to a common coordinate system (Fischl et al., 1999b) and finally
morphed to the pial cortical surface of the brain of one participant for display
purposes (Fischl et al., 1999a).

Responses to sounds for nonadapted neural populations. In a first anal-
ysis, we tested whether neural responses differed between age groups for
tones presented every 7 s and for which neural populations are expected
to be fully or almost fully recovered from neural adaptation (Hari et al.,
1982; Lü et al., 1992; Mäkelä et al., 1993; Sams et al., 1993; Budd et al.,
1998; Zacharias et al., 2012; Herrmann et al., 2014). To this end, the 40
single-trial time courses recorded in the no-adaptation block were aver-
aged and the mean signal of the 100 ms pretone time window was sub-
tracted from the signal at each time point (baseline correction). In a

broad exploratory analysis, the signal at each time point was compared
between age groups using independent t tests. False discovery rate (FDR)
correction was used to account for false positives among significant tests
(Benjamini and Hochberg, 1995; Genovese et al., 2002).

Selection of analysis time windows. Neural adaptation is commonly
investigated using the N100 component of the event-related potential
(Butler, 1968; Hari et al., 1982; Lanting et al., 2013; Herrmann et al.,
2015a) or the M100 component of the event-related magnetic field
(Mäkelä et al., 1993; Sams et al., 1993; Zacharias et al., 2012; Okamoto
and Kakigi, 2014). Suppression of neural responses by preceding stimu-
lation has also been observed for the P50 (EEG) and M50 (MEG), here
often referred to as sensory gating (Boutros and Belger, 1999; Müller et
al., 2001; Rosburg et al., 2004). Therefore, we focused on M50 and M100
neural responses (i.e., magnetic fields at �50 and 100 ms after stimulus
onset, respectively) for our analyses.

Specifically, for each participant, the M100 amplitude was calculated
as the average across a 10 ms time window centered on the individual’s
estimated peak latency from the no-adaptation responses. Note that this
selection of the M100 time window is independent of the neural re-
sponses recorded in the blocks with different sound-level distributions:
this approach is similar to the logic of functional localizers in MRI (Saxe
et al., 2006; Poldrack, 2007; Fedorenko and Kanwisher, 2009). M50 am-
plitudes were calculated as the average signal in the 40 –70 ms time win-
dow because there was no clear peak for younger participants in the
no-adaptation block (Fig. 3C) that would allow the estimation of the
peak latency separately for each participant (the time window is thus
wider compared with the M100 to allow for response latency variability
across participants).

Response sensitivity to sound level. To investigate how sound level af-
fects response amplitude (averaged over contexts, i.e., sound-level distri-
butions), trials from all adaptation blocks were sorted into one of five
sound-level bins. 5–15, 15–25, 25–35, 35– 45, and 45–55 dB SL, accord-
ing to their sound level. Single-trial response time courses were averaged
separately for each sound-level bin and the mean signal of the 100 ms
pretone time window was subtracted from the signal at each time point
(baseline correction).

For each participant, mean responses were extracted for the M50 and
the M100. Overall response magnitude differences between age groups
were assessed by averaging amplitudes across sound-level bins (sepa-
rately for M50 and M100), followed by an independent t test. To inves-
tigate whether responses increased with increasing sound level, a linear
function was separately fit to the M50 and to the M100 amplitudes as
a function of sound level (using the binned data). The slope of the linear
function indicates the degree of response sensitivity to sound level. Slopes
were tested against zero using a one-sample t test (separately for younger
and older adults). Age differences in response sensitivity were assessed by
comparing the slopes between age groups using an independent t test.

Context-dependent response sensitivity to sound level. For this analysis,
only responses to the tones with the eight different critical sound levels
(i.e., the 240 experimental tones per block) were analyzed (black dots in
Fig. 2). The sound level of these tones and the sound level of the directly
preceding tone were identical across sound-level distributions (i.e., 15
and 45 dB SL contexts). As a consequence of controlling the sound level
of the tones that directly preceded the tones of interest, any effects of
sound-level distribution (15 vs 45 dB SL) on neural responses must thus
be due to the extended stimulation history and cannot be due to the
sound level of the directly preceding tone.

The number of trials for each of the 8 sound levels in the different
contexts was relatively low (90 trials � 30 trials � 3 blocks). To increase
the number of trials in the response average, thereby increasing the
signal-to-noise ratio (Ingham and McAlpine, 2005), we averaged trials
for two adjacent sound levels of the eight sound levels (separately for the
15 dB SL context and the 45 dB SL context). For example, single trials for
sounds with the 5 dB SL and the 12.1 dB SL sound level were averaged
(and the mean signal of the 100 ms pretone time window was subtracted
from the signal at each time point; baseline correction). Averaging trials
for 2 adjacent sound levels reduced the number of unique sound levels
from 8 to 7 while doubling the number of trials in a unique response
average.
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For each participant, context (15 or 45 dB SL), and sound level (7
levels), mean response amplitudes were calculated for the M50 and the
M100. To investigate the sensitivity of the response amplitude to sound
levels within the two stimulation contexts, the difference between the
maximum and the minimum amplitude across sound levels was calcu-
lated (separately for each context). Note that we did not fit a linear
function to assess response sensitivity because mean responses did not
appear to change linearly with sound level, in particular for sound levels
above the modal sound level of each distribution (see Fig. 6). The re-
sponse differences were subjected to an ANOVA with the within-subject
factor context (15 vs 45 dB SL) and the between-subjects factor age group
(younger vs older).

Results
Neural responses presented in subsequent sections originate
from the virtual sensor calculated for each participant. That is, a
spatial filter was constructed for each individual based on the
response data in the no-adaptation block and all response time
courses were projected through the spatial filter (Fig. 3A). Source
localization confirmed that neural activity underlying spatial fil-
ter topographies originates from auditory cortex/superior tem-
poral gyrus (Fig. 3B).

Responses to sounds for nonadapted neural populations
Neural responses to tones of 55 dB SL that were presented every
7 s (in the no-adaptation block) are depicted in Figure 3C. Com-
paring the amplitudes at each time point between age groups
revealed a significant difference only in the M50 time window
(FDR corrected). No age-related difference in amplitude was
found in the time window of the M100. However, the M100
latency was smaller (i.e., earlier) in older compared with younger
adults (t37 � 2.03, p � 0.049, re � 0.317).

Response sensitivity to sound level
Figure 4A shows response time courses from the adaptation
blocks for older and younger listeners separately for different
sound levels (across the two sound-level distributions). Mean
response amplitude was larger for older compared with younger
adults, both for the M50 (t37 � 2.742, p � 0.009, re � 0.411; Fig.
4B, right top) and for the M100 (t37 � 4.031, p � 2.66 � 10�4,
re � 0.552; Fig. 4C, right top). That is, despite the absence of an
age group difference for the M100 response magnitude in the
no-adaptation block, older adults exhibited larger M100 re-

Figure 3. Spatial filter topographies and responses in the no-adaptation block. A, Spatial filter topographies for younger and older adults. B, Source localization of spatial filter topographies (LH,
left hemisphere; RH, right hemisphere). Note that source localization could be performed for only 14/19 younger and 12/20 older participants for whom MRIs were available. The apparently larger
right hemisphere source strength for older people, evident in B, is probably an artifact of a relatively small dataset: note that it is not evident in A, where topographies of all 20 older adults were
averaged. C, Neural response time courses in the no-adaptation block (error bars reflect the SEM). The black line at the bottom indicates a significant difference between age groups ( p � 0.05; FDR
corrected). The box plots above the M100 wave show significantly earlier M100 latencies for older compared with younger adults (*p � 0.05).

Figure 4. Response sensitivity to sound level averaged across adaptation blocks. A, Response time courses for five different sound-level bins. B, M50 response magnitudes as a function of sound
level. The mean response across sound levels is shown on the top right. Amplitude change as a function of level (slope of a linear fit) is shown on the bottom right. Symbols within the bar reflect a
significant difference from zero and symbols elsewhere depict significant differences between conditions (*p � 0.05, #p � 0.10). C, Same as in B but for M100 response magnitudes. Error bars
indicate SEM.
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sponse magnitudes when the presentation rate does not allow
neurons to fully recover from adaptation.

The change in response amplitude as a function of sound level
was quantified by fitting a linear function to M50 and M100
amplitudes. The slope of the linear fit reflects the degree of sen-
sitivity to sound level. For M50 responses, slopes were signifi-
cantly negative for both younger (t18 � �3.695, p � 0.002, re �
0.657) and older adults (t19 � �3.493, p � 0.002, re � 0.625).
M50 responses were more sensitive to sound level in older com-
pared with younger adults (more negative slope; Fig. 3B), but this
difference was only marginally significant (t37 � 1.905, p � 0.065,
re � 0.299). For M100 responses, slopes were significantly posi-
tive for both younger (t18 � 7.237, p � 9.91 � 10�7, re � 0.863)
and older adults (t19 � 7.465, p � 4.61 � 10�7, re � 0.864). M100
responses were more sensitive to sound level in older compared
with younger adults (more positive slope; Fig. 4C; t37 � 2.473,
p � 0.018, re � 0.377).

Response sensitivity to sound level depends on context
The results reported in this section are based on analyses of re-
sponses to tones for which the sound level and the sound level of
the preceding tone were identical across contexts (i.e., sound-
level distributions). Any response differences between contexts
must thus be due to the extended stimulation history and cannot
be due to the sound level of the directly preceding tone. The
results for the M50 are discussed before those for the M100.

Figure 5A shows the M50 responses for tones in the 15 and 45
dB SL contexts. Figure 5B depicts the response range for the two
stimulation contexts and the two age groups (response range was
calculated as the difference between the maximum amplitude
and the minimum amplitude, across sound levels). The ANOVA
revealed a main effect of age group (F(1,37) � 10.895, p � 0.002,
�p

2 � 0.228), indicating a larger M50 response range for older
compared with younger adults. No effect of context (F(1,37) �
0.026, p � 0.872, �p

2 � 0.001) and no interaction (F(1,37) � 0.300,
p � 0.587, �p

2 � 0.008) was found. Figure 5C shows the difference
between the responses in the two contexts (sound-level distribu-
tions) separately for each sound level. Response differences were
small overall and they were generally in the opposite direction to
what would be expected. Responses should have been larger (i.e.,
more negative) for the 15 dB SL compared with the 45 dB SL

context if response thresholds were aligned to the distribution’s
mode (Dean et al., 2005; Robinson et al., 2016). In contrast, for
high sound levels, M50 responses were significantly smaller (i.e.,
more positive) in the 15 dB SL context compared with the 45 dB
SL context, as indicated by the colored asterisks in Figure 5C (p �
0.05, FDR corrected). In other words, whereas M50 responses
were sensitive to the sound level of a tone (Fig. 4B), responses
were generally not very sensitive to changes in the distribution of
sound levels in acoustic environments (Fig. 5B,C). The current
experiment was designed to capitalize on the long adaptation
time scales that have been demonstrated for M100 responses (Lü
et al., 1992; Sams et al., 1993). Further research is required to
investigate whether M50 responses are sensitive to changes in
sound-level distributions using paradigms suitable to assess re-
sponses from neurons with short adaptation recovery times.

Figure 6A shows the M100 responses for tones in the 15 and 45
dB SL contexts. The ANOVA calculated for the response range
(i.e., the difference between the maximum amplitude and the
minimum amplitude across sound levels) in the two contexts
revealed a main effectt of context (F(1,37) � 128.640, p � 1.33 �
10�13, �p

2 � 0.777) as well as a main effect of age group (F(1,37) �
5.703, p � 0.022, �p

2 � 0.134). Neural responses were more sen-
sitive to sound level in the 15 dB SL context than in the 45 dB SL
context and response sensitivity was greater for older compared
with younger adults (Fig. 6B). The context � age group interac-
tion was not significant (F(1,37) � 2.691, p � 0.109, �p

2 � 0.068).
The direct comparison of each sound-level condition between
the two sound-level distributions (Fig. 6C) revealed significantly
larger responses for the 15 dB SL context compared with the 45
dB SL context for sound levels �20 dB SL (colored asterisks in
Fig. 6C; p � 0.05, FDR corrected).

The data for younger adults in Figure 6A (left) show that
neural response magnitudes increase sharply for sound levels
equal or higher than the high-probability region of the sound-
level distributions, but remain largely unmodulated for lower
sound levels (this is especially apparent for the 45 dB SL context;
green dots in Fig. 6A, left). This context-dependent sensitivity to
sound level is consistent with electrophysiological recordings in
animals showing an adjustment of a neuron’s firing threshold to
the high-probability region of sound-level distributions and are a

Figure 5. Context-dependent M50 response magnitudes. A, Responses to different sound levels in the 15 and 45 dB SL contexts. B, Response range (calculated as the difference between the
maximum and the minimum amplitude) in the 15 and 45 dB SL contexts. The main effect of age group was significant ( p � 0.05; no main effect of context and no interaction). C, Difference in
response magnitude between the 15 and 45 dB SL contexts for each sound level separately. The colored asterisks mark (*) levels at which responses were significantly different between the 15 and
the 45 dB SL context ( p � 0.05, FDR corrected). Error bars indicate SEM.
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hallmark of adaptation to stimulus statistics (Dean et al., 2005;
Hildebrandt et al., 2011; Robinson et al., 2016). However, neural
responses for older adults (Fig. 6A, right) appear to be sensitive to
sound levels below the high-probability region, which is particu-
larly apparent for the 45 dB SL context. To quantify sensitivity to
sound levels below the high-probability region in the 45 dB SL
context, a linear function was fit to the M100 amplitudes across
the five sound levels �40 dB SL (separately for each participant).
The estimated slope of the linear fit reflects the degree of sensi-
tivity to sound levels. Separately for each age group, we tested the
slope against zero using a one-sample t test. The slope was signif-
icantly positive for older (t19 � 2.901, p � 0.009, re � 0.554), but
not for younger adults (t18 � 0.362, p � 0.721, re � 0.085; Fig. 7).
An independent-samples t test revealed a larger slope, and thus a
greater sensitivity of the M100 response to sound level, for older
compared with younger adults (t37 � 2.269, p � 0.029, re �
0.350). These analyses show that auditory cortex neurons in

older, but not younger, adults remained sensitive to sound levels
below a distribution’s modal level.

Controlling for sensation level differences between
age groups
The current study controlled for potential interindividual differ-
ences in audibility of a 1300 Hz tone by estimating the sensation
level for each participant and presenting tones relative to this
estimate. We have reported above that sensation levels differed
slightly between age groups (Fig. 1): older individuals were pre-
sented with slightly louder tones (on average) compared with
younger adults. To test whether the observed age differences in
M100 context effects are also present if absolute sound levels are
comparable between age groups, we selected 14 participants from
each age group that were matched in their sensation levels. There-
fore, for this subset of participants, no difference in the estimated
sensation level (hearing threshold) was observed between age
groups (t26 � 0.89, p � 0.382, re � 0.172; Fig. 8A).

Figure 8B shows the M100 neural response magnitudes for
sounds in the 15 and 45 dB SL contexts. The ANOVA calculated
for the response range (i.e., the difference between the maximum
amplitude and the minimum amplitude across sound levels) in
the two contexts revealed a main effect of context (F(1,26) �
100.462, p � 2.02 � 10�10, �p

2 � 0.794) as well as a main effect of
age group (F(1,26) � 5.314, p � 0.029, �p

2 � 0.170). Neural re-
sponses were more strongly level dependent in the 15 dB SL con-
text compared with the 45 dB SL context and the level
dependency was greater for older compared with younger adults
(Fig. 8B). The context � age group interaction was not significant
(F(1,26) � 1.738, p � 0.199, �p

2 � 0.063).
To quantify sensitivity of the M100 amplitude to sound levels

below the high-probability region in the 45 dB SL context, a linear
function relating sound levels �40 dB to response amplitude was
fit (separately for each participant). The estimated slope of the
linear fit was significantly positive for older (t13 � 2.822, p �
0.014, re � 0.616), but not for younger adults (t13 � 0.107, p �
0.917, re � 0.030; Fig. 8). An independent-samples t test revealed
a larger slope for older compared with younger adults (t26 �
2.100, p � 0.045, re � 0.381). The results, essentially identical to
those from the main analysis, indicate that the different behavior

Figure 6. Context-dependent M100 response magnitudes. A, Responses to different sound levels in the 15 and 45 dB SL contexts. B, Response range (calculated as the difference between the
maximum and the minimum amplitude) in the 15 and 45 dB SL contexts. The main effect of age group and the main effect of context was significant ( p � 0.05; no interaction). C, Difference in
response magnitude between the 15 and 45 dB SL contexts for each sound level separately. The colored asterisks mark (*) levels at which responses were significantly larger (i.e., more positive) in
the 15 dB SL compared with the 45 dB SL context ( p � 0.05, FDR corrected). Error bars indicate SEM.

Figure 7. Response sensitivity to sound level in the 45 dB SL context for sound levels lower
than the high-probability region. Left, Same data as that from the 45 dB SL context displayed in
Figure 6A. The dashed vertical line at 45 dB SL marks the center of the high-probability region.
The colored solid lines reflect the averaged predicted values from participant-specific linear fits.
Right, Slope of a linear function fit to responses as a function of the sound levels below the
high-probability region revealed a response sensitivity for older but not for younger adults
(right). *p � 0.05. Error bars indicate SEM.
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in older and younger listeners is probably not an artifact of
slightly different stimulus levels in the two groups.

Discussion
The current study investigated whether aging affects adaptation
to sound-level statistics in auditory cortex. Individuals listened to
tones with a sound level that was drawn either from a distribution
with a modal sound level of 15 dB SL or from a distribution with
a modal sound level of 45 dB SL. Responses (M100) were com-
parable between younger and older adults when neural popula-
tions were recovered from adaptation. Critically, both age groups
showed adaptation to sound-level statistics, but adaptation to the
statistics was altered for older compared with younger adults.
That is, neural responses in older people continued to be sensitive
to sound level under conditions in which responses were not
sensitive to sound level (fully adapted) in younger people.

Neural adaptation to stimulus statistics
M100 responses were sensitive to sound-level distributions (Fig.
6). The increase in M100 amplitude with increasing sound level
was larger for the sound-level distribution with a low mode (15
dB SL) compared with the sound-level distribution with a high
mode (45 dB SL). The response threshold appeared to be aligned
with the high-probability region of a distribution (i.e., lower for
the 15 dB SL context compared with the 45 dB SL context; Fig. 6).
That is, neural populations in human auditory cortex were sensitive
to sound levels around and above the mode of the distributions. This
adaptation to sound-level distributions avoids response saturation
and ensures sensitivity to a wide range of sound levels despite the
limited response range of neurons.

The current human data are consistent with animal studies
showing neural adaptation to stimulus statistics (Kvale and
Schreiner, 2004; Dean et al., 2005; Nagel and Doupe, 2006; Wat-
kins and Barbour, 2008; Wen et al., 2009; Dahmen et al., 2010;
Hildebrandt et al., 2011; Rabinowitz et al., 2011; Wen et al.,
2012). For example, electrophysiological recordings from guinea
pigs and crickets show that neurons shift their response threshold
depending on the mean of a sound-level distribution (Dean et al.,
2005; Hildebrandt et al., 2011; Robinson et al., 2016) such that,

similar to the current results, neural responses are sensitive to
sound levels above the distribution’s high-probability region
(Dean et al., 2005; Robinson et al., 2016). Together with previous
work in humans on neural adaptation to sound-frequency distri-
butions (Garrido et al., 2013; Herrmann et al., 2013a, 2014) and
observations of behavioral sensitivity to sound-level distribu-
tions (Simpson et al., 2014), the current data demonstrate that
neurons in the auditory system of humans adjust their response
range dynamically depending on the statistics of the sound
environment.

The current results are also consistent with recent studies in-
vestigating the effects of temporal context on neural adaptation
of N1/M100 responses. N1/M100 amplitudes are influenced by
the extended history of tone presentations (Costa-Faidella et al.,
2011; Zacharias et al., 2012; Okamoto and Kakigi, 2014; Herr-
mann et al., 2016a) and not just by the time interval between the
preceding and current stimulus (Budd et al., 1998; Rosburg et al.,
2006, 2010; Zhang et al., 2011), which had long been the preferred
view based on isochronous tone stimulation. The propensity of
auditory cortex neurons to remain sensitive to stimuli that have
been presented in the extended past may be crucial for short-term
adaptation to featural distributions in sound environments and
may be important for sensory memory and for filtering out irrel-
evant aspects of sound environments.

Aging affects neural response magnitudes and adaptation to
stimulus statistics
When tones were presented every 7 s and neural populations had
time to recover from neural adaptation, M100 amplitudes did not
differ between age groups (despite larger M50 amplitudes and
shorter M100 latencies in older people). Therefore, any age dif-
ferences for M100 amplitudes to tones presented at a fast presen-
tation rate (0.5 s; in blocks testing the effects of sound-level
distributions) must be due to changes in adaptation properties of
auditory cortex neurons.

When tones were presented every 0.5 s, we observed larger
overall M50 and M100 responses and a larger sensitivity to sound
levels for older compared with younger people (Fig. 4). These
data are consistent with previous work in humans: an overampli-

Figure 8. Context-dependent M100 response magnitudes, controlling for sensation level difference between age groups. A, Histograms of sensation levels for the 14 selected participants of each
age group. Dots and error bars reflect the mean sensation level and SEM, respectively, for each group. For this subset of participants, no difference in sensation level (hearing threshold) was observed
between age groups (n.s., not significant; p � 0.382). The sensation levels reflect dB values from the threshold estimation procedure written in MATLAB. B, Responses to different sound levels in
the 15 and 45 dB SL contexts. Bar graphs show the response range in the 15 and 45 dB SL contexts calculated as the difference between the maximum and the minimum response amplitude across
sound levels. The main effect of age group as well as the main effect of context was significant ( p � 0.05; no interaction). C, Sensitivity to sound level in the 45 dB SL context for levels lower than
the high-probability region. Left, Data from the 45 dB SL context displayed in B. The dashed vertical line at 45 dB SL marks the center of the high-probability region. The colored solid lines reflect the
averaged predicted values from participant-specific linear fits. Right, Slope of a linear function relating sound level to response amplitudes below the high-probability region revealed a significantly
positive slope for older but not for younger adults (right). *p � 0.05. Error bars indicate SEM.
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fication of cortical responses (Tremblay et al., 2003; Harkrider et
al., 2005; Sörös et al., 2009; Herrmann et al., 2013b; Bidelman et
al., 2014; Presacco et al., 2016; Stothart and Kazanina, 2016) and
a larger sensitivity to sound levels (Cody et al., 1968; Laffont et al.,
1989; Morita et al., 2003) have been shown to correlate with aging
and hearing loss. Previous results further suggest that auditory
cortex neurons recover from adaptation more quickly in the time
in older compared with younger individuals (see also de Villers-
Sidani et al., 2010; Herrmann et al., 2016a). This may lead to the
observed response overamplification for older people because
neurons may have recovered more between tone presentations.
This interpretation is consistent with data from younger adults
showing a greater sensitivity to sound level when neurons are less
adapted (Keidel and Spreng, 1965; Müller and Stange, 1971) and
with the current data showing an age-related response overam-
plification in adaptation blocks.

Based on previous data suggesting faster recovery from adap-
tation in the auditory cortex of older people (Herrmann et al.,
2016a), we expected that the neural responses in this group would
be less influenced by the statistics of the extended stimulation
history. In contrast to our initial prediction, responses within the
15 dB SL context and the 45 dB SL context appeared equally depen-
dent on sound level in both age groups, suggesting that neurons in
both age groups were adapting to sound-level distributions (Fig.
6C). However, adaptation to stimulus statistics was altered in older
adults. Response amplitude depended on sound level at levels below
the distribution’s mode for older but not for younger individuals
(Fig. 7). The inability to fully adapt to the statistics in acoustic envi-
ronments might underlie the difficulty that older people experience
in filtering out irrelevant information.

Potential mechanisms underlying age-related changes in
adaptation to stimulus statistics
Adaptation to stimulus statistics is likely supported by multiple
mechanisms (Silver, 2010; Isaacson and Scanziani, 2011; Whit-
mire and Stanley, 2016) that may involve ascending and descend-
ing neural pathways (Robinson et al., 2016) and local (within-
region) circuitry (King et al., 2016). Several studies suggest that
neural inhibition is crucial for shaping a neuron’s input– output
function and dynamic response range (Ingham and McAlpine,
2005; Olsen and Wilson, 2008; Carvalho and Buonomano, 2009;
Hildebrandt et al., 2011; Wilson et al., 2012), whereas others
emphasize the role of excitation (Sato et al., 2016) and synaptic
depression (Abbott et al., 1997).

The current age-related response enhancements are consis-
tent with animal studies reporting a response overamplification
along the ascending auditory pathway in older animals and ani-
mals with hearing loss (Popelár et al., 1987; Syka et al., 1994;
Hughes et al., 2010; Stolzberg et al., 2012; Möhrle et al., 2016;
Herrmann et al., 2017; Salvi et al., 2016). Response overamplifi-
cation due to aging and hearing loss is thought to result from
reduced neural inhibition (Caspary et al., 2008; Takesian et al.,
2009, 2012; Rabang et al., 2012; Salvi et al., 2016) and increased
excitation (Salvi et al., 2016) and may underlie loudness recruit-
ment and hyperacusis (Knipper et al., 2013; Zeng, 2013). Given
the multifaceted mechanisms that appear to underlie adaptation
to stimulus statistics, determining how aging affects those mech-
anisms may be challenging. Nevertheless, the age-related reduc-
tion of neural inhibition in auditory cortex may contribute
critically to the changes in adaptation to stimulus statistics ob-
served in older people.

Previous work in animals indicates that reduced inhibition
and response overamplification due to aging and hearing impair-

ment is particularly expressed in supragranular (upper) layers of
auditory cortex (Ling et al., 2005; Hughes et al., 2010; Llano et al.,
2012; Stolzberg et al., 2012). The supragranular layers include
dendritic arbors of corticofugal pyramidal neurons residing in
deeper infragranular layers, which provide modulatory feedback
to subcortical brain structures (cf. Sherman and Guillery, 1998;
Winer and Lee, 2007). These corticofugal projections may be
important for the modulation of subcortical activity by cognitive
factors such as attention (Suga et al., 2000). Overamplification
and changes in adaptation to stimulus statistics may therefore
reflect only one manifestation of cortical changes associated with
aging and sensorineural hearing impairment. Age-related altera-
tions of neural gain in the supragranular layers of mammalian
auditory cortex may also affect how corticofugal pyramidal neu-
rons modulate activity in subcortical structures and thus how
sensory processes and cognitive factors interact in support of
perception.

Conclusions
The current MEG study investigated how aging affects adaptation
to sound-level statistics in auditory cortex. Neural populations in
younger and older people adapted to sound-level distributions
that differed in modal sound level. However, adaptation to
sound-level statistics was altered in older people such that re-
sponses were affected by sound level under conditions resulting
in full adaptation of neural responses (and no sensitivity to level)
in younger people. The current data thus suggest an age-related
impairment in using sound-level statistics to change neural re-
sponse sensitivity in sensory environments, which may explain
some of the phenomena of age-related hearing impairment, such
as hyperacusis, loudness recruitment, and abnormal salience of
distracting sounds.
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