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Predictive coding (PC) posits that the brain uses a generative model to infer the environmental causes of its sensory data and uses
precision-weighted prediction errors (pwPEs) to continuously update this model. While supported by much circumstantial evidence,
experimental tests grounded in formal trial-by-trial predictions are rare. One partial exception is event-related potential (ERP) studies of
the auditory mismatch negativity (MMN), where computational models have found signatures of pwPEs and related model-updating
processes. Here, we tested this hypothesis in the visual domain, examining possible links between visual mismatch responses and pwPEs.
We used a novel visual “roving standard” paradigm to elicit mismatch responses in humans (of both sexes) by unexpected changes in
either color or emotional expression of faces. Using a hierarchical Bayesian model, we simulated pwPE trajectories of a Bayes-optimal
observer and used these to conduct a comprehensive trial-by-trial analysis across the time � sensor space. We found significant modu-
lation of brain activity by both color and emotion pwPEs. The scalp distribution and timing of these single-trial pwPE responses were in
agreement with visual mismatch responses obtained by traditional averaging and subtraction (deviant-minus-standard) approaches.
Finally, we compared the Bayesian model to a more classical change model of MMN. Model comparison revealed that trial-wise pwPEs
explained the observed mismatch responses better than categorical change detection. Our results suggest that visual mismatch responses
reflect trial-wise pwPEs, as postulated by PC. These findings go beyond classical ERP analyses of visual mismatch and illustrate the utility
of computational analyses for studying automatic perceptual processes.
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Introduction
According to predictive coding (PC), sensory systems operate
under hierarchical Bayesian principles to infer the causes of their

sensory inputs. This rests on message passing among hierarchi-
cally related neuronal populations: each level sends predictions to
the level below and receives precision-weighted prediction errors
(pwPEs), which serve to update predictions, in return (Rao and
Ballard, 1999; Friston, 2005; Hohwy, 2013; Clark, 2015). This pro-
cess of perceptual inference is optimized by learning, where pwPEs
to repeated sensory events are explained away with increasing
efficiency, mediated by plastic changes in synaptic connections of
the sensory circuits (Friston, 2005; Baldeweg, 2006).
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Significance Statement

Human perception is thought to rely on a predictive model of the environment that is updated via precision-weighted prediction
errors (pwPEs) when events violate expectations. This “predictive coding” view is supported by studies of the auditory mismatch
negativity brain potential. However, it is less well known whether visual perception of mismatch relies on similar processes. Here
we combined computational modeling and electroencephalography to test whether visual mismatch responses reflected trial-by-
trial pwPEs. Applying a Bayesian model to series of face stimuli that violated expectations about color or emotional expression, we
found significant modulation of brain activity by both color and emotion pwPEs. A categorical change detection model performed
less convincingly. Our findings support the predictive coding interpretation of visual mismatch responses.

4020 • The Journal of Neuroscience, April 18, 2018 • 38(16):4020 – 4030



Perceptual learning experiments often use stimulus repetition to
establish expectations. An experimental protocol frequently used to
study implicit perceptual learning in audition is the “roving stan-
dard” paradigm (Haenschel et al., 2005; Garrido et al., 2008;
Costa-Faidella et al., 2011a,b; Moran et al., 2013; Schmidt et al.,
2013; Auksztulewicz and Friston, 2015; Komatsu et al., 2015;
Takaura and Fujii, 2016). This repeats a stimulus several times
before unpredictably switching to a different stimulus train. This
paradigm is frequently used to elicit the “mismatch negativity”
(MMN), an event-related potential (ERP) that signals violations
of statistical regularities during perceptual learning. Although the
MMN was primarily investigated in the auditory modality (for
review, see Näätänen et al., 2010, 2012), there is increasing evi-
dence for MMN also in the visual modality (for review, see Ste-
fanics et al., 2014; Kremláček et al., 2016).

Since its discovery, the MMN response has been interpreted in
different ways. First, the “memory-trace” or “change-detection”
hypothesis (Näätänen et al., 1989, 1993; Schröger, 1998) concep-
tualized the MMN as a brain response signaling the difference
between the immediate history of the stimulus sequence and a
novel stimulus. Later, this interpretation was followed by the
“regularity violation” hypothesis (Winkler, 2007), according to
which the MMN signals a difference between the current stimu-
lus and expectations based on prior information that might not
only represent a sensory memory trace but also more complex or
abstract rules extracted from regular relationships between pre-
ceding stimuli (e.g., conditional probabilities; Paavilainen et al.,
2007; Stefanics et al., 2009, 2011; for review, see Paavilainen, 2013).
This interpretation is compatible with the most recent view of the
MMN as an expression of pwPEs during PC (Friston, 2005;
Baldeweg, 2006; Stephan et al., 2006; Wacongne et al., 2011; Lie-
der et al., 2013a; Stefanics et al., 2015). In fact, a PC view of MMN
can be seen as mathematically formalizing ideas already inherent
to the earlier “regularity violation” hypothesis.

The PC interpretation of MMN is supported by much, albeit
mostly indirect, experimental evidence (Garrido et al., 2007, 2013,
2017; Stefanics and Czigler, 2012; Phillips et al., 2015; Auksztule-
wicz and Friston, 2016; Chennu et al., 2016). By contrast, experi-
mental studies based on formal trial-by-trial computational quantities
are rare, almost entirely restricted to the auditory domain, and typ-
ically focused on specific sensors or time windows (Lieder et al.,
2013b; Kolossa et al., 2015; Jepma et al., 2016). Here, we go beyond
previous investigations and use a Bayesian model [the Hierarchical
Gaussian Filter (HGF)] to examine whether visual mismatch re-
sponses reflect pwPEs, a hallmark of PC.

Specifically, our paradigm used a roving design in which two
features of human faces were altered probabilistically and orthogo-
nally: color and emotional expression. We used the HGF to generate
pwPE trajectories and tested the implication by PC, that trial-by-
trial brain activity would reflect these computational quantities.
In addition, we applied a trial-wise change detection (CD) model
(Lieder et al., 2013b) and evaluated the explanatory power of
both hypotheses by statistical model comparison. Finally, we an-
alyzed visual mismatch responses [i.e., visual MMN (vMMN)
responses; for review, see Stefanics et al., 2014; Kremláček et al.,
2016] obtained with traditional averaging and subtraction meth-
ods, and compared the results to those obtained by modeling.

Materials and Methods
Ethics statement. The experimental protocol was approved by the
Cantonal Ethics Commission of Zurich (KEK 2011-0239/3). Written
informed consent was obtained from all participants after the procedures

and risks were explained. The experiments were conducted in compli-
ance with the Declaration of Helsinki.

Subjects. Thirty-nine neurologically normal subjects volunteered in
this experiment. One subject’s data were excluded due to excessive
blinks, and four subjects’ data were rejected because of bridges between
electrodes due to conductive gel. The final sample comprised 34 subjects
(mean age, 23.88 years; SD, 3.56 years; 17 females; 33 right handed). All
subjects had normal or corrected-to-normal vision.

Paradigm. We used a multifeature visual roving standard paradigm to
elicit mismatch responses (prediction errors) by rare changes in color
(red, green), emotional expression (happy, fearful) of human faces, or
both. Roving paradigms have often been used to elicit automatic sensory
expectations in the auditory modality by manipulating stimulus proba-
bilities (Haenschel et al., 2005; Garrido et al., 2008; Moran et al., 2013;
Auksztulewicz and Friston, 2015). Here, we presented four types of visual
stimuli (green fearful, green happy, red fearful, and red happy faces).
Hence, each stimulus type could violate expectations either about the
color or the emotional expression of faces (or both). Importantly, this
allowed us to study brain responses to stimuli that were physically iden-
tical but differed in whether color or emotion regularities were violated.
Faces were presented in four peripheral quadrants of the screen (Fig. 1A).
Each stimulus type was presented with an equal overall probability ( p �
0.25) during the experiment. After five to nine presentations, each stim-
ulus type was followed by any of the other three types with equal overall
transition probabilities (Fig. 1B). Participants engaged in a central detec-
tion task that required speeded button-presses to changes of the fixation
cross. Reaction times were recorded. The experiment consisted of 14
blocks, each lasting �8 min. A short training session preceded the
EEG recording.

Face stimuli, 10 female and 10 male Caucasian models, were selected
from the Radboud Faces Database (Langner et al., 2010; www.rafd.nl)
based on their high percentage of agreement on emotion categorization
(98% for happy, 92% for fearful faces). To control low-level image prop-
erties, we used the SHINE toolbox (Willenbockel et al., 2010) to equate
luminance and spatial frequency content of grayscale images of the se-
lected happy and fearful faces. The resulting images were used to create
the colored stimuli.

Faces were presented on a CRT monitor on a dark-gray background at
a viewing distance of 1 m. The width and height of each face subtended
3.8° and 5.4° visual angles, respectively. The horizontal and vertical dis-
tance of the center of the face stimuli from the center of the screen was
3.15°. To avoid potential local adaptation effects, each stimulus panel
consisted of four faces with different identities (two females, two males),
and the presentation order of the faces with different identity was ran-
domized with the restriction that a face with the same identity was not
presented in adjacent trials. Each face was presented with the same prob-
ability over the experiment. Stimuli were presented for 200 ms, followed
by a random interstimulus interval of 600 –700 ms, during which only the
fixation cross was present. Stimuli were presented using Cogent2000
(http://www.vislab.ucl.ac.uk/Cogent/index.html).

EEG recording and preprocessing. During the experiment, participants
sat in a comfortable chair in an electromagnetically shielded, sound-
attenuated, dimly lit room. Continuous EEG was recorded from 0.016
Hz with a low-pass filter at 100 Hz using a QuickAmp Amplifier (Brain
Products). The high-density 128-channel electrode caps had an equidis-
tant hexagonal layout and covered the whole head. EEG was referenced
against the common average potential; the ground electrode was placed
on the right cheek. Electrodes above the eyes and near the left and right
external canthi were used to monitor eye movements. Data were digitized
at 24-bit resolution and a sampling rate of 500 Hz and filtered off-line
between 0.5 and 30 Hz using zero-phase shift, infinite-impulse response
Butterworth filter. Built-in and self-developed functions as well as the
freeware SPM12 toolbox (v6470; RRID:SCR_007037; Litvak et al., 2011)
in the Matlab development environment (MathWorks) were used for
subsequent off-line data analyses. Electrode positions and fiducials were
digitized for each subject using an infrared light-based measurement
system and Xensor software (ANT).

Epochs extending �100 ms before to 500 ms after stimulus onset were
extracted from the continuous EEG. Epochs were baseline corrected us-
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ing the 100 ms prestimulus period. A topography-based artifact correc-
tion method (Berg and Scherg, 1994) implemented in SPM12 was used to
correct for eye-blink and eye-movement artifacts. Electrode positions
were used to coregister EEG data to a canonical MRI template to calculate
a forward model to define topographies of blink and eye-movement
artifacts that were removed from the epoched data. To avoid other po-
tential artifacts, epochs with values exceeding �100 �V on any EEG
channel were rejected from the analysis.

Modeling belief trajectories. We used the HGF (Mathys et al., 2011;
Mathys et al., 2014) to simulate computational trajectories to create para-
metric regressors for the general linear model (GLM) analysis. The HGF
is a generative (Bayesian) model of perceptual inference and learning that
represents a variant of PC in the temporal domain and has been used in
several recent studies to investigate hierarchical PE responses in the brain
(Iglesias et al., 2013; Hauser et al., 2014; Schwartenbeck et al., 2015;
Vossel et al., 2015; Lawson et al., 2017; Powers et al., 2017). It is imple-
mented in the freely available open source software TAPAS (http://www.
translationalneuromodeling.org/tapas). The HGF consists of a percep-
tual and a response model, representing a Bayesian observer who receives
a sequence of inputs (stimuli) and generates behavioral responses. The
perceptual model describes a hierarchical belief updating process (i.e.,
inference about hierarchically related environmental states that give rise

to sensory inputs). In our MMN paradigm, the ERP-eliciting face stimuli
did not require a behavioral response. Therefore, we used only the per-
ceptual model to simulate belief trajectories about external states (e.g.,
the occurrence of a red vs green, or a fearful vs happy face) without
specifying a decision model.

The HGF (Fig. 2A) describes how hidden states (x) of the world gen-
erate sensory inputs (u). Model inversion infers these hidden states from
sensory inputs; this is equivalent to updating the beliefs across the HGF
hierarchy. Here, we used a two-level version of the HGF (based on tool-
box v2.2) where we eliminated the third level from the most commonly
used hierarchy. This model assumes a stable volatility over the time
course of the experiment, which is in line with the stimulus sequence. The
first level of the model represents a sequence of beliefs about stimulus
occurrence x1. This corresponds to beliefs about environmental states
(i.e., whether a green vs red face or a happy vs fearful face was presented).
The second level represents the current belief of the probability that a
given stimulus occurs (i.e., the tendency x2 toward a given feature (e.g.,
the conditional probability of seeing a red face vs a green face, given the
previous stimulus).

The model assumes that environmental hidden states evolve as a
Gaussian random walk, such that their variance depends on the state at
the next higher level (Mathys et al., 2011, 2014), as follows:

Figure 1. Stimuli and paradigm. A, We used a multifeature visual roving standard paradigm to elicit PEs by rare changes of either color (red, green) or emotional expression (happy, fearful) of
human faces (or both). This allowed us to study brain responses to stimuli that were physically identical but differed in whether color or emotion regularities were violated. Faces were presented in
four peripheral quadrants of the screen. A detection task was presented at fixation at the center. Faces were reproduced with permission of the Radboud Faces Database (www.rafd.nl). B, Schematic
illustration of a stimulus sequence showing transitions between stimulus types. Note physically identical stimuli taking the role of different deviant stimulus types (GH, green happy; GF, green
fearful; RH, red happy; RF, red fearful faces) depending on expectations established by prior stimulus context.

Figure 2. The HGF and pwPE trajectories. A, A graphical model of the HGF with two levels (figure modified from Mathys et al. [2011] with permission under the Creative Commons licence). B,
Model-based pwPE trajectories from one experimental block used as regressors in the GLM. GF, green fearful; GH, green happy; RF, red fearful; RH, red happy faces; a.u., arbitrary units.
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p� x1�x2� � s� x�x1�1� s� x2��
1�x1 � Bernoulli�x1; s�x2�� (1)

p� x2
�k��x2

�k�1�, x3
�k�� � N� x2

�k�; x2
�k�1�, exp����, (2)

where k is a trial index and s is a sigmoid function, as follows:

s� x� �
1

1�exp��x�
. (3)

At the second level, the top level in our implementation (Eq. 2), the step
size between consecutive time steps depends on �.

Exact Bayesian inversion requires analytically intractable integrations,
therefore the HGF relies on a quadratic approximation to the variational
energies. The variational inversion of the model provides a set of analyt-
ical update equations, which update trial-by-trial the model’s estimates
of the state variables. Importantly, every belief within the model is up-
dated after each trial, leading to trial-by-trial trajectories of these hidden
quantities. The update rules share a general form across the model’s
hierarchy: at any level i the update of the posterior mean �i

(k) of the state
xi that represents the belief on trial k is proportional to the precision-
weighted PE �i

(k). This weighted PE is the product of the PE �i�1
�k� from the

level below and a precision ratio 	i
(k), as follows:

�i
�k�1� � �i

�k� 	 	i
�k��i�1

�k� � �i
�k�. (4)

The update equations of the hidden states of the HGF (level 2 here) have
a general structure similar to those of classical reinforcement or associa-
tive learning models, such as the Rescorla-Wagner learning model (Re-
scorla and Wagner, 1972), as follows:

prediction�k� � prediction�k�1� � learning rate 
 prediction error

(5)

We focus our EEG analysis on the pwPE on the second level �2, which
drives learning about the probability of the stimulus. Here, we provide a
brief description of the nature of this quantity. For a detailed and more
general derivation of mathematical details, see Mathys et al. (2011). The
update equation of the mean of the second level is as follows:

�2
�k� � �2

�k�1� � �2
�k���1

�k� � s��2
�k�1���, (6)

where the last term is the PE ��1
�k� � s��2

�k�1��� at the first level weighted
by the precision term �2

�k�. This pwPE updates beliefs at the second level.
The precision weight is also updated with every trial and can be regarded
as equivalent to a dynamic learning rate in reward learning models
(Preuschoff and Bossaerts, 2007). Thus, �2

�k� is not simply a scaled version
of �1

�k�.
We computed trajectories of pwPEs (with separate models for color

and emotion stimuli) assuming a Bayes-optimal observer. For this, we
modeled belief trajectories by estimating the parameters that would lead
to minimal surprise about the stimuli. We determined these Bayes-
optimal perceptual parameters by inverting the perceptual model based
on the stimulus sequence alone and under a predefined prior (the stan-
dard in the HGF toolbox). Thus, our modeled observer was the same for
all participants and was optimal under its prior beliefs encoded by the
parameters that controlled the evolution of the estimated hidden states
(Mathys et al., 2011). These trajectories capture the evolution of pwPEs—a
hallmark of predictive coding— over each and every trial, peaking when
a stimulus represented a change relative to previous stimuli, and subsid-
ing over following repetitions (Fig. 2B). These model-derived trajectories
can thus be used as quantitative regressors in a GLM single-trial analysis
of EEG data, without the need to manually label trials as “deviants” or
“surprising.” We used the absolute value of pwPE traces for the four
stimulus types (Fig. 2B) to create regressors that entered the GLM, which
we estimated for each participant.

Space � time statistical parametric map analysis and model comparison.
Single-trial sensor data were downsampled to 250 Hz and converted to
scalp � time images for statistical analysis. Data were interpolated to
create a 32 � 32 pixel scalp map for each time point in the poststimulus
50 –500 ms interval. The time dimension consisted of 113 samples (of 4

ms) in each trial. Images were stacked to create a 3D space–time image
volume, which was smoothed with a Gaussian kernel (full-width at half-
maximum � [16 mm 16 mm 16 ms]) in accordance with the assump-
tions of Random Field Theory (Worsley et al., 1996; Kiebel and Friston,
2004).

We performed statistical parametric mapping across the time � sensor
space, using two separate GLMs incorporating regressors from the HGF
and from a more classical CD model (Lieder et al., 2013b), respectively.
Both models make trial-by-trial predictions about mismatch responses,
but differ in the exact form of the ensuing trajectories (HGF, gradually
changing pwPEs; CD, categorical changes). For the HGF-based GLM, we
included the four stimulus types as main regressors, and color-pwPEs
and emotion-pwPEs as parametric modulators for each stimulus type.
For the GLM based on the CD model, we included the four stimulus types
as main regressors, and stick functions as parametric modulators for each
stimulus type on those trials when a change occurred in the stimulus
sequence. The GLMs were estimated for each participant individually.

Group-level analyses used F tests to find scalp time points where
single-trial ERPs were significantly modulated by pwPEs. The resulting
statistical parametric maps (SPMs) were familywise error (FWE) cor-
rected for multiple comparisons at the cluster level ( p 
 0.05; with a
cluster defining threshold of p 
 0.001, as recommended by Flandin and
Friston, 2018) using Random Field Theory. Similar preprocessing and
statistical procedures have been applied previously (Henson et al., 2008;
Garrido et al., 2013; Auksztulewicz and Friston, 2015).

To compare the two models formally, we used the Bayesian informa-
tion criterion (BIC; Schwarz, 1978) approximation to the log model
evidence (LME), separately for each participant. Under Gaussian noise
(as assumed by the GLM), this leads to an approximation that is a func-
tion of the residual sum of squares (RSS), as follows:

LME � �
1

2
n ln �RSS

n � �
1

2
k ln �n�, (7)

where n is the number of data points and k is the number of parameters
estimated by the model. Notably, in our case, n and k are the same in both
models. Hence, the difference between the LMEs, and therefore model
comparison, depends only on the logarithm of the RSS (i.e., model fit).

To perform model comparison at the group level, we computed the
logarithm of the group Bayes factor (Stephan et al., 2007) for each voxel
[i.e., the sum of �LME (between models) across subjects]. This corre-
sponds to a fixed-effects group-level Bayesian model selection (Stephan
et al., 2009) procedure and was done both within a functionally defined
mask (of voxels showing mismatch responses under both models) as well
as on all voxels in the 3D space–time image volume (to perform an unre-
stricted comparison). The mask comprised all voxels from the SPM anal-
yses where, either for color or emotion changes, both the pwPE and the
CD model (“logical AND” conjunction) had yielded a significant whole-
brain-corrected effect. We then used a nonparametric Wilcoxon signed
rank test to assess the null hypothesis of zero median for �LME across all
voxels.

Traditional ERP analysis. In addition to the model-based approach, we
studied mismatch effects using traditional analysis methods by compar-
ing ERP responses to deviants and standards. Deviants were defined as
the first stimulus representing a change either in color or in emotion in
the stimulus sequence relative to the preceding stimulus; standards were
defined as responses to the same stimulus after five repetitions (the sixth
presentation of the same stimulus in a row; Garrido et al., 2008). Thus, we
compared responses to physically identical stimuli.

Deviant and standard ERP amplitudes were tested for significant
MMN response at three posterior regions of interest (ROIs) at the left
occipitotemporal, middle occipital, and right occipitotemporal regions.
Regions and time windows for analysis were selected based on prior
literature for color (Czigler et al., 2002; Kimura et al., 2006; Thierry et al.,
2009; Czigler and Sulykos, 2010; Müller et al., 2010; Mo et al., 2011;
Stefanics et al., 2011) and emotion (Zhao and Li, 2006; Astikainen and
Hietanen, 2009; Kimura et al., 2012; Stefanics et al., 2012; Astikainen et
al., 2013; Csukly et al., 2013; Kreegipuu et al., 2013) changes. Prior studies
measured ERP amplitudes consistently at posterior occipital, temporal,
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and parietal regions. However, the time windows selected for analysis
varied remarkably across studies in the 100 –500 ms range; therefore, we
adopted a flexible approach and measured ERP amplitudes to deviants
and standards in 12 32-ms-long consecutive intervals in the 100 – 484 ms
range. The effect of stimulus type on evoked responses was tested by a
three-way ANOVA of stimulus type (deviant vs standard) � ROI (left vs
middle vs right) � interval (12 intervals). Greenhouse–Geisser correc-
tion of the degrees of freedom was applied where appropriate; � values
are provided in the results. Significant main effects and interactions were
further specified by Tukey’s HSD post hoc tests.

Results
Trial-by-trial pwPE results (Bayesian model)
Our analysis across the time � sensor space demonstrated strong
correlations among model-based pwPE trajectories, �2, and the
single-trial ERPs (Fig. 3A), both for color and emotion. Details of
test statistics are given in Table 1. F tests revealed significant
activations for color pwPEs in several space � time clusters (scalp
areas and time intervals). The earliest significant interval was
found between 180 and 255 ms at left and right posterior regions
(Fig. 3B), corresponding to a negative potential (see Fig. 5B), as
well as a frontocentral positivity in a corresponding time window.
We observed further correlations at a middle occipital area in the
320 – 430 ms interval corresponding to a positive potential, as well as
negativity in a similar time window with frontocentral dominance.
Furthermore, we found a middle occipitoparietal interval in the
430 –500 ms time window corresponding to a positive potential,
with corresponding frontocentral negativity in a similar time
window.

For emotion pwPEs, F tests revealed significant activations in
two space � time clusters (Fig. 3C). The earliest effects for emo-
tion PEs were observed at a right occipitotemporal area in the
170 –214 ms interval, followed by positivity at the left occipito-
temporal scalp region in the 405– 455 ms interval (Fig. 3D).

To demonstrate the relationship between the model-based
pwPE parameter estimates for color changes and the MMN ob-
tained from ERP data using traditional averaging and subtraction
methods, we plotted all raw single trials sorted in an increasing
order according to the trial-wise parameter estimates (Fig. 4A,B).
The relationship between the computational quantities of pwPE
estimates and raw data is apparent in plots showing the trial-wise
ERP amplitudes (Fig. 4C) in the time windows where statistical
parametric mapping yielded significant results. Calculating the
mean ERP for the 10% of trials with the lowest and highest pwPE
estimates, respectively, reveals characteristic ERP waveforms (Fig.
4D) that clearly differ in time intervals where classical deviant-
minus-standard differences (early MMN and late positivity) have
been reported previously. A similar, although less robust relation-
ship between model-based pwPE parameter estimates for emotion
changes and the ERP data is shown in Figure 4E–H.

Comparison to the CD model
To assess whether the pwPE traces provided any advantage in
modeling the EEG data compared with a classical CD model, we
performed statistical model comparison. This was based on com-
puting voxelwise log group Bayes factors [using a BIC approxi-
mation to the group-level LME difference (�LME)], as described

Figure 3. Thresholded space–time SPMs. A, Main effects of color pwPE estimates (pooled across emotions) of the F test (whole scalp corrected at p 
 0.05, with a cluster-defining threshold of
p 
 0.001). The crosshair is positioned at the earliest maximum of test statistics. B, Contrast estimates (arbitrary units) for the four types of stimuli (GF, green fearful; GH, green happy; RF, red fearful;
RH, red happy faces) at three time points of maxima in posterior clusters. Bars indicate 90% CI as additional illustration for ERP effects found after whole-scalp � epoch length FWE correction.
C, D, Main effects of emotion pwPE estimates (pooled across colors) plotted similarly as for color pwPEs.
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in the Materials and Methods section. Figure 5 shows that the
large majority of the voxels within a functionally defined mask
showed strong evidence for the pwPE model (median �LME �
29.14; mean �LME � 33.48; SD � 37). �LME values within the
whole 3D space–time volume showed very similar results (me-
dian �LME � 29.31; mean �LME � 31.34; SD � 34.86). Nota-
bly, a difference in LME of �5 is considered as very strong
evidence in favor of the superior model (Kass and Raftery, 1995).

To characterize the distribution of �LME values more formally,
we performed null hypothesis testing. An initial one-sample Kolm-
ogorov–Smirnov test indicated that the distributions of �LME for
voxels within our functionally defined mask (D � 0.78, p 

10�5) as well as for the whole 3D space–time volume (D � 0.79,
p 
 10�5) were not Gaussian. A nonparametric Wilcoxon signed
rank test was used to test the null hypothesis of zero median for
the �LME. The results showed that the median �LME was sig-
nificantly different from zero (Z � �70.63, p 
 10�5) for voxels
within the mask, as well as for voxels within the whole volume
(Z � �213.10, p 
 10�5). Distributions of �LME values within
the significance mask and the entire 3D space–time volume are
shown in Figure 5. These results indicate the superiority of the
Bayesian model over the CD model and suggest that visual mis-
match responses are better explained by pwPEs than by categor-
ical change indices.

Traditional ERP results
Figure 6, A and B, shows grand average ERPs to color-deviant and
standard as well as to emotion deviant and standard stimuli, re-
spectively, at occipitotemporal/occipital ROIs. Stimuli evoked
the canonical P1, N1/N170, and P2 components. Deviant-minus-

standard difference waves show a typical visual mismatch neg-
ativity at �200 ms for color changes, followed by a positive
potential after 300 ms. ERP waveforms obtained with traditional
averaging and subtraction methods reveal a smaller negativity for
emotion changes peaking before 200 ms in the right ROI followed
by a positivity after 400 ms that is most robust on the left ROI
(Fig. 6C,D).

The ANOVA of the amplitude values for color deviants and
standards yielded a significant interaction of stimulus type �
interval (F(11,363) � 14.491, p 
 0.00001, � � 0.369, � 2 � 0.305).
A post hoc Tukey’s test revealed that the interaction was caused by
more negative responses to deviant stimuli compared with stan-
dards in the 196 –228 ms interval, and by more positive responses
to deviant stimuli compared with standards in five time windows
comprising the continuous 324 – 484 ms interval (all p 
 0.01).
Significant main effects of ROI and interval, as well as their inter-
action were also observed but were not analyzed further.

The ANOVA of the amplitude values for emotion deviants
and standards yielded a significant interaction of stimulus type �
interval (F(11,363) � 3.169, p 
 0.01, � � 0.45, � 2 � 0.087). A post
hoc Tukey’s test revealed that the interaction was caused by more
positive responses to deviant stimuli compared with standards in
the 420 – 452 ms interval (p 
 0.01). Significant main effects of
ROI and interval as well as their interaction were also observed
but were not analyzed further.

Reaction time and hit rate
Reaction times (RT) and hit rates for the occasional changes in
the fixation cross were compared between experimental blocks.
Mean RT was 593 ms (SD � 116). ANOVA of RTs across the 14
blocks yielded a significant effect (F(13,312) � 3.78; p 
 0.025,
Greenhouse–Geyser adjusted; � � 0.174), with an effect size of
� 2 � 0.14. A post hoc Tukey’s HSD test revealed that the effect was
caused by the significantly longer RTs in the first block compared
with the rest of the blocks (p 
 0.05), indicating rapid adjustment
during the first block followed by a steady performance speed
throughout the experiment.

The mean hit rate was 93.28 (SD � 5.76). ANOVA of hit rate
across the 14 blocks yielded a marginally significant effect (F(13,312) �
2.32; p 
 0.06, Greenhouse–Geyser adjusted; � � 0.3), with an
effect size of � 2 � 0.09. A post hoc Tukey’s HSD test revealed that
the effect was caused by the significantly lower hit rate in the first
block compared with those in blocks 8, 9, 10, 12, 13, and 14 (p 

0.05), indicating a steady and high performance throughout the
experiment following initial adjustment to the task during the
first block.

Discussion
Beginning with the seminal article by Rao and Ballard (1999), PC
has become an extremely influential concept in cognitive neuro-
science and currently represents one of the most compelling com-
putational theories of perception. An experimental paradigm that
was suggested early on as a suitable probe of PC in humans is the
auditory MMN (Friston, 2005; Baldeweg, 2006; Stephan et al.,
2006). The MMN is attractive for studies of PC, not least because
the statistical structure of the stimulus sequences can be manip-
ulated easily. This allows for straightforward tests of general
predictions from PC, for example, concerning the impact of (un)
predictability on ERPs. Indeed, the results from numerous audi-
tory MMN studies are consistent with these general predictions
(Wacongne et al., 2011; Schmidt et al., 2013; Phillips et al., 2015;
Chennu et al., 2016; Garrido et al., 2017).

Table 1. Test statistics for color and emotion prediction errors

Activation size
(voxels)

Cluster
p value (FWE
corrected)

Peak
p value (FWE
corrected)

Peak F
statistic

Peak
equivalent
Z statistic

Peak
latency
(ms)

Test statistics for color
prediction errors

9885 1.44E-10 2.42E-10 40.63242 7.574789 472
2.63E-08 32.85626 6.898473 412
4.1E-08 32.14478 6.830418 388
5.32E-08 31.73202 6.790405 388

3958 4.71E-06 3.9E-10 39.81532 7.50916 208
2.11E-06 26.03102 6.192928 216
2.6E-06 25.71183 6.156698 216
2.5E-05 22.35084 5.753717 212
5.9E-05 21.09702 5.592177 216

2006 0.000426 4.78E-09 35.62346 7.152807 212
9875 1.46E-10 6.09E-05 21.05077 5.586089 468

6.31E-05 20.99963 5.579346 384
0.000245 19.04328 5.312191 352
0.000889 17.21467 5.044499 384
0.002482 15.77195 4.819075 476
0.002808 15.59909 4.791132 428
0.003092 15.46402 4.76915 428
0.004554 14.92295 4.679763 436
0.010871 13.70968 4.471042 416

Test statistics for emotion
prediction errors

1333 0.001824 0.00334 15.51657 4.777717 428
0.171057 9.932535 3.729684 388

1179 0.003041 0.004358 15.14413 4.716563 188
0.057261 11.53527 4.063691 184
0.090418 10.87907 3.930862 180

Significant activations are arranged according to size. p Values and statistics are given for activation clusters and
within each activation. Significant FWE-corrected p values are shown in italics.
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By contrast, an opportunity that has
remained surprisingly unexploited is that
models of PC provide formal quantities,
specifically pwPEs, and predict how these
should fluctuate trial by trial, given a par-
ticular stimulus sequence. While some so-
phisticated computational treatments of
single-trial variations in evoked auditory
and somatosensory EEG responses exist
(Ostwald et al., 2012; Lieder et al., 2013b;
Kolossa et al., 2015), these have examined
other potentials than MMN, were re-
stricted to particular electrodes and time
points, or used computational quantities
different from pwPEs (e.g., Bayesian sur-
prise). In the domain of visual mismatch,
computational investigations have been
lacking entirely so far.

To our knowledge, this study repre-
sents the first computational single-trial
EEG analysis of the vMMN. It demon-
strates that visual mismatch responses re-
flect trial-wise pwPEs, a core quantity of
PC, and thus supports the general notion that MMN can be un-
derstood as a hierarchical Bayesian inference process (Friston, 2005;
Garrido et al., 2009). Specifically, we used a Bayes-optimal agent
for belief trajectories about probabilities of two features of hu-
man faces: color and emotion. pwPE estimates for both features
showed a significant relationship to event-related potentials at
the single-trial level (Fig. 3), with activations at electrodes and

time windows that were comparable to classical vMMN results
(see below). Sorting single-trial ERPs according to the magnitude
of the model-based pwPE estimates and selecting those with the
highest and lowest pwPEs revealed the characteristic negative
mismatch waveform at posterior electrodes (Fig. 4). These find-
ings suggest that the MMN is a correlate of pwPEs as computed
by a hierarchical Bayesian model. Comparing our model-based

Figure 4. pwPE parameter estimates and ERP image of all single trials of 34 subjects (�283,000 single trials). Data in all subplots were smoothed with a sliding window of 3000 trials for
visualization. A, Mean-centered parameter estimates of pwPEs to color input sorted from minimum (top) to maximum (bottom) values, yielded by the HGF. Data were smoothed using a vertical
window of 3000 trials. B, Single-trial ERPs from occipitotemporal electrodes sorted according to their associated pwPE magnitude. Note vertical lines corresponding to ERP peaks and troughs.
C, Mean ERP amplitudes over the intervals with significant correlation between pwPE and ERP. Red and purple lines show potential values averaged over the intervals 200 –240 and 320 – 430 ms,
respectively. Confidence intervals (SD) resulted from the time windows used per time point. D, ERP waveforms calculated across 10% of trials with the lowest and highest pwPE parameter estimates.
Confidence intervals (SD) resulted from the single trials. Note the difference between waveforms in the intervals where significant pwPE-related activity has been found with multiple regression. Red
areas in head plots show scalp regions where electrodes were used for plotting the ERP waveforms. E–H, Data for emotion pwPEs plotted similarly as for color above.

Figure 5. Histograms of �LME over the voxels within a mask defined by the conjunction of significant voxels for the pwPE and
change detection models either for color or emotion changes, and over all voxels in the whole 3D space–time volume.
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results to those obtained with traditional averaging and sub-
traction methods revealed that time course and topographic
distributions of the two analyses yielded highly similar results
(Fig. 6).

The high hit rate and approximately constant RT over the
experiment indicates that participants complied with the task and
attended the fixation cross. Hence, the pwPEs observed in our
study were likely generated by an automatic mechanism that op-
erates outside the focus of attention, in line with theories of per-
ception as unconscious inference (Hatfield, 2002; Friston, 2005;
Kiefer, 2017).

Several studies used the vMMN to investigate neural responses to
changes in color and facial emotions (see Materials and Methods).
The topographical distribution and time course of pwPEs in our
current study are in line with these previous findings. However,
to our knowledge, our study is the first to demonstrate that
pwPEs obtained from a formal Bayesian model (HGF) are re-
flected by visual mismatch responses. Thus, our results represent
an important advance in the interpretation of vMMN, elucidat-
ing the potential underlying computational processes.

Our model-based approach identified an early time window
of pwPE responses in the 180 –255 and 170 –214 ms intervals for
color and emotion PEs, respectively. The topographic distribu-
tion of both responses (Fig. 6B) corresponds to the topography of
the known vMMN response characterized by a posterior dominant-
negative potential. These intervals are also in good agreement with
our current results obtained with traditional ERP analysis meth-
ods, which showed a significantly more negative response to
color deviants in the 196 –228 ms interval. Traditional ERP anal-

ysis did not reveal a significant mismatch response to emotion
deviants in a similarly early interval, which we discuss below.

Prior studies often observed a late positive potential following
the MMN peak in the deviant-minus-standard differential re-
sponse dominant at the posterior scalp (Czigler et al., 2002; Zhao
and Li, 2006; Czigler and Sulykos, 2010; Müller et al., 2010; Ste-
fanics et al., 2011). Accordingly, we found significant PEs in the
320–500 and 405–455 ms intervals for color and emotion changes,
respectively, that corresponded to positive potentials at the poste-
rior scalp (Figs. 3, 6). These intervals are in good agreement with
the results obtained with traditional averaging and subtraction
methods, which revealed significant mismatch responses in the
324 – 484 and 420 – 452 ms intervals for color and emotion, re-
spectively. An important result of our current study is that the
“late positive” peak also shows a significant relationship to model-
based pwPE estimates. It indicates that this later potential, similar
to the MMN, is also a neural correlate of PEs, despite its scalp
distribution, which apparently differs from that of the MMN,
which suggest that different generator sources underlie the two
responses. The existence of multiple significant intervals, both for
color and emotion pwPEs, are in line with PC as this posits that
pwPEs are minimized in sequential steps during the model up-
date process (Friston, 2005).

A strength of our study is that the time course and scalp to-
pography of significant pwPE-related potentials were identified
using a model-based approach that was applied to the entire
time � sensor data space. This contrasts with previous studies
that often restricted the statistical analysis to certain electrodes
and time intervals.

Figure 6. ERP waveforms, scalp voltage maps, and topographic statistical parametric maps. A, ERPs with 95% confidence interval for changes in color obtained with traditional averaging
deviant-minus-standard subtraction. Red areas in channel layout plots show scalp regions where electrodes were used for plotting the ERP waveforms. B, Scalp potential plots of deviant-minus-
standard difference waveform (left) at two time points of cluster maxima where SPM analysis yielded significant results. Statistical parametric maps (right) for model-based color pwPE estimates
(pooled across emotions) of the F test. Note the high similarity of topographic distributions for the traditionally obtained mismatch responses (with negative and positive posterior scalp
distributions) and the SPM obtained with computational model-based analyses. C, D, Data for the emotion changes, plotted similarly as for color.
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We also compared our Bayesian model against a more classi-
cal alternative (change detection) to verify our computational
interpretation of visual mismatch responses. This involved two
GLMs incorporating either trial-wise pwPEs (from the HGF) or
categorical change indices (CD model). Model comparison indi-
cated that the pwPE model was clearly superior to the CD model
in the large majority of voxels— both for a restricted mask (where
both pwPE and CD models yielded significant results at the group-
level) and for the entire space–time volume. Two issues are worth
highlighting here. First, our Bayesian model is generic and pwPE
trajectories obtained with the HGF are unlikely to differ markedly
from those generated by other Bayesian models. In fact, for any
probability distribution from the exponential family, Bayesian
update equations share a canonical form for precision-weighted
PEs (Mathys, 2016). Second, our approach is not restricted to a
particular time bin (Lieder et al., 2013b) and does not preclude
that competing models could explain different trial compo-
nents differentially well. However, this potential problem of in-
terpretability is addressed by our functionally defined mask,
which is restricted to points in time–sensor space with significant
mismatch responses under both models. Future extensions of the
present approach could involve generative modeling of the entire
waveform. While MMN waveform models do exist, these are
detailed biophysical models that cannot be directly fitted to EEG
data (Wacongne et al., 2012) and/or are not suited for single-trial
analyses (Lieder et al., 2013a).

A limitation of our paradigm is that the necessity to control
face stimuli for spatial frequency and luminance diminished de-
tails of facial expressions, which are important for emotion rec-
ognition. For example, an important cue for fear, the white sclera
above the pupil revealed by widely opened eyes (Darwin, 1872;
Ekman and Friesen, 2003), appeared remarkably diminished af-
ter equating images for spatial frequency and luminance. This
might explain why our mismatch responses to emotion changes
were less robust compared with previous studies (Stefanics et al.,
2012) and why our current traditional ERP analysis approach did
not yield a significant mismatch response in an early time win-
dow. Although our model-based analysis revealed significant
emotion pwPE responses in the early time window of 170 –214
ms, the effect was mainly driven by responses to happy faces (Fig.
4D). By contrast, our model-based approach did identify signif-
icant single-trial pwPE responses to emotional faces in the early
time window where vMMN responses were observed in prior
studies. This highlights the advantages of using a computational
modeling approach in a GLM framework at the single-subject
level. First, using trial-by-trial regressors in a GLM enables us to
use all trials from the experiment and hence increases the robust-
ness of the parameter estimates, whereas in traditional MMN ap-
proaches a large portion of trials are not used in the deviant versus
standard comparisons. Second, our modeling approach allowed
us to include trials where both color and emotion changed.

Future extensions of our current work include effective con-
nectivity analyses, such as dynamic causal modeling (DCM) that
has proven useful for our understanding of the auditory MMN
(Garrido et al., 2007; Moran et al., 2013, 2014; Cooray et al., 2014;
Ranlund et al., 2016). Although several electrophysiological stud-
ies are consistent with propagation of pwPEs in a hierarchical
network supporting PC, the interpretation is indirect, and a direct
embedding of computational quantities into physiological models
remains to be done. Future studies may combine hierarchical
Bayesian models with DCM to better characterize trial-wise
computational message passing in neural circuitry mediating
visual perception.
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