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Neural circuits, governed by a complex interplay between excitatory and inhibitory neurons, are the substrate for information process-
ing, and the organization of synaptic connectivity in neural network is an important determinant of circuit function. Here, we analyzed
the fine structure of connectivity in hippocampal CA1 excitatory and inhibitory neurons innervated by Schaffer collaterals (SCs) using
mGRASP in male mice. Our previous study revealed spatially structured synaptic connectivity between CA3 and CA1 pyramidal cells
(PCs). Surprisingly, parvalbumin-positive interneurons (PVs) showed a significantly more random pattern spatial structure. Notably,
application of Peters’ rule for synapse prediction by random overlap between axons and dendrites enhanced structured connectivity in
PCs, but, by contrast, made the connectivity pattern in PVs more random. In addition, PCs in a deep sublayer of striatum pyramidale
appeared more highly structured than PCs in superficial layers, and little or no sublayer specificity was found in PVs. Our results show
that CA1 excitatory PCs and inhibitory PVs innervated by the same SC inputs follow different connectivity rules. The different organiza-
tions of fine scale structured connectivity in hippocampal excitatory and inhibitory neurons provide important insights into the devel-
opment and functions of neural networks.
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Introduction
Neuronal circuits exhibit multiple types of precise patterns of
connectivity between specialized groups of neurons (Hofer et al.,
2011; DeBello et al., 2014; Druckmann et al., 2014; Rieubland et

al., 2014; Harris and Shepherd, 2015; Jiang et al., 2015; Kasthuri et
al., 2015; Straub et al., 2016). Synaptic connectivity is a central
element in shaping neural dynamics and the computational func-
tions it supports. Therefore, it is imperative to map the organization
of synaptic connections and the principles underlying this organiza-
tion. Indeed, much progress has been made toward unveiling the
organization of complex neural networks in increasing detail: differ-
ent cell types, afferent and efferent projections, synaptic connections,
and more have recently been assessed with new technologies
(Druckmann et al., 2014; Oh et al., 2014; Zingg et al., 2014; Kasthuri
et al., 2015; Bloss et al., 2016; Cadwell et al., 2016; Wallace et al.,
2017). It is important to obtain quantitative descriptions of connec-
tivity motifs and network architectures, particularly those of excit-
atory and inhibitory neurons innervated by the same type of cell.
However, such descriptions remain elusive.
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Significance Statement

Understanding how neural circuits generate behavior is one of the central goals of neuroscience. An important component of this
endeavor is the mapping of fine-scale connection patterns that underlie, and help us infer, signal processing in the brain. Here,
using our recently developed synapse detection technology (mGRASP and neuTube), we provide detailed profiles of synaptic
connectivity in excitatory (CA1 pyramidal) and inhibitory (CA1 parvalbumin-positive) neurons innervated by the same presyn-
aptic inputs (CA3 Schaffer collaterals). Our results reveal that these two types of CA1 neurons follow different connectivity
patterns. Our new evidence for differently structured connectivity at a fine scale in hippocampal excitatory and inhibitory neurons
provides a better understanding of hippocampal networks and will guide theoretical and experimental studies.
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Recent studies of synaptic connectivity have focused on the
spatial distribution of afferent inputs (structured vs random;
Druckmann et al., 2014; J. S. Kim et al., 2014; Kasthuri et al., 2015;
Bloss et al., 2016) and have attempted to elucidate basic principles
of connectivity, for instance, with reference to Peters’ rule. Peters’
rule, a method proposed to predict synaptic connectivity on the
basis of geometric overlaps between axon and dendrite, has been
interpreted to provide support for random synaptic connectivity
(Peters and Feldman, 1976; Braitenberg and Schüz, 1998). This
idea has been extrapolated to a general principle of brain organi-
zation and has been used extensively in models of theoretical
networks and theories about random connectivity at the cellular
and subcellular levels (Markram, 2006). However, when recent
studies have directly tested Peters’ rule with advanced technolo-
gies, conclusions have been divided between confirming and re-
futing the concept; therefore, the debates continue (Rees et al.,
2017). Previous studies, including our own, of postsynaptic den-
drites and dendritic subdomains of different neuron types show
structured synaptic connectivity at the cellular and branch levels
in a way that is not consistent with Peters’ rule (Mishchenko et al.,
2010; Druckmann et al., 2014; Rieubland et al., 2014; Kasthuri et
al., 2015). Additionally, recent studies with advanced technolo-
gies demonstrate that traditionally defined cell types need to be
refined by additional criteria, such as topological location along
principal axes, long-distance projection targets, and comprehen-
sive transcriptomes, and that these newly defined subpopulations
exhibit structural and functional differentiations, suggesting
subtype-specific connectivity (S.-H. Lee et al., 2014; Valero et al.,
2015; Danielson et al., 2016; Geiller et al., 2017). Despite the need
for a precise description of subpopulation-specific connectivity,
such information is not yet available at fine spatial scales.

Here, we contribute to this description with a comprehensive,
fine-scale mapping of the spatial synaptic profiles of the main
excitatory synaptic Schaffer collateral (SC) inputs onto dorsal
hippocampal CA1 inhibitory neurons, parvalbumin-positive in-
terneurons (PVs), as major target interneurons of SC inputs. To
achieve this goal, we used mammalian GFP reconstitution across
synaptic partners (mGRASP), as previously described (Feng et
al., 2012; J. Kim et al., 2012; Druckmann et al., 2014). We found a
broad range of spatial structure of synaptic connections onto
PVs, from structured to random, with significantly and sub-
stantially more PVs showing nearly random connectivity than
pyramidal cells (PCs). Interestingly, the selectivity of synaptic
connections onto PVs seems to be consistent with Peters’ rule,
opposite to that onto PCs. We next examined the sublayer spec-
ificity of the spatial structure of synaptic connections of PVs and
PCs and observed that deep PCs show more structured connec-
tivity than superficial PCs. However, little or no sublayer speci-
ficity in PVs was apparent. These results demonstrate that the
connectivity profiles of CA1 excitatory PCs and inhibitory PVs
innervated by the same SC inputs are fundamentally different.

Materials and Methods
Animals. The PV-Cre mouse line (B6;129P2-Pvalbtm1(cre)Arbr/J) was
purchased from the The Jackson Laboratory and was backcrossed with
C57BL/6J (The Jackson Laboratory) for �10 generations before use. All
experiments were conducted in accordance with protocols approved by
the Institutional Animal Care and Use Committee at the Korea Institute
of Science and Technology (approval number 2016-076) and the Na-
tional Institutes of Health guidelines for animal care and use.

mGRASP labeling and detection. Recombinant adeno-associated vi-
ruses (rAAVs) expressing mGRASP components were produced with
serotype 1 for the presynaptic mGRASP component (pre-mGRASP) and
serotype 7 for the postsynaptic mGRASP component (post-mGRASP) in

PVs as described previously (Feng et al., 2014). Post-mGRASP was trans-
duced specifically in PV-positive neurons using the PV-Cre mice line.

For contralateral PV neuron (contraPV) labeling, as previously de-
scribed (J. Kim et al., 2012; Druckmann et al., 2014), Cre-independent
pre-mGRASP (Pre, Addgene 34910, paavCAG-pre-mGRASP-mCerulean)
and Cre-dependent “switch on” post-mGRASP (JxON-post, Addgene
34913, paavCAG-Jx-rev-post-mGRASP-2A-dTomato) were injected
into the left CA3 and right CA1, respectively, in PV-Cre mice (P60 –P80).
For ipsilateral PV neuron (ipsiPV) labeling, to avoid double injection in
a single neuron, we injected Cre-dependent “switch off” pre-mGRASP
(JxOFF-pre, Addgene 51900) and JxON-post into the right CA3 and
CA1, respectively, in male PV-Cre mice. The stereotaxic coordinates of
CA1 were anteroposterior (AP) �2.0 mm, mediolateral (ML) �1.6 mm
relative to bregma, and dorsoventral (DV) 1.05–1.2 relative to the dura,
and those of CA3 were AP �2.06 mm, ML �2.4 and �2.625 mm, and
DV 1.95–2.15 mm for both contraPV and ipsiPV. Brain slices were pre-
pared and imaged with an LSM 780 confocal microscope (Zeiss), as
previously described (J. Kim et al., 2012; Druckmann et al., 2014; Feng et
al., 2014).

Fluorescent immunostaining and immunoelectron microscopy. To vali-
date post-mGRASP component expression, we injected PV-Cre mice
with JxON-post in CA1. Coronal brain slices (50�100 �m) were pre-
pared and stained, as previously described (Druckmann et al., 2014). The
following antibodies were used: rabbit anti-GFP (Invitrogen, 1:1000;
RRID:AB_221569); rabbit anti-DsRed (Clontech, 1:2000; RRID:
AB_10013483); mouse anti-PV (swant Biotechnologies, 1:2000; RRID:
AB_10000343); and AlexaFluor 488-, 555-, and 633-conjugated secondary
antibodies (Invitrogen, 1:300�500; RRID:AB_2534069, RRID:AB_141822,
RRID:AB_141431, respectively). The post-mGRASP distribution was
analyzed by calculating the correlation between the number of branch
voxels and the number of post-mGRASP-positive voxels, as in our pre-
vious study (Druckmann et al., 2014).

For electron microscopic immunohistochemistry, animals were
deeply anesthetized with sodium pentobarbital (80 mg/kg, i.p.) and per-
fused transcardially with heparinized normal saline (10 ml) followed by a
freshly prepared mixture (50 ml) of 4% paraformaldehyde and 0.05%
glutaraldehyde in 0.1 M phosphate buffer (PB), pH 7.4. The hippocampus
was removed and postfixed in the same fixative for 2 h at 4°C. Sagittal
sections were cut on a vibratome at 60 �m and were frozen on dry ice for
20 min and thawed in PBS (0.01 M, pH 7.2) to enhance penetration after
cryoprotection in 30% sucrose in PB overnight at 4°C. They were pre-
treated with 1% sodium borohydride for 30 min to quench glutaralde-
hyde and then blocked with 3% H2O2 for 10 min to suppress endogenous
peroxidases and with 10% normal donkey serum (Jackson ImmunoRe-
search; RRID:AB_2337254) for 30 min to mask secondary antibody
binding sites. The sections were incubated overnight in rabbit anti-GFP
(1:1000; A11122, Invitrogen, RRID:AB_221569) antibody, rinsed in PBS
for 15 min, and incubated with an ultrasmall gold-conjugated donkey
anti-rabbit (1:50; Electron Microscopy Sciences; RRID:AB_2629850) an-
tibody for 2 h. The sections were postfixed with 1% glutaraldehyde in PB
for 10 min, rinsed in PB several times, incubated for 4 min in HQ silver
enhancement solution (Nanoprobes), and rinsed in 0.1 M sodium acetate
and PB. Sections were further rinsed in PB, osmicated (in 0.5% osmium
tetroxide in PB) for 1 h, dehydrated in a graded ethanol series, flat em-
bedded in Durcupan ACM (Sigma) between strips of Aclar plastic film
and cured for 48 h at 60°C. Chips containing prominent staining for GFP
in the hippocampus were cut out of the wafers and glued onto blank resin
blocks with cyanoacrylate. The 60-�m-thick sections were further cut
with a diamond knife, collected on Formvar-coated single-slot nickel
grids, and stained with uranyl acetate and lead citrate. Grids were exam-
ined on a Hitachi H 7500 electron microscope at an accelerating voltage
of 80 kV. Images were captured with Digital Montage software driving a
cooled CCD camera (SC 1000; Gatan) attached to the microscope, and
the resulting data were saved as TIFF files.

Neuron reconstruction and synapse detection. Images were obtained
using the Zeiss Plan Apochromat 40� oil objective with a 1.3 numerical
aperture, 559 – 639 nm emission wavelength, and a 1.3 Airy unit pinhole;
neuronal morphologies were reconstructed with neuTube software
(Feng et al., 2015) and saved in SWC format, in which each dendritic
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branch was represented as a series of small, connected tubes with esti-
mated radii. On the basis of these settings and the calculated point-
spread-function of our images in the x–y place, the maximum possible
error in our diameter estimation is 0.12 �m (�1 pixel), which is reason-
ably small considering the range of dendritic diameters (0.3�2.7 �m)
reported in a previous EM study (Gulyás et al., 1999). We confirmed that
our measurements of the diameters of PV dendrites (range: 0.45�3.4
�m, depending on proximal/distal subclasses of dendrites) matched well
the range defined by the previous EM study. The surface area of each
dendritic branch was estimated by adding the surface areas of its constit-
uent tubes. Synaptic contacts were detected using the mGRASP detection
package (Feng et al., 2012, 2014). We manually proofread all recon-
structed neurons and all detected synapses for accuracy.

Layer segmentation and soma location. To identify hippocampal strata,
we binarized the blue channel of pre-mGRASP signals with a manually
selected threshold to isolate the foreground that contained stratum
oriens (SO) and stratum radiatum (SR), followed by additional image
processing, i.e., a morphological opening operation on the binary image
with a disk of manually determined size to separate SO and SR in case
they were not separated by the thresholding step. Then, we extracted the
masks of SO and SR from the binary image and collected the voxels on
their top and bottom borders, corresponding to the boundary voxels
between strata (e.g., voxels on the bottom border of the SO mask were the
boundary voxels between SO and SP). For each boundary, we used the
least absolute residual method from MATLAB to fit its boundary voxels
to a set of algebraic surfaces up to order 9. The surfaces that best matched
the boundaries between strata were manually selected to segment the
image into alveus (alv), SO, SR, stratum pyramidale (SP), and stratum
lacunosum-moleculare (SLM). For sublayer-specific pattern analyses, SP
was further equally divided into deep (close to SO) and superficial (close
to SR) sublayers. For PVs, given their characteristic soma positions near
but not actually in SP, the borders of the deep and superficial sublayers
were expanded by 15 �m. To determine the locations of somata in layers,
we drew a line perpendicular to the boundary between the segmented
deep and superficial sublayers passing through the soma center, and we
calculated the soma’s relative offset as the ratio of the distance between
the nearest dorsal boundary and the soma center (L1) to the distance
between the two nearest segmented (dorsal-ventral) boundaries (L2).
We subclassified neurons for subpopulation analysis on the basis of their
soma locations and excluded neurons whose soma centers were on the
borders of layers (within 2 �m) for all sublayer-specific analyses.

Laminar correction. neuTube-based reconstructed neurons, composed
of nodes along the dendritic structure, were overlaid on the segmented
layers, and their nodes in alv, SP, and SLM with few or no presynaptic
CA3 inputs were subtracted, a process we term laminar correction. For
branch-level analysis, branches broken by laminar correction were re-
constructed by joining their remaining dendritic parts. For PCs, as pre-
viously, we excluded the main trunks.

Branch-level connectivity analysis. After laminar correction, we calcu-
lated the average synaptic density for each neuron by dividing the total
number of synapses by the total surface area of the dendritic branches. In
the control model, the number of synapses is assumed to be proportional
to the postsynaptic dendritic surface area. The expected number of syn-
apses for a branch can be calculated as the product of its surface area and
the average synaptic density of the neuron of origin. In our previous
study (Druckmann et al., 2014), we used three statistical analyses to
determine the structure of branch-level connectivity: the fraction of non-
random branches (fraction of branches that have significantly higher or
lower numbers of synapses than expected); maximum z-score (maximal
difference between observed and expected number of synapses normal-
ized to the SD); and the R 2 value of linear regression between number of
synapses and branch surface area, which measures a neuron’s degree of
deviation from the control model. In this study, we mostly focused on the
R 2 value-based analysis, which, compared with previously applied meth-
ods to measure branch-level structure of synaptic connectivity, is espe-
cially robust against changes in the numbers of synapses and dendritic
branches (see Fig. 4B). Given the fidelity of R 2, we divided neurons into
three types of structure of branch-level connectivity based on their R 2

values, i.e., highly structured (R 2 ranging from 0 to 0.33), moderately

structured (R 2 ranging from 0.33 to 0.66), and nearly random (R 2 rang-
ing from 0.66 to 1).

Clustering analysis. For intra-branch-level analysis, we examined the
distributions of synapse locations rather than intersynaptic distances as
previously performed (Druckmann et al., 2014). Given the hypothesis
that the occurrences of synapses on a branch follow a random Poisson
process, the relative locations of synapses given by the fractional surface
area distance along the entire dendritic branch (0 –1) should follow a
uniform distribution. For each synapse, we calculated the relative loca-
tion on the branch by dividing the surface area between the start of the
branch and the synapse location by the surface area of the whole branch.
This yielded a collection of relative synapse locations for each branch,
which should follow a uniform distribution in the interval (0,1) if the null
hypothesis is true. We compared this collection for each branch with the
uniform distribution using the Anderson–Darling test (Anderson and
Darling, 1954). Having corrected for multiple comparisons, we collected
all branches that significantly deviated from this distribution and calcu-
lated the fraction of significantly clustered branches for each neuron. To
further analyze the clustering pattern of each cell group, we divided
clustered branches into three types: those with a significantly greater
number of synapses on the proximal half (proximal), those with a signif-
icantly greater number of synapses on the distal half (distal), and those
showing equal probabilities on both halves (balanced). Then, a frequency
distribution of clustering types was calculated for each cell group.

Peters’ rule analysis. To test Peters’ rule, which has been proposed to
describe synapse density in proportion to the postsynaptic dendritic sur-
face area and nearby presynaptic axonal density, we determined the pre-
synaptic axonal density by measuring the average intensity of blue signals
of pre-mGRASP proximal to dendrites (within the dendritic radius plus
�2.5 �m for PCs and �1.0 �m for aspiny PVs). Measuring axonal
density and the number of synapses within 3�4 extended radial shells
from the dendritic radius, we found no qualitative differences in out-
come. Given prior EM-based anatomical knowledge that the size of SC
axons innervating CA1 is consistent (0.2 � 0.06 �m) with very small
variation compared with variations in the dendrite diameter (ranging
from 0.3 to 2.7 �m) of CA1 PCs and PVs depending on subclasses of
dendrites (such as distal and proximal dendrites) of each laminar stratum
(Gulyás et al., 1999; Megías et al., 2001; Mishchenko et al., 2010), we
focused on the dendritic surface area for our analyses. We performed the
same connectivity analyses accounting for Peters’ rule, as previously de-
scribed (Druckmann et al., 2014).

Statistics. All statistical tests are described in the main text or corre-
sponding figure legends. For all statistical tests, mice and their brain
sections containing traceable neurons and detectable mGRASP signals
with infection and image quality, as defined by Feng et al. (2014), were
randomly assigned to experimental groups. The modified signed log-
likelihood ratio test (MSLRT) for equality of coefficients of variation
(CVs; Krishnamoorthy and M. Lee, 2014) was used to compare the CVs
of synaptic density between cell groups. The exact binomial test was used
to determine whether the observed synapse numbers of neighboring
neurons deviated significantly from the values expected under the as-
sumption of equal synapse density. Normality was tested by the Shapiro–
Wilk test at a significance level of 0.05. To compare the means between
groups, we used Welch’s t tests if all groups were normally distributed;
otherwise, we used the permutation test with 100,000 permutations.
Similarly, to compare means between related groups (e.g., between the
dendritic-surface-only random model and Peters’ rule), we used paired t
tests if the differences between pairs were normally distributed; other-
wise, we used the paired permutation test with 100,000 permutations.
The Conover–Iman test (Conover and Iman, 1978) was used to compare
the scale differences between groups. Fisher’s exact test was used to com-
pare the frequency distributions of structure types and clustering types
between groups. Correlation between axonal and synaptic density was
tested by Pearson’s correlation test. The Benjamini–Hochberg procedure
(Benjamini and Hochberg, 1995) was used to correct for multiple com-
parisons. All data analyses were performed with custom scripts written in
MATLAB (RRID:SCR_001622) and R (RRID:SCR_001905).
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Results
Moderate cellular-level variability in synaptic connectivity of
SCs on CA1 PVs
Our previous finding that synaptic connectivity of PCs in CA1 is not
randomly but selectively organized (Druckmann et al., 2014) led to
the question of whether hippocampal interneurons are selectively or
randomly innervated by the same SC inputs at the level of individual
dendritic branches, at specific subbranch sites, and at the cellular
level (Fig. 1A). To examine synaptic connections between a broad
presynaptic population of CA3 excitatory neurons and individual
postsynaptic CA1 PVs, we contralaterally introduced an rAAV
expressing pre-mGRASP into CA3 and another expressing
Cre-switchable post-mGRASP into CA1 of the PV-Cre mouse
line, as in our previous study (Fig. 1B,C). To further examine con-
nections from ipsilateral inputs, we injected Cre-dependent
OFF/ON switchable pre- and post-mGRASP rAAV into CA3 and
CA1, respectively, of the same hemisphere. Synapses detected by
mGRASP were evident throughout the dendrites of PV neurons
(Figure 1C and Movie 1.) Except, as expected, for the dendrites in
the alv, SP, and SLM, all of which lack SC inputs. To verify that
the post-mGRASP component was correctly expressed in the
postsynaptic compartments of PVs, we used immunofluores-
cence staining and immunogold EM labeling with a GFP anti-
body recognizing the split GFP 1–10 of post-mGRASP. We found
that most of the post-mGRASP-labeled cells were PVs (Fig. 1D),
and its expression in the PVs was tightly restricted to postsynaptic
compartments, whereas no axonal expression was detected in SP

of CA1 (Fig. 1E), consistent with results
previously obtained in CA1 PCs.

We next determined the morphologies
of individual postsynaptic CA1 PVs and
their synapses with ipsiPV and contraPV
presynaptic CA3 inputs. For this purpose,
we used neuTube-assisted tracing and
mGRASP image analysis techniques, as
previously described (Fig. 2A,B; 103 con-
traPVs from 10 mice and 61 ipsiPVs from
4 mice). We analyzed the distribution of
synapses in contraPV and ipsiPV datasets
to test for random versus structured syn-
aptic connectivity, and we compared the
results with those we previously obtained
for CA1 PCs (n � 32). We found some-
what lower neuron-to-neuron variability
in synaptic density]number of synapses
per dendritic surface area (#/�m 2)[ for
contraPV and ipsiPV than for PC (CV of
synaptic density: 0.608 in contraPV, 0.609
in ipsiPV, and 1.03 in PC; pcontraPV-ipsiPV �
0.93, pcontraPV-PC � 0.015, pipsiPV-PC �
0.028, MSLRT for equality of CVs; Fig.
2C). This variability was not due to differ-
ences between animals, as even neighbor-
ing neurons in the same animal varied
considerably in synaptic density (Fig. 2D).
In addition, along the anterior–posterior
and medial–lateral axes, we found no to-
pological differences in the synaptic den-
sity of PV neurons (Wilcoxon rank sum
test; Fig. 2E), as opposed to moderate dif-
ferences for PCs, as previously shown. In
summary, we found that the SCs inner-
vate the CA1 PVs non-uniformly, with

less variability at the cellular level than in CA1 PCs.

Synapse distribution patterns of PVs at the branch level
Next, we examined the spatial structure of synaptic connections
among the different dendrites within single PVs. We had previ-
ously performed this type of analysis at the branch level in CA1
PCs. However, it became clear that we would need to adjust our
previous approach in PVs, given the heterogeneity of their soma
locations and the extended reach of PV branches through hip-
pocampal strata. These extended branches in the alv and SP in-
cluded abundant dendritic surface area in regions where no SC
fibers exist, making it challenging to analyze the spatial structure
at the branch level (Fig. 3A–D). Somata of labeled PVs expressing
post-mGRASP were detected mainly in pyramidal basket cells in
SP (n � 135, �82%) and less frequently in the SO (n � 22), and
SR (n � 7; Fig. 3B).

A considerable fraction of the dendritic surface area of these
post-mGRASP-expressing PVs was located in alv, SP, and SLM,
in which little or no synaptic contacts from SC inputs were de-
tected. This caused the formation of contact-free spaces along
continuous dendrites (Fig. 3C), which our analysis could misin-
terpret as evidence for structured connectivity at the branch level.
Therefore, to analyze branch-level connectivity more accurately,
we first delineated hippocampal strata on the basis of SC inputs
measured by presynaptic blue fluorescence signals, and we then
subtracted the branch portions in alv, SP, and SLM from the three
data groups (ipsiPVs, contraPVs, and PCs), a process we term

Figure 1. Structured synaptic connectivity patterns and expression of post-mGRASP in PVs. A, Structured versus random
synaptic connectivity patterns at the cellular and (inter-)branch levels. B, Schematic illustration of circuits in hippocampal CA1
excitatory PCs and inhibitory PVs innervated by SCs. C, Strategy to label synapses on CA1 PVs innervated by SC inputs with mGRASP
and example fluorescent image showing green reconstituted mGRASP signals at sites where dense CA3 blue axons expressing
mCerulean-conjugated pre-mGRASP intersect with CA1 PV red dendrites coexpressing post-mGRASP and dTomato (left). The
high-magnification image indicated by the dashed box (left) shows the discrete puncta of reconstituted mGRASP signals (right). D,
All post-mGRASP-labeled cells coexpressing dTomato, marked by numbers, are PV� neurons, as verified by fluorescence immu-
nostaining with an antibody against parvalbumin. Approximately 97% of post-mGRASP-labeled cells were PV� (n � 65 PVs). E,
Top, Postsynaptic distribution of post-mGRASP in PVs was confirmed by fluorescence immunostaining. Surface post-mGRASP
(visualized by anti-GFP) was expressed predominantly in postsynaptic compartments, with no detectable expression in axons of
PVs in SP (visualized by coexpressed cytosolic dTomato signals; arrow). Most of the post-mGRASP-expressing cells were PV�.
Bottom, An EM image shows that post-mGRASP (arrows) was specifically detected in the postsynaptic density of PVs (asterisks) in
PV-Cre mice infected with Cre-dependent post-mGRASP AAV; uninfected control PV-Cre mice show no immune signal.
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laminar correction (Fig. 3D; see Materials and Methods). On the
basis of these strata, we mapped each PC and PV neuron to allow
further sublayer-specific branch-level analysis of synaptic con-
nectivity (see Figs. 5 and 7).

After laminar correction, we analyzed the variability in the
synaptic density of individual branches of a given PV neuron by
comparing the measured synapse numbers with those expected
by the random null model, i.e., the number of synapses that would be
predicted by a Poisson process with a fixed density per unit branch
area (Tab. 3-1 available at https://doi.org/10.1523/JNEUROSCI.
0155-18.2018.t3-1), as previously described (Druckmann et al.,
2014). We differentiated random from structured connectivity
by correlating (R 2) the number of synapses measured across
branches in PV neurons and the number of synapses predicted by
the random null model; thus, high correlations reflect random
connectivity, and low correlations reflect more structured con-
nectivity. As in our previous study of structured synaptic connec-
tivity at the branch level between CA3-CA1 PCs, we found
various degrees of correlation (R 2), reflecting connectivity rang-
ing from random to structured (Fig. 3E). We confirmed that the
variability in the number of synapses on different dendrites was
not driven by viability in dendritic expression of post-mGRASP
(Fig. 3F).

Differential branch-level synaptic connectivity patterns
between PCs and PVs
We extended our analysis to the population level, comparing the
match between synapse numbers from the random null model and
from our measurements across the three data groups (ipsiPVs, con-
traPVs, and PCs). Interestingly, we observed that the range of struc-
ture in synaptic connectivity (structured to random) in PVs
was substantially broader, with more neurons showing nearly
random connections, than that in PCs [ipsiPV: R 2 range
0.022�0.958, average (avg)R 2 � 0.506 � 0.0286; contraPV: R 2

range 0.00007�0.901, avgR 2 � 0.361 � 0.0231; and PC: R 2 range
0.005�0.686, avgR 2 � 0.259 � 0.0309; pcontraPV-ipsiPV � 0.00024,
pcontraPV-PC � 0.025, pipsiPV-PC 	 0, permutation test; Fig. 4A].
Furthermore, we divided PVs and PCs into three groups (highly
structured, moderately structured, and nearly random) on the
basis of R 2, given the robustness of R 2 for measuring the branch-
level structure of synapse distribution (Fig. 4B; see Materials and
Methods), and we found that more PVs than PCs exhibited
nearly random connectivity (ipsiPV: 27.9%, contraPV: 11.7%,

and PC: 3.13%; Fig. 4A). These results indicate that the degree of
branch-level structure of synaptic connectivity onto PVs is
broader and more random than onto PCs. No relationship be-
tween topographic location and degree of branch-level structure
was obvious (Fig. 4C).

We further examined the degree of synapse clustering within a
single dendrite for intra-branch-level structure in connectivity
between PVs and PCs (Figs. 4D, 1A). Interestingly, we found that
PVs exhibit higher average degrees of clustering than PCs (ipsiPV:
33.8%, contraPV: 26.8%, and PC: 15.1% fraction of clustered
branches, pcontraPV-ipsiPV � 0.027, pcontraPV-PC � 0.0055, pipsiPV-PC 	
0, permutation test). Further, a previous EM study has shown that
synapses on PVs were concentrated in the perisomatic region
(Gulyás et al., 1999). Thus, we tested perisomatic synapse distri-
bution in our data, and found that clustering in PVs appears
consistent with that observed in the EM study (Fig. 4D). No relation-
ship was found between topographic location and branch-level se-
lectivity with degree of clustering (Spearman’s rank correlation test).
These results clearly demonstrate differential branch-level synaptic
connectivity between CA1 excitatory and inhibitory neurons inner-
vated by the same presynaptic projections, the SCs.

Sublayer-specific patterns of synaptic connectivity innervated
by SCs
Even within a particular cell-type population, recent studies have
demonstrated layer- and sublayer-specific structural and func-
tional differences as commonly classified by morphology, elec-
trophysiological properties, and/or genetic identity (S.-H. Lee et
al., 2014; Valero et al., 2015; Danielson et al., 2016; Geiller et al.,
2017). To examine these differences, we subdivided PVs and PCs
on the basis of their soma location along commonly described
CA1 layers, including SO, SP and SR, as well as deep (soma lo-
cated close to SO) and superficial (soma located close to SR)
sublayers of SP (Fig. 5A; see Materials and Methods). We then
focused on sublayer-specific patterns of synaptic connectivity
and synaptic density in these deep and superficial subpopulations
of PVs and PCs at the branch level (Fig. 5B,C). Most PVs (82.3%)
were in SP, and most synapses showed nearly random connectiv-
ity appeared to originate from PVs. On the other hand, PVs in SO
and SR appeared to follow more structured patterns (Fig. 5B).
This trend was comparable between contraPVs and ipsiPVs. Ad-
ditionally, we observed slightly distinct synaptic connectivity pat-
terns between the deep (d) and superficial (s) sublayers in
contraPVs [dR 2 � 0.33 � 0.035 (n � 35), range 0.00007�0.68,
and sR 2 � 0.45 � 0.039 (n � 36), range 0.048 – 0.90, p � 0.028,
Welch’s t test] but not in ipsiPVs [dR 2 � 0.53 � 0.044 (n � 18),
range 0.17�0.80, and sR 2 � 0.54 � 0.037 (n � 27), range
0.28�0.91, p � 0.77, Welch’s t test].

Notably, in CA1 PCs along the deep-superficial axis (dPCs
and sPCs), we observed a significantly wider range of deviation
(R 2) and synapse density in the sPCs than in the dPCs [R 2 of
dPCs � 0.15 � 0.03 (n � 6), range 0.014�0.22, and synaptic
density of dPCs � 0.036 � 0.0097, ranged 0.012�0.072; R 2 of
sPCs � 0.29 � 0.041 (n � 22), range 0.0052�0.69, and synaptic
density of sPCs � 0.083 � 0.019, range 0.0074�0.30; p � 0.028
(R 2), p � 0.0095 (synapse density), Conover–Iman scale test; Fig.
5B,C]. The sublayer-specific connectivity differences between
dPCs and sPCs became more obvious when they were divided
into three groups (highly structured, moderately structured, and
nearly random) as in Figure 4A. All the dPCs were categorized as
highly structured, whereas sPCs were spread across the three
groups, with 59, 36, and 5%, respectively (Fig. 5D). In summary,
the cell-type-specific general patterns of synaptic connectivity

Movie 1. This extended data movie supports Figure 1. Confocal
z-stack images show that discrete puncta of reconstituted mGRASP flu-
orescence are visible along dTomato-labeled dendrites of CA1 excitatory
PCs (left) and inhibitory PVs (right) in locations where blue CA3 axons
and red CA1 dendrites intersect.
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(random to structured, mean of R 2 of ipsiPVs � contraPVs �
PCs; Fig. 4A) were consistent in each sublayer, yet, interestingly,
dPCs clearly showed more structured synaptic connectivity from
SCs at the branch level than sPCs did, whereas PVs showed little
or moderate sublayer specificity. The sublayer-specific differ-
ences in organization of CA3 afferent connectivity support the
idea that distinct functional domains exist along radial axis of the
hippocampus.

Opposite effects of Peters’ rule on the structure of synaptic
connectivity in CA1 PCs and PVs
Thus far, we have considered only the amount of dendritic sur-
face area as a predictor for synapse number, setting aside the
presynaptic axonal density. We previously demonstrated that ax-
onal density contributed little to explaining the branch-level vari-
ability we observed in synaptic connectivity between CA3 and
CA1 PCs (Druckmann et al., 2014). We compared Peters’ rule
predictions with the numbers of synapses observed (Fig. 6A); in
PVs, as predicted by Peters’ rule, we observed a significant posi-
tive linear correlation between axonal and synapse density,
whereas in PCs, we observed a strong disagreement with Peters’
rule predictions (contraPV: 44 significant of 103, population cor-
relation 0.18, p 	 0; ipsiPV: 43 significant of 61, population cor-
relation 0.49, p 	 0; PC: 1 significant of 32, population
correlation 0.011, p � 0.32, Pearson’s correlation test). Interest-

ingly, when comparing the contribution of axonal density to ex-
plaining variability in the synaptic structure of PCs and PVs
innervated by SCs, we observed the opposite effects (Fig. 6B–E).
As in our previous study, including axonal density in our model
actually worsened the match between modeled and measured
synapse numbers in PCs (54% decrease of average of R 2 in PCs,
p 	 0, paired permutation test) but improved the match in PVs
(6% increase in contraPVs, p � 0.027; 12% increase in ipsiPVs,
p � 0.00007; paired permutation test; Fig. 6B). These cell-type-
specific opposite effects of incorporating axonal density appeared
in sublayers and layers (Fig. 6C). Consistently, additional analy-
ses of the fraction of clustered branches and the maximal devia-
tion from random Poisson distributions also confirmed that
synaptic connectivity follows different rules in PCs and PVs (Fig.
6D,E).

After assumptions based on Peters’ rule were incorporated
into our model, sublayer specificity was maintained only between
dPCs and sPCs (Fig. 7A,B). On the population level, after Peters’
rule was incorporated, most PCs showed highly structured con-
nectivity, as opposed to the nearly random connectivity of the
PVs (Fig. 7C). Together, these results demonstrate that the spatial
organization of PC connectivity is more structured, whereas that
of PVs is more random. These results demonstrate that the syn-
aptic connectivity of CA1 PVs innervated by SCs, which is close to
random, seems to be consistent with Peters’ rule, whereas that of

Figure 2. Moderate cellular-level variability in synaptic connectivity of SCs onto CA1 PVs. A, Left, An example fluorescent image shows CA1 PVs coexpressing post-mGRASP and dTomato (white)
along with dense contralateral CA3 projections expressing mCerulean-conjugated pre-mGRASP (blue). Middle, An example PV dendrite showing discrete reconstituted mGRASP signals (green
puncta) in sites where dense CA3 axons (blue) intersect with a PV dendrite (red). Right, Reconstruction of this dendrite with annotated synapses. B, All reconstructed neurons (contraPVs, blue;
ipsiPVs, cyan; PCs, red) and detected synapses (green dots) registered to the Allen Brain Atlas 3D hippocampus mesh. C, The sorted bar plot shows variations in synapse density per neuron across the
population [contraPV: 0.062 � 0.038 (mean � SD) synapse/�m 2, range 0.0034 – 0.15; ipsiPV: 0.092 � 0.056 synapse/�m 2, range 0.0075– 0.22]. Overlaid gray lines indicate numbers of
synapses (contraPV: 357 � 244 per neuron, range 24�959; ipsiPV: 451 � 312, range 29�1333), and insets show the surface area of each neuron (contraPV: 5768 � 1895 �m 2, range
2526�10,354; ipsiPV: 4843 � 1539 �m 2, range 1775�9191). The degree of neuron-to-neuron variability in synaptic density, measured by CV of PVs is significantly lower than that of PCs
(MSLRTcontraPV-ipsiPV � 0.0069, pcontraPV-ipsiPV � 0.93, MSLRTcontraPV-PC � 5.97, pcontraPV-PC � 0.015, MSLRTipsiPV-PC � 4.86, pipsiPV-PC � 0.028, MSLRT for equality of CVs). The cellular-level PC data
are from a previous study (Druckmann et al., 2014). D, A comparison of synapse density of nearest-neighbor pairs in a single contraPV animal shows variable synaptic density. ***p 
 0.001,
****p 
 0.0001, exact binomial test. Inset, An example pair of reconstructed PVs marked 1 and 2, along with their synapses (green dots). E, A scatter plot of synapse density versus spatial location
of PVs shows no topological pattern along the AP or the ML axis. Dots in different colors indicate individual PVs from different animals (binned from 100-�m-thick sections of contraPVs and ipsiPVs).
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Figure 3. Laminar correction and the synapse distribution patterns of PVs at the dendritic branch level. A, Representative PCs and PVs with schematic broad CA3 inputs (blue) showing their soma
locations and extended dendrites throughout hippocampal CA1 strata. B, The majority of post-mGRASP-expressing PVs (red) innervated by dense pre-mGRASP-expressing CA3 axons of neurons
(blue) are detected in SP. C, Example reconstructed PV with detected synapses (green puncta) and zoomed-in view with overlaid fluorescent image (PV dendrites, red; CA3 axons, blue; mGRASP,
green), requiring laminar correction because of the contact-free spaces along continuous dendrites. D, Laminar correction was performed on the basis of blue SC axonal signal on red PVs from
fluorescent images (left). Layers are segmented, and branch portions in alv, SP, and SLM (shown in green) are determined for targets of laminar correction. The red portions of dendrites were used
for further analyses (middle). A summary of the fraction of subtracted surface (FoS) by laminar correction shows significantly higher FoS in PVs than in PCs. Each dot represents an individual neuron,
and lines indicate the mean � SEM of each cell group. ****p 
 0.0001, Welch’s t test (right). E, Example PVs exhibiting highly structured, moderately structured, and nearly random synaptic
distribution of PVs at the branch level. Left, Scatter plots show the number of synapses on each dendritic branch sorted by surface area, whereas overlaid red lines indicate the number of synapses
expected from a random null model; light red regions and gray regions indicate �1 SD and the 95% confidence interval of the expected number of synapses, respectively. Inset, Corresponding
reconstructed PVs with detected synapses (green). Right, Scatter plots show the relationship between number of synapses expected in the random null model and actual number of synapses.
Branch-level connectivity patterns of individual PVs are shown in Extended Table 3-1 available at https://doi.org/10.1523/JNEUROSCI.0155-18.2018.t3-1. F, The small degree of variation in the
expression of post-mGRASP along PVs branch by branch was confirmed by immunostaining with anti-GFP (left) and the relationship between the numbers of branch voxels and the numbers of
post-mGRASP voxels (branches from 11 cells of 2 mice, Spearman’s � � 0.84, p � 3.4 � 10 �48; right). Inset, A color map of the intensity of post-mGRASP in the three reconstructed PVs.
Additionally, the lack of detectable expression in axons of PVs in SP visualized by coexpressed cytosolic dTomato signals (arrow) supports predominantly postsynaptic expression.
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CA1 PCs shows an elevated degree of selectivity with sublayer
specificity, inconsistent with Peters’ rule.

Discussion
Neural circuits are the substrate for information processing.
Their dynamics are governed by a complex interplay between
input activity and the responses of excitatory and inhibitory neu-
rons. Thus, the organization of patterns of synaptic connectivity
is an important determinant of the dynamics, and hence, the
function of circuits. We mapped the fine structure of connectivity
in hippocampal CA1 excitatory and inhibitory neurons inner-
vated by SCs using mGRASP. We found that the connectivity
profiles of CA1 excitatory PCs and inhibitory PVs innervated by
the same SC inputs are fundamentally different, following differ-
ent connectivity rules: the synaptic connectivity profile between
hippocampal CA3 and CA1 PCs strongly deviated from random-
ness, contrary to Peters’ rule, whereas PVs showed more random
connectivity, consistent with Peters’ rule. In addition, deep ver-
sus superficial sublayer specificity of the structure of connectivity
was found only PCs, with little or none in PVs.

The difference between the degree of structure in principal
neurons and interneurons is consistent with results from concep-
tual models of neural processing (Maass, 2000; Douglas and Mar-
tin, 2004). In many such models, principal neurons act as
sophisticated pattern detectors that are sensitive to specific cor-
relations in their input and relay this information downstream.
Such a mode of operation works especially well when the input is
structured into specific branches and when nonlinear branch-
level processing can amplify or suppress responses (Polsky et al.,
2004). It is generally thought that interneurons, by contrast, act
more generally to sharpen responses, as in winner-take-all circuit
computations in which strongly activated neurons broadly sup-
press the responses of other neurons, yielding a simpler and more
specific population response pattern (Maass, 2000; Douglas and
Martin, 2004). To perform such an operation, interneurons do
not require any specific spatial input structure. Similar argu-
ments can be made for temporal structures, as when a barrage of
input to principal neurons is followed by activation of inhibitory
interneurons to sharpen the response in time. Here again, the

Figure 4. Comparison of synapse distribution patterns between PVs and PCs at the dendritic branch and intra-branch levels. A, Structured versus random synaptic connectivity at the branch level
in PVs and PCs. A summary of the extent of correlation between the measured and expected distributions of synapse numbers across branches (R 2) indicates differential ranges of branch-level
synaptic connectivity of PCs and PVs. Each dot represents an individual neuron, and lines indicate the mean � SEM of each cell group. *p 
 0.05, ***p 
 0.001, ****p 
 0.0001, permutation test
(left). Bar plots show the percentages of highly structured, moderately structured, and nearly random neurons, defined by R 2 value. ****p 
 0.0001, Fisher’s exact test (right). B, Robustness of R 2

against changes in the number of synapse (left) and dendrites (right) of the representative neurons for highly structured, moderately structured, and nearly random connectivity patterns, shown in
Figure 3E. The lack of substantial change in R 2 with random removal of synapses and dendrites demonstrates the fidelity of R 2-based branch level analysis compared with that of other methods of
evaluating branch-level structure, such as fraction of nonrandom dendrites (triangle marker) and maximum z-score (square marker). Because of their extremely small size, the error bars (SEM) are
hardly visible. C, No clear relationship between degree of branch-level synaptic structure and topographic location in PVs. Neurons were classified as highly structured, moderately structured, or
nearly random according to R 2 value and are shown in scatter plots of their synapse density and spatial location. D, A summary of the fractions of clustered branches for the three cell groups shows
higher average degrees of clustering on PVs than on PCs. Each dot represents an individual neuron, and lines indicate the mean � SEM of each cell group. *p 
 0.05, **p 
 0.01, ****p 
 0.0001,
permutation test (left). Stacked bar plots show the percentage of branches in each of the three clustering branch types (balanced, distal, and proximal clustering branches) for the three cell groups.
**p 
 0.01, ***p 
 0.001, ****p 
 0.0001, Fisher’s exact test (right).

Kwon, Feng et al. • Different Synapse Connectivity Rules in Excitatory and Inhibitory Neurons J. Neurosci., May 30, 2018 • 38(22):5140 –5152 • 5147



inhibitory response—and, hence, perhaps the spatial structure of
its input—need not be specific. However, in reality, complex
networks governed by the interplay of inhibition and excitation
are more complicated (S.-H. Lee et al., 2014; Cembrowski et al.,
2016).

Further, it is becoming clear that traditional cell-type classifi-
cation based on morphology, electrophysiological properties,
and/or genetic identity is insufficient to encompass all meaning-
ful variations among neurons. Additional criteria are needed,
such as topological location along principal axes, long-distance

projection targets, and comprehensive transcriptomes (S.-H. Lee
et al., 2014; Cembrowski et al., 2016). Using new criteria such as
these to subdivide traditionally defined populations of cell types
reveals striking structural and functional specializations, appar-
ently organized by cell-subtype-specific connectivity (S.-H. Lee et
al., 2014; Valero et al., 2015; Danielson et al., 2016; Geiller et al.,
2017). In fact, a recent study clearly demonstrated that hip-
pocampal CA1 PVs can receive highly selective inputs from sub-
populations of CA1 PCs, i.e., superficial/deep, at the cellular level
(S.-H. Lee et al., 2014; Cembrowski et al., 2016). This might seem

Figure 5. Sublayer-specific patterns of synaptic connectivity at the branch level. A, Top, An example fluorescent image of mGRASP-expressing PVs (red) and SC axonal inputs (blue) shows two
different subgroups of PVs defined by somata in different hippocampal strata, in this case SO and superficial sublayer of SP, marked 1 and 2, respectively. Bottom, Deep and superficial neurons are
distinguished by the ratio of L1 to L2, which measures the relative offset of the soma once layers are segmented on the basis of axonal signals (Fig. 3D). The blue dashed line is drawn to pass through
the center of the soma, perpendicular to the boundary between the deep and superficial sublayers. L1 is the distance between the nearest dorsal boundary from the soma and the center of the soma
along the blue dashed line, and L2 is the distance between the two nearest boundaries along the blue dashed line. B, Scatter plots (left) show the branch-level structure of connectivity (R 2 value)
of each neuron located in the hippocampal strata. Each dot represents an individual neuron. Soma location was determined by relative offset as described in A and in Materials and Methods. A
summary of R 2 values of individual neurons subclassified by layer and sublayer populations (right). Significant differences in the means and/or scales of R 2 values between deep and superficial
subpopulations were observed in PCs and contraPVs but not in ipsiPVs. *p 
 0.05, Welch’s t test for mean; red �p 
 0.05, Conover–Iman scale test for scale; n.s., not significant (right). C, Scatter
plots of the synaptic density of each neuron in the hippocampal strata. Significant differences in means or scales of synaptic density between deep and superficial subpopulations were observed in
PCs and ipsiPVs but not in contraPVs. *p 
 0.05, permutation test for mean; red ��p 
 0.01, Conover–Iman scale test for scale; n.s., not significant. D, For subpopulations of PCs and PVs in deep
and superficial sublayers, a summary of degrees of correlation (R 2) between the measured and expected distribution of synapse numbers across branches. **p 
 0.01, ****p 
 0.0001, Welch’s t
test for mean; red �p
0.05, Conover–Iman scale test for scale) and stacked bar plots of the percentages of highly structured, moderately structured, and nearly random neurons as defined by their
R 2 values.
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to contradict our finding that the connectivity of CA1 PVs inner-
vated by CA3 PCs is more random. A possible straightforward
explanation might be that feedforward- and feedback-related in-
puts follow different connectivity profiles onto CA1 PVs. How-
ever, in our view, our results are not necessarily inconsistent with
previous studies showing selective excitatory inputs on PVs, as
our assertion of more random connectivity patterns on CA1 PVs
is at the branch level and relative to CA1 PCs innervated from the
same SC inputs. In fact, we found neuron-to-neuron variability
in the synaptic connectivity of SCs on CA1 PVs at the cellular
level (Figs. 2C, 5C).

In this study, we confirmed that potential experimental and
biological variability does not affect our conclusions. First, we
compared synaptic densities between neighboring neurons
(within �100 �m) in the same animal. This analysis still revealed
considerable neuron-to-neuron variability (Fig. 2D; and in our
previous study Druckmann et al., 2014, Fig. 1E). Further, we
compared clustering analyses in the same animal and found no
obvious difference in the fraction of clustered branches (0.273 �

0.032, n � 27, range 0�0.67 of one PV mouse compared with
binned PVs, 0.268 � 0.020, n � 103, range 0�1; Fig. 4D). These
sets of measurement rule out topographical and animal-to-
animal differences as sole sources of cellular level variability. Sec-
ond, our branch-level analyses were designed specifically to test
for random or structured connectivity by measuring variability in
synapses from branch to branch “within a single neuron”. Third,
we specifically analyzed dendritic expression of post-mGRASP
components and found no clear variability in their branch-by-
branch expression (Fig. 3F). In addition, we note that, since pre-
mGRASP tagged with mCerulean has been shown to be expressed
mainly in axons, we performed immunostaining using anti-GFP
that recognizes GFP variants like CFPs to visualize broad CA3
expression after mGRASPing. We did not observe any significant
variations in the expression of pre-mGRASP component. There-
fore, we can rule out the potential concern that experimental and
biological variability might affect our conclusions of synaptic
connectivity patterns.

Figure 6. Results opposite to Peters’ rule predictions on the structure of synaptic connectivity in PCs and PVs. A, The population-level relation of Peters’ rule prediction to synapse number shows
a close-to-control pattern for PVs and a highly structured pattern for PCs. The color plot shows each branch as a dot whose color corresponds to the number of synapses according to the branch surface
area and the axonal density for real data (top) and for a control model in which synapse number was generated according to Peters’ rule (bottom) as previously shown. The PC data were collected
in our previous study (Druckmann et al., 2014) and refined with laminar correction. B, Paired dot plots of the R 2 value of a dendritic (den)-surface-only random model and a Peters’ rule model
(dendritic surface � axonal density) show opposite changes in mean R 2 values between PCs and PVs (a decrease in PCs and an increase in PVs). Dots represent individual neurons, and each line
indicates a paired comparison within a neuron across models. *p 
 0.05, ****p 
 0.0001, paired permutation test. C, Dot plots show changes in R 2 values with Peters’ rule for individual neurons
subclassified into layer and sublayer populations: solid line, mean R 2 with Peters’ rule; overlaid dashed lines, mean R 2 with dendritic-surface-only random model. Dots represent individual neurons.
The magnitudes and directions of R 2 shifts from the dendritic-surface-only random model to Peters’ rule in each sublayer and layer for three cell groups are shown as colored arrows. **p 
 0.01,
****p 
 0.0001, paired permutation test. D, Paired dot plots of the fraction of clustered branches of the dendritic-surface-only random model and Peters’ rule show opposite changes in the average
degree of clustering between PCs and PVs (an increase in PCs and a decrease in PVs). Each dot represents individual neurons, and each line indicates paired comparisons within a neuron across
models. ****p 
 0.0001, paired permutation test. E, Summary of opposite changes in the maximum z-score with Peters’ rule. Each dot represents an individual neuron, and solid lines indicate the
mean � SEM of the maximum z-score with Peters’ rule, whereas dashed lines indicate the mean � SEM of maximum z-score with the dendritic-surface-only random model.
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We provided a detailed description of PV connectivity at the
level of individual dendritic branches, analyzing differences be-
tween PVs and PCs. Using a PV-Cre mouse line to determine the
molecular identities of the neurons did not allow us to distinguish
distinct types of PVs such as basket cells, bistratified cells, and
axoaxonic cells, but we were able to confidently divide PVs into
groups according to the locations of their somata throughout
hippocampal strata (Figs. 5, 7). We also focused mainly on PVs
detected in SP (�83%). To extend this analysis, subclassified
connectivity mapping of distinct subpopulations of PVs will need
to be further defined with new combinations of molecular labels
and other measures of cell properties.

Interestingly, we observed that ipsiPVs and contraPVs exhibit
slightly different connectivity patterns, namely, that synaptic
connectivity of ipsiPVs from SCs at the branch level is more
random (Figs. 4, 7). In general, similar connection patterns in
ipsiPVs and contraPVs are expected, but this concept need to be
tested. A previous study performed a quantitative input mapping
to hippocampal CA1 neurons including PCs and PVs through
Cre-dependent rabies virus tracing (Sun et al., 2014) and found
that CA1 PVs receive unequal inputs from ipsilateral and con-
tralateral CA3 PCs, suggesting differential patterns of circuit con-

nectivity within the two hemispheres. At this stage, we cannot
exclude the possibility that differences between ipsiPVs and con-
traPVs reflect variations in viral injections to presynaptic inputs
in bilateral CA3. Nonetheless, it is true that ipsiPVs and con-
traPVs share general connectivity rules that are different from
those of PCs.

Peters’ rule provides an estimate of the number of synapses in
a volume of tissue given the proportion of dendritic and axonal
neurites that cross within that volume. Several researchers are
currently using different approaches to investigate cell-type-
specific connections in various brain areas. This work will help
resolve ongoing debates about the general principles underlying
the spatial profiles of synaptic connectivity and how they shape
network function (Jiang et al., 2015; Markram et al., 2015; Bloss et
al., 2016; Straub et al., 2016; Swanson and Lichtman, 2016). To
test whether connectivity was structured or random, we com-
pared our measured results to those from a model generated by
applying the assumptions of Peters’ rule to our data. In our pre-
vious study, we found that, when PCs alone were considered,
adding axonal density to dendritic surface area as a predictor in
the model (i.e., Peters’ rule) did not improve the prediction of
synapse number beyond establishing that low synaptic density

Figure 7. Sublayer-specific patterns of synaptic connectivity at the branch level with Peters’ rule. A, Scatter plots (left) show the branch-level structure of connectivity (R 2 value) given Peters’ rule
applied to neurons located in different hippocampal strata. Dots represent individual neurons. A summary of R 2 values of individual neurons subclassified by layer and sublayer populations is also
shown (right). Significant differences in R 2 values with Peters’ rule between deep and superficial subpopulations were observed in PCs but not in PVs. Red �p 
 0.05, Conover–Iman scale test for
scale (right); n.s., not significant. B, For subpopulations of PCs and PVs in deep and superficial sublayers, a summary of R 2 values with Peters’ rule (deep: **p 
 0.01, ****p 
 0.0001, permutation
test for mean; red �p 
 0.05, Conover–Iman scale test for scale; superficial: **p 
 0.01, ****p 
 0.0001, permutation test for mean; red ��p 
 0.01, Conover–Iman scale test for scale) and
stacked bar plots of the percentages of highly structured, moderately structured, and nearly random neurons as classified by R 2 value with Peters’ rule. C, A Summary of opposite changes in R 2 with
Peters’ rule. Dots represent individual neurons, and solid lines indicate mean R 2 with Peters’ rule; overlaid dashed lines indicate the mean R 2 with the dendritic-surface-only random model. ****p

0.0001, permutation test; red ���p 
 0.001, red ����p 
 0.0001, Conover–Iman scale test (left). Bar plots show the percentages of highly structured, moderately structured, and nearly
randomly structured neurons as classified by R 2 value; the results show that most PCs are highly structured, whereas more PVs are nearly random, compared with the dendritic-surface-only random
model shown in Figure 4A. ****p 
 0.0001, Fisher’s exact test (right).
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was correlated with low axonal density (Druckmann et al., 2014).
However, this finding was difficult to interpret, because it was
consistent with two very different possibilities. First, it could
mean that Peters’ rule, or our ability to measure axonal density, is
a poor predictor. Second, it could mean that axonal density is a
useful predictor, but there is an additional fine level structure
that, if not considered, reduces the utility of the predictions. Our
finding here that adding axonal density improved the prediction
of structure in interneurons (i.e., increased R 2 values more con-
sistent with the random null model) raises the possibility that
prediction failures in principal neurons (i.e., reduced R 2 values
and more structured connectivity, less consistent with the ran-
dom null model) may indeed be attributable to the existence of
additional unknown structure, rather than to poor estimates
of axonal density. It is also possible that once additional types of
structure, such as the functional properties of neurons, are ac-
counted for, the diverse patterns of synaptic connectivity will
become clearer. Thus, Peters’ rule may need to be revised rather
than set aside.

Here, we presented new evidence for fine-scale differential
structure in synaptic connectivity onto hippocampal CA1 excit-
atory and inhibitory neurons by connections originating from
the same projection, the SC inputs. We found a highly selective
synaptic connectivity profile (i.e., one that strongly deviates from
chance) in connectivity between hippocampal CA3 and CA1 PCs
at the cellular and branch levels, as well as the sublayer level. By
contrast, for the CA3-PV connection, we found only little to
moderate specificity. The multiple types of fine-scale structured
connectivity in hippocampal excitatory and inhibitory neurons
and their different organization provide important hints as to the
organization, development, and function of neural circuits. To-
gether with detailed reciprocal connectivity patterns recently re-
vealed between subpopulations of CA1 PVs and PCs, especially
those segregated along the deep and superficial sublayers of the
stratum pyramidale (S.-H. Lee et al., 2014), our new evidence for
differently structured connectivity at a fine scale in hippocampal
excitatory and inhibitory neurons provides a better understand-
ing of hippocampal networks and will guide theoretical and ex-
perimental studies.
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