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Axonal Ensheathment in the Nervous System of Lamprey:
Implications for the Evolution of Myelinating Glia
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In the nervous system, myelination of axons enables rapid impulse conduction and is a specialized function of glial cells. Myelinating glia
are the last cell type to emerge in the evolution of vertebrate nervous systems, presumably in ancient jawed vertebrates (gnathostomata)
because jawless vertebrates (agnathans) lack myelin. We have hypothesized that, in these unmyelinated species, evolutionary progenitors
of myelinating cells must have existed that should still be present in contemporary agnathan species. Here, we used advanced electron
microscopic techniques to reveal axon-glia interactions in the sea lamprey Petromyzon marinus. By quantitative assessment of the spinal
cord and the peripheral lateral line nerve, we observed a marked maturation-dependent growth of axonal calibers. In peripheral nerves,
all axons are ensheathed by glial cells either in bundles or, when larger than the threshold caliber of 3 wm, individually. The ensheathing
glia are covered by a basal lamina and express SoxE-transcription factors, features of mammalian Remak-type Schwann cells. In larval
lamprey, the ensheathment of peripheral axons leaves gaps that are closed in adults. CNS axons are also covered to a considerable extent
by glial processes, which contain a high density of intermediate filaments, glycogen particles, large lipid droplets, and desmosomes,
similar to mammalian astrocytes. Indeed, by in situ hybridization, these glial cells express the astrocyte marker Aldh111. Specimens were
of unknown sex. Our observations imply that radial sorting, ensheathment, and presumably also metabolic support of axons are ancient
functions of glial cells that predate the evolutionary emergence of myelin in jawed vertebrates.
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Significance Statement

We used current electron microscopy techniques to examine axon-glia units in a nonmyelinated vertebrate species, the sea
lamprey. In the PNS, lamprey axons are fully ensheathed either individually or in bundles by cells ortholog to Schwann cells. In the
CNS, axons associate with astrocyte orthologs, which contain glycogen and lipid droplets. We suggest that ensheathment, radial
sorting, and metabolic support of axons by glial cells predate the evolutionary emergence of myelin in ancient jawed vertebrates.

CNS and Schwann cells in the PNS (Nave and Werner, 2014).
Myelin sheaths accelerate nerve conduction 20- to 100-fold com-

Introduction
Most fast-transmitting axons in jawed vertebrates (gnathos-

tomata) are myelinated; that is, insulated with multiple com-
pacted layers of plasma membrane of oligodendrocytes in the
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pared with unmyelinated axons of the same diameter (Castel-
franco and Hartline, 2016) by facilitating saltatory action
potential propagation (Tasaki, 1939). Jawless vertebrates (ag-
natha/cyclostomata) including lamprey do not possess myelin
(Bullock et al., 1984) and thus represent an ancestral stage in
vertebrate nervous system evolution (for phylogenetic relation-
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Figure 1. Evolutionary relationships of species groups and representative model species discussed in the present study. Con-
sequential evolutionary innovations are indicated (red arrowheads). (Figure adapated with permission from Schweitzer et al.,
2006; Grillner and Robertson, 2016; and Salzer and Zalc, 2016).

ships, see Fig. 1). Clustering of sodium channels to generate ac-
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cluster potassium channels at nodes of
Ranvier evolved exclusively in the gna-
thostomata line (Hill et al., 2008) at ap-
proximately the same time as myelin (Zalc
et al., 2008) >420 MYA ago (King et al.,
2017).

In addition to myelination, glial cells
guide neurodevelopment (Marin et al.,
2010) and provide metabolic support to
axons (Fiinfschilling et al., 2012; Lee et al.,

tion potentials at axon initial segments evolved before the  2012; Beirowski et al., 2014; Volkenhoff et al., 2015; Liu et al.,
divergence of jawed and jawless vertebrates ~560 million years ~ 2017). Indeed, glial cells ensheath axons in species ranging from
ago (MYA) (Hill et al., 2008). Conversely, the anchor motifs that ~ mice to flies (Banerjee and Bhat, 2008; Freeman, 2015; Schirmeier

Table 1. Presence of glial marker gene homologs in the sea lamprey genome

Gene ID (mouse) Gene name (mouse) Swisprot ID (mouse) (losest relative in lamprey” Mouse ortholog®
Schwann cell lineage
TF markers Egr2 Early growth response 2/Krox20 EGR2_MOUSE S4RIV4_PETMA EGR1/KROX24
Pou3f1 POU domain class 3 TF 1/0ct6 PO3F1_MOUSE S4RID7_PETMA POU2F1/0CT1
Sox8 SRY-box TF 8 SOX8_MOUSE SOXE1¢ SOX8
Sox9 SRY-box TF 9 SOX9_MOUSE SOXE3¢ S0X9
Sox10 SRY-box TF 10 SOX10_MOUSE SOXE2¢ S0X10
Other markers Mpz Myelin protein zero/P0 MYPO_MOUSE S4RAD2_PETMA MPZL3
Pmp2 Peripheral myelin protein 2/Fabp8 MYP2_MOUSE S4R652_PETMA FABP3
Pmp22 Peripheral myelin protein 22kDa PMP22_MOUSE S4RZM8_PETMA/PMP22B PMP22
Prx Periaxin PRAX_MOUSE No hit found n/a
Astrocyte lineage
TF markers Gli1/2/3 GLI family zinc finger 1/2/3 GLIT_MOUSE S4RTN6_PETMA GLI3
Hess Hairy and enhancer of split 5 HES5_MOUSE S4R8M4_PETMA HES1
Sox2 SRY-box TF 2 SOX2_MOUSE S4RZR4_PETMA/SOXB1/S0X2? S0X2
Sox9 SRY-box TF 9 SOX9_MOUSE SOXE3* S0X9
Other markers Aldh1i1 Aldehyde dehydrogenase 1 family, member L1 AL1L1_MOUSE S4RGV7_PETMA ALDH1L1 (Figure 5F)
Aqp4 Aquaporin 4 AQP4_MOUSE S4RUM3_PETMA AQP4
Fgfr3 Fibroblast growth factor receptor 3 FGFR3_MOUSE S4RS21_PETMA FGFR2
Gfap Glial fibrillary acidic protein GFAP_MOUSE SARE82_PETMA VIM
Gjbé Gap junction protein beta 6/Connexin (X30 (XB6_MOUSE S4RXA7_PETMA/Connexin 27.5 GJB1/CX32
Slcla2 Solute carrier family 1 member 2 EAA2_MOUSE S4RZS9_PETMAT1 SLC1A2
(glutamate transporter GLT-1)
Slc1a3 Solute carrier family 1 member 2 EAAT_MOUSE S4R7G6_PETMA SLC1A4
(glutamate transporter GLAST)
Oligodendrocyte lineage
TF markers Myrf Myelin requlatory factor MYRF_MOUSE No hit found ® n/a
Nkx6-2 NK6 homeobox TF 2 D3Z74R4_MOUSE SARC35_PETMA HMX2/NKX5-2
Olig1 Oligodendrocyte TF 1 OLIGT_MOUSE S4RSW9_PETMA NeuroD1
0lig2 Oligodendrocyte TF 2 0OLIG2_MOUSE S4RNM7_PETMA NeuroD1
Sox10 SRY-box TF 10 SOX10_MOUSE SOXE2¢ S0X10
Other markers (np Cyclic nucleotide phosphodiesterase (N37_MOUSE S4RC98_PETMA/CNP (NP
(ldn11 Claudin 11 (b_m S4RIV3_PETMA CLDN10
(spg4 Chondroitin sulfate proteoglycan 4/NG2 (SPG4_MOUSE S4RBJ2_PETMA (SPG4/NG2
Mag Myelin associated glycoprotein MAG_MOUSE S4RQL3_PETMA PXDN

Mbp/Golli Myelin basic protein (MBP)/Gene of oligodendrocyte MBP_MOUSE
lineage (GOLLI) transcription unit

Mobp Myelin-associated oligodendrocyte basic protein MOBP_MOUSE
Mog Myelin oligodendrocyte glycoprotein MOG_MOUSE
Opalin Opalin/TMEM10 OPALI_MOUSE
Pdgfra Platelet derived growth factor receptor alpha PGFRA_MOUSE
Plp1 Proteolipid Protein MYPR_MOUSE
Tspan2 Tetraspanin 2 TSN2_MOUSE

No hit found for MBP; Only GOLLI " GOLLI

No hit found n/a

No hit found n/a

No hit found n/a
S4RQ64_PETMA KDR/VEGFR2
SARCY1_PETMA GPM6B
S4RU78_PETMA TSPAN9

Known markers for Schwann cells, astrocytes, and oligodendrocytes were blasted at ensembl.org against the P. marinus somatic genome (release version 7.0) to identify the closest relative in lamprey.

“Given are Swisprot/Uniprot ID, protein name (if assigned), and a prior publication if available.

®|dentified lamprey proteins were then blasted against all mouse proteins; given is the protein name.

‘McCauley and Bronner-Fraser (2006).

“Cattell etal. (2012).

“A fragment ortholog to Myrf was detected previously in the genome of Japanese lamprey (Lethenteron japonicum) (Li and Richardson, 2016).
Werner (2013).

TF, Transcription factor; n/a, not applicable
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Spatial organization and maturation-dependent radial growth of peripheral lamprey axons. 4, X-ray tomography of an adult lamprey LLN over a length of 370 m. 3D reconstruction

visualizes numerous large-caliber axons. A”, Representative axons selected from A. B, €, Scanning electron micrographs of cross-sectioned LLN in larval (B) and adult (€) lamprey. Note the different
scale bar sizes. D, E, Calibers of individual axons in entire larval (D) and adult (E) LLNs indicating maturation-dependent radial growth. Data are shown as mean and SD. n = 1675 axonsin 2 larvae;

n =373 axonsin 1adult.

et al., 2016). However, knowledge remained limited about the
structure of axon—glia units and the evolutionary progenitors of
myelinating glia at the root of the vertebrate line. However, min-
ing of genomic datasets allows only limited conclusions about
cellular structures (Werner, 2013; Table 1) and ultimately re-
quires consideration in conjunction with morphological
analyses.

The agnathan species most commonly investigated regarding
nervous system evolution is the sea lamprey, Petromyzon marinus
(Sugahara et al., 2017). Lamprey is also a valuable model for
investigating embryonic development (Sugahara et al., 2011;
Green et al., 2017; Martik and Bronner, 2017), synaptic function
(Morgan et al., 2004; Brodin and Shupliakov, 2006; Gerachsh-
enko et al., 2009), locomotion (Mullins et al., 2011; Grillner and
El Manira, 2015), and injury and regeneration (Cornide-
Petronio et al., 2011; Busch and Morgan, 2012; Lau et al., 2013;
Fernandez-Lépez et al., 2014; Rasmussen and Sagasti, 2017). Re-
cently, whole-genome sequencing further increased its value as a
model species (Smith et al., 2013), for example, by facilitating in

situ hybridization with cell-type-specific markers. When the lam-
prey nervous system was analyzed previously by conventional
electron microscopy, some axons were noted to possess cellular
ensheathment (Schultz et al., 1956; Peters, 1960; Bertolini, 1964;
Bullock et al., 1984; Rovainen and Dill, 1984; Lurie et al., 1994;
Fraher, 2002; Gelman et al., 2009). However, focusing on other
aspects, most studies noted glial ensheathment on the side.
Electron microscopic visualization of nervous tissue mor-
phology has benefited from recent technical advances, in partic-
ular with respect to tissue fixation (a frequent difficulty when
analyzing aquatic species), but also contrast and 3D visualization.
Here, we investigated the structural organization of axon—glia
units in lamprey using optimized sample preparation and current
visualization techniques. We used X-ray phase-contrast tomog-
raphy (Bartels et al., 2015) to assess tissue en bloc in 3D at low
resolution, focused ion beam-—scanning electron microscopy
(FIB-SEM) (Knott et al., 2008; Schertel et al., 2013) to visualize
the spatial relationships of cells and their processes in 3D and
SEM to approach large tissue sections at high resolution. The



Weil et al. @ Axonal Ensheathment by Glial Cells in Lamprey J. Neurosci., July 18,2018 - 38(29):6586 — 6596 * 6589

100 - Axon SoxE3
ensheathment ».
—_ 4V Ax
3 80+ ; .
=, O with gap : Ax <& .
2 60+ Il complete v <« A4
= Y 4 Py A
g A T A o
z 40 4 - . »- X
[ < < g
S
w 204 ; p
0- 10 pm 10 ym
Larvae Adult I
F

Ensheathing cell:
Abaxonal membrane
Adaxonal membrane

Ensheathing cell
Axon bundle

H J
—_ 3_
£
2
2 :
©
S
2 :
£ &
- | &
Q S22
Individual axon 2 14
Ensheathing cell’ 8 &5
Remak bundle c 855
g £
2um
M Z 0

1 1
Larvae Adult

- i
ntia

Figure3. Axonal ensheathmentby Schwann cell orthologsin the lamprey PNS. 4, B, Electron micrographs of a cross-sectioned LLN in larval (4) and adult (B) lamprey. Note the glial ensheathment
(E) of axons (Ax). Red boxes indicate areas magnified in A" and B’, respectively. A’, B’, Axonal ensheathment occasionally displayed gaps (A") in larval but was closed (B’) in adult lamprey.
C, Quantification of gapped and closed axonal ensheathment in entire cross-sectioned LLNs. Note the maturation-dependent closure of ensheathment gaps. Data are shown as mean and SD. n =
787 axons in 2 larvae; n = 343 axons in 1 adult. D, Electron micrograph of an axon (Ax) in the cross-sectioned adult LLN highlighting an ensheathing cell nucleus (N). (E) FISH of a cross-sectioned
LLN detecting Sox£2 and SoxE3, the lamprey orthologs of Sox9 and Sox70, respectively. Note that SoxE2 and SoxE3-labeling (pseudocolor representation by black puncta marked by arrowheads)
partially outlines axons (Ax, black lines). F-H, FIB-SEM micrographs and 3D reconstruction. F, Adaxonal (red) and abaxonal (blue) plasma membrane of a representative cell ensheathing an
individual axon in the larval LLN. Note the structural homogeneity over at least 20 L.m. See also Movie 1. G, Bundle of multiple axons (blue) ensheathed by a single ensheathing cell (red) showing
homogeneity over at least 20 m. See also Movie 2. H, As an anecdotal observation, an axon (blue) with its individual ensheathment (green) leaves a bundle of (Figure legend continues.)
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latter allows quantitative morphological scrutiny of sections of
entire nerves or spinal cords (SCs). Our observations support the
concept that glial cells associate with axons to provide metabolic
support, a function that predates the evolutionary emergence of
myelin.

Materials and Methods

Animals. Larval sea lampreys P. marinus (premetamorphic ammocoetes;
approximate body length 12 cm; estimated age 5-7 years; n = 2) were
obtained from the Marine Biological Laboratory (Woods Hole, MA). An
adult prespawning upstream migrating sea lamprey (approximate body
length 80 cm; estimated age 7-9 years; n = 1) was acquired at a local fish
market (Santiago de Compostela, Spain). Animals were of unknown sex.
Body pieces were fixed in 4% PFA in phosphate buffer (PB) containing
109.5 mm NaH,PO, * H,O, 93.75 mm Na,HPO, - 2H,0, and 86.2 mm
NaCl for 1 h at room temperature (RT) and stored in PB until used.

Sequence analysis. The indicated sequences were retrieved from the
databases Swiss-Prot/Uniprot (www.uniprot.org) and NCBI (https://
ncbi.nlm.nih.gov). Sequence alignments for prediction of evolutionary
relationships were performed with Lasergene Megalign software using
Clustal W standard slow accurate parameters and protein weight matrix
Gonnet250.

FISH. FISH procedures with single-molecule sensitivity for low copy
mRNA targets (Will et al., 2013) were used to detect Aldhlll, SoxEl,
SoxE2 and SoxE3 mRNA in lamprey. Lateral line nerves (LLNs) or SCs
were dissected, postfixed in 4% PFA in DEPC-treated PBS (1 h at RT),
infiltrated stepwise with sucrose, cryosectioned at 10 wm thickness, and
mounted onto slides (Ultrafrost Plus; Thermo Fisher). Slides were trans-
ferred into incubation chambers (Secure-Seal; Thermo Fisher). In the
chambers, sections were postfixed for 10 min in 4% PFA in DEPC-
treated PBS. In situ hybridization was then performed using the Quanti-
Gene ViewRNA kit (Thermo Fisher) according to the manufacturer’s
instructions using probe sets specific for lamprey SoxE1 (GenBank acces-
sion no. AY830453), SoxE2 (DQ328983), SoxE3 (DQ328984), and
Aldh1ll (CAAA18610) mRNAs (Thermo Fisher). A probe set for E.coli
KdI12 mRNA was used as a negative control. Briefly, sections were per-
meabilized for 10 min in detergent solution, washed, and hybridized
with the specific probe sets diluted 1:100 for 3-16 h at 40°C. After
washing, samples were hybridized consecutively with preamplification oligonu-
cleotides, amplification oligonucleotides, and finally label oligonucleotides con-
jugated with a fluorescent dye emitting at 550 nm. All oligonucleotide sets
were used 1:100 at 40°C for 1 h with extensive washing between steps.
Samples were imaged on a Leica SP5 confocal microscope. For quantifi-
cation of Aldh1lI-positive cells in the SC, n = 198 nuclei on two sections
were analyzed with respect to the number of labeling puncta per DAPI-
positive cell; cells were judged as Aldh1l1 positive if they displayed =3
labeling puncta in close proximity to the nucleus.

Electron microscopy. Dissected body pieces, SCs, and LLNs were post-
fixed in 4% PFA and 2.5% glutaraldehyde in 0.1 M PB containing 109.5
mum NaH,PO, - H,0, 93.75 mm Na,HPO, - 2H,0, and 86.2 mm NaCl for
at least 24 h. To achieve sufficient contrast for imaging backscattered
electrons by SEM, tissue samples were processed using a modified pro-
tocol of the reduced osmium-thiocarbohydrazide-osmium method
(Deerinck et al., 2010) as described previously (https://ncmir.ucsd.edu/
sbem-protocol). The samples were washed in 0.1 M PB buffer (3 X 15
min) and then incubated for 3 h at 4°C in 2% OsO, and 0.25%
K,[Fe(CN),] to reduce the OsO, to OsO,. After washing with ddH,0,
the samples were incubated with 0.1% thiocarbohydrazide (in ddH,O)
(1 hatRT). To contrast the samples, they were treated with 2% OsO, (90
min). After washing with ddH,O, the samples were contrasted overnight
at 4°C with 2.5% uranyl acetate, followed by several washes with ddH,O.

<«

(Figure legend continued.)  multiple axons (red). /, Electron micrograph of a LLN highlighting
bundles of two or more axons (Ax). For quantification of axons per bundle, see Figure 4. E,
Ensheathing cell; N, nucleus. J, Calibers of LLN axons ensheathed in bundles. Data are shown as
mean and SEM. n = 120 axons in 2 larvae; n = 274 axonsin 1 adult.
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Movie 1.  Ensheathment of an individual axon in the LLN. Electron [m] gl
micrographs gained by FIB-SEM and 3D reconstruction highlighting the &3
adaxonal (red) and abaxonal (que) pIasma membrane of a representa—

image, see Figure 3F.

Ensheathing cell
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Movie 2.  Ensheathment of a bundle of multiple axons in the LLN.
FIB-SEM and 3D reconstruction highlighting a bundle of multiple axons
(blue) ensheathed by a single ensheathing cell (red). As an anecdotal
observation, an axon (blue) with its individual ensheathment (green) %=
leaves a bundle of multiple axons (red). For preview images, see Figure & -p;'
3,Gand H. EF

Then, the samples were dehydrated in an increasing ethanol series (15
min each at 4°C; 30%, 50%, 70%, and 90% ethanol; then 4 X 100%
acetone). Subsequently, the samples were infiltrated with increasing con-
centrations of Durcupan resin (Sigma-Aldrich) (2 h each at RT; 25%,
50%, 75% Durcupan in acetone) and then incubated in 100% Durcupan
overnight. Fresh Durcupan with accelerator (Durcupan component D)
was added the next day for 5 h before embedding in gelatin capsules or
flat embedding molds. The resin was polymerized for 48 h at 60°C.

Semithin sections at 500 nm thickness were cut and stained with meth-
ylene blue and Azure II (Richardson et al., 1960) for 1-2.5 min before
observation using an epifluorescence light microscope (Axiophot; Zeiss).
Ultrathin sections were cut at 50 nm thickness and transmission electron
micrographs were obtained with the Zeiss EM900 or Zeiss EM912 AB
equipped with a 2k-CCD camera (TRS). For scanning electron micro-
graphs, 100-nm-thick sections were cut and transferred to a H,SO,-
washed silicon wafer using a self-made stainless steel loop. The sections
were left to dry at 60°C on a warm plate. The wafer was then sputter
coated with 4 nm carbon before imaging using a FIB-SEM (Crossbeam
540; Zeiss). The tissue sections were imaged at 1.2 kV with 5 nm pixel size
and at least 10 s dwell time using the energy selective backscattered
detector.

Images were analyzed using Fiji (Fiji.sc). Axonal caliber (c) was calcu-
lated from the measured area (A) using the equation ¢ = 2/(A/m).
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Figure 4.

Frequency distributions of axonal calibers were calculated for entire
LLNs or the indicated SC regions. For the coverage of axons by astrocytes,
axonal circumference and the portion covered by glial processes were
measured in Fiji. From these values, the percentage of coverage was cal-
culated. Distances between ensheathing cell nuclei were measured from
longitudinal sections of the LLN.

For volume imaging, the samples were trimmed around the area of
interest in the dorsal SC or the LLN, polymerized for 5 d, and sputter
coated with 10 nm platinum. The block face was exposed by milling a
coarse trench of 60 um with the focused ion beam. The region of interest
was selected and then the serial block face milling and imaging process
was set up using the ATLAS3D software (Zeiss), including platinum and

Ensheathing cell

Numbers of axons and glial processes per bundle in the lamprey PNS. 4, B, Electron micrographs of LLNs in larval (4)
and adult (B) lamprey to exemplify axons in bundles (arrowheads) or with multiple ensheathing cell processes (Ax). ¢, C', E, E’,
Frequencies of axons per bundle in the entire LLN of larval (C,C") and adult (E,E") lamprey. C, E, Percentage of individually
ensheathed axons; that is, axon/ensheathing cell units containing one axon versus units containing several axons. (', E’, Subdi-
vision of the numbers of axons in axon/ensheathing cell-units containing =2 axons. Note the maturation-dependent increase in
the number of axons per bundle. D, F, Frequencies of ensheathing cell processes per bundle in the entire LLN of larval (D) and adult
(F) lamprey. Data are shown as mean and SD. n = 1675 axons in 2 larvae; n = 411 axons in 1 adult.
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carbon pad deposition on top of the block sur-
face. After fine polish of the block surface, the
block face imaging over ~30 um was started
with the following settings: 5 nm pixel size, 12
s dwell time, and 1.2 kV. The resulting image
stack was preprocessed by aligning, binning,
and enhancing the local contrast. The struc-
tures of interest were mainly segmented
manually in Microscopy Image Browser
(Electron Microscopy Unit, University of
Helsinki, Finland) and the 3D reconstruc-
tion was visualized in Imaris (Bitplane, Uni-
versity of California—Santa Barbara).

X-ray tomography. Tomographic measure-
ments were performed at the GINIX setup in-
stalled at the beamline P10 of the PETRA III
storage ring at DESY (Hamburg) (Salditt et al.,
2015). The setup was operated at 13.8 keV in
the holographic imaging mode with a wave-
guide as a beam-refining optic (Kriiger et al,,
2012). In this mode, phase and therefore den-
sity information of the sample is encoded in
intensity modulations of the X-ray beam via
free-space propagation behind the object. The
detection system was a scintillator-based fiber-
optic-coupled sCMOS camera with a 15 um
gadox scintillator and a pixel size of 6.5 um
(Photonic Science). Due to the cone beam ge-
ometry of the setup, the effective pixel size can
be varied by changing the geometrical magni-
fication of the setup (Krenkel et al., 2015). In
this case, the source-to-object distance was set
to 145 mm and the source-to-detector distance
to 5.05 m, leading to a magnification of ~35
and an effective pixel size of 186 nm. For the
tomographic measurements, 1001 projections
>180° were recorded at 4 propagation dis-
tances with an exposure time of 0.5 s per pro-
jection. Multiple distances were necessary to
properly reconstruct the phase information of
the single projections using a CTF-based ap-
proach (Bartels et al., 2015). The herein
defined regularization parameters, denoted
as in (Bartels et al., 2015), were set to k = 40
and a_2 = 0 based on visual inspection. Af-
ter the phase retrieval, tomographic recon-
struction was subsequently performed with
the MATLAB-implemented iradon function
using a standard Ram-Lak filter. The axons
were segmented in Microscopy Image Browser
and visualized in 3D using Imaris.

Experimental design and statistical analysis.
Numbers and specifications of animals used
for the analysis are given in the “Animals” sec-
tion. For all quantifications, # numbers are
specified in the respective figure legends.
Where appropriate, data represent mean with
SD for quantifications in larval lampreys and
mean for quantifications in adult lamprey. Frequency distributions of
axonal calibers were assessed using the Kolmogorov—Smirnov test; the
results of this statistical assessment are given in the Results section.

2 3 45 6
process/unit

Adult

2 3 4 5 6

Ensheathing cell
process/unit

Results

To visualize the spatial organization of axons in the PNS of a nonmyeli-
nated vertebrate species, we subjected a segment of the LLN dissected
from an adult sea lamprey (P. marinus) to X-ray tomography. It was
possible to reconstruct numerous large-caliber axons over a length of
370 wmin 3D (Fig. 2A). Within this segment, the observed axons largely
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run in parallel; however, moderate axonal
bending was observed (Fig. 2A"). At higher
resolution, SEM allowed assessing all axons in
entire cross-sectioned LLNs (Fig. 2B, C). No-
ticeably, the adult LLN is approximately four
times larger than larval nerves, reflecting
maturation-dependent  growth. The fre-
quency distribution of the calibers of all indi-
vidual LLN axons is shifted toward large
calibers in adult compared with larval LLNs
(Fig. 2D, E; Kolmogorov—Smirnov test p <
0.0001), whereas the total number of axons re-
mains largely similar. Most LLN axons un-
dergo intense maturation-dependent radial
growth.

In our electron microscopic analysis,
we noted that all individual LLN axons are
ensheathed by glial cells (Fig. 3A,B). The
ensheathment of some axons contained
small gaps in larval nerves (Fig. 3A"), but
was generally closed (Fig. 3B’) in adult
nerves (Fig. 3C). This implies maturation-
dependent closure of the glial ensheath-
ment. All axon—glia units were covered by
a basal lamina.

Considering the remarkably close as-
sociation between peripheral axons and
ensheathing cells, we further examined
the cellular morphology. The periaxonal
space between the axonal surface and the
adaxonal surface of ensheathing glia was small and regular and
comprised electron-dense material, implying the presence of ex-
tracellular proteins. The cytoplasm of the ensheathing cells con-
stitutes one thin layer of irregular width, which contains cellular
compartments including nuclei (Fig. 3D). In no case did the cy-
toplasm display myelin-like compaction. When scrutinizing
scanning electron micrographs of longitudinal LLN sections,
nucleus-to-nucleus distances ranged between 1 and 200 wm, im-
plying considerably variable spatial organization of ensheathing
glia.

To assess the cellular identity of the ensheathing cells at the
molecular level, we performed FISH on LLNs with probes for
SOXE transcription factors, frequently used markers of the neu-
ral crest-derived Schwann cell lineage (McCauley and Bronner-
Fraser, 2006; Stolt and Wegner, 2010; Cattell et al., 2012; Li and
Richardson, 2016; Tai et al., 2016). Indeed, the probes for lam-
prey SoxE2 and SoxE3-mRNAs, orthologs of mammalian Sox10
and Sox9 (Uy et al., 2012), displayed labeling in ensheathing cells
(Fig. 3E). The probe for lamprey SoxEI (the ortholog of mamma-
lian Sox8) did not yield specific FISH labeling. Together, these
results indicate that ensheathing cells in the lamprey PNS are
orthologs of mammalian Schwann cells.

To characterize the morphology of the ensheathing cells in
3D, we performed FIB-SEM of the LLNs. When reconstructing
the adaxonal and abaxonal plasma membranes of an ensheathing
cell over a depth of =20 um (Fig. 3F, Movie 1), its morphology
was largely homogenous. Likewise, a bundle of several axons (Fig.
3G, Movie 2) was largely regular over =20 um. However, as an
anecdotal finding, we observed one axon leaving its bundle (Fig.
3H). As exemplified in Figure 31, small-caliber LLN axons were
frequently bundled in a unit of two or more axons (Fig. 4C,E) and
one or more ensheathing cell processes (Fig. 4 D, F) covered by a

Figure 5.
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Continuous longitudinal ensheathment of axons in the lamprey PNS. 4, Scanning electron micrograph of a longitu-
dinally sectioned LLN of an adult lamprey. B, Higher magnification to exemplify a segment of a longitudinally sectioned axon (Ax)
with two adjacent ensheathing cells (arrows pointing at E1, E2). B’, Magnification from B to highlight the cell-to-cell contact
between the ensheathing cells as identified by their nuclei (N1, N2). Large arrowheads point at the adaxonal and the abaxonal
surfaces of the contact between the neighboring ensheathing cells. Note the direct apposition of their plasma membranes (small
arrowheads). One representative of n = 27 contacts between longitudinally adjacent ensheathing glia in one adult lamprey is
shown. Note that ensheathment gaps reminiscent of mammalian nodes of Ranvier were not observed, suggesting that glial
ensheathment is largely continuous along peripheral lamprey axons.

basal lamina. Most axons in bundles displayed calibers between
0.3 wm and 1.7 wm, yet some axonal calibers reached up to 3 um
(Fig. 3]).

Using FIB-SEM and 3D reconstruction, ensheathment gaps
reminiscent of mammalian nodes of Ranvier were not evident.
To assess whether the ensheathment of peripheral axons by glial
cells is indeed continuous, we used SEM to analyze longitudinally
sectioned adult LLNs at high resolution. As exemplified in Figure
5, longitudinally adjacent ensheathing cells displayed immediate
contact via direct apposition of their plasma membranes. Node-
like ensheathment gaps or contacting microvilli were not ob-
served. Therefore, glial ensheathment of peripheral lamprey
axons is largely continuous, at least in the adult LLN.

To examine axon—glia units in the lamprey CNS, we subjected
entire cross-sectioned SCs (Fig. 6 A, B) to SEM (Fig. 6C). The SC
is approximately four times larger in adult compared with larval
lamprey, reflecting maturation-dependent growth. When assess-
ing the 18 ventral giant axons, their calibers were approximately
doubled in adult SC (Fig. 6D") compared with larval SC (Fig. 6D).
The frequency distributions of axonal calibers in the lateral and
dorsal SC (Fig. 6B’) shifted toward large-caliber axons in adult SC
(Fig. 6E',F") compared with larval SC (Fig. 6 E, F ) (Kolmogorov—
Smirnov test p < 0.0001). Therefore, SC axons display consider-
able maturation-dependent radial growth.

Closer examination showed that SC axons are covered to a
variable degree but rarely completely ensheathed by glial pro-
cesses (Fig. 7A,A’,B). The degree of ensheathment was not evi-
dently related to axonal calibers (Fig. 7B). The processes generally
displayed dense intermediate filaments, glycogen particles, and
desmosomes (Fig. 7C,C',D), ultrastructural features of astro-
cytes. When detecting the lamprey ortholog of the astrocyte
marker Aldh1l1 (Cahoy et al., 2008) by FISH, many glial cells in
the SC displayed robust labeling (Fig. 7E-G).
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Maturation-dependent radial growth of central lamprey axons. A, Micrograph of a semithin-sectioned larval body piece stained with methylene blue and Azure Il. SCs and LLNs are

indicated. B, B’, Magnification of the larval SC (B) and scheme (B’) toillustrate regions selected for quantification of axonal calibers in the ventral, lateral, and dorsal SC (red, green, and purple boxes,
respectively). Arrowheads point at giant reticulospinal axons (G) and Mauthner axons (Mth). C, Scanning electron micrograph of the larval (left) and adult (right) SC illustrating maturation-
dependent growth. Displayed is one half SC each. Note the different scale bar sizes. D, D', Calibers of the 18 giant reticulospinal axons in the ventral SCof larval (D) and adult (') lamprey. n = 18
giantaxons eachin 1larvae and 1adult. £, E’, Axonal calibers in the lateral SCof larval (F) and adult (E") lamprey. Arrowheads point at values for giant Mauthner axons (Mth). n = 239 axons in 2
larvae; n = 500 axonsin 1adult. F, F’, Axonal calibers in the dorsal SCof larval (F) and adult (F") lamprey. n = 510axonsin 2 larvae; n = 449 axons in 1 adult. Note the maturation-dependent radial

growth of axons in all analyzed SC regions.

To assess their spatial organization, we performed FIB-
SEM of the SC (Fig. 7H). 3D reconstruction revealed consid-
erable cellular branching. Both cell bodies and primary
processes contained large lipid droplets (Fig. 7H', Movie 3).

This implies that the axon-covering glial cells in the lamprey
CNS are orthologs of astrocytes. Cells morphologically resem-
bling oligodendrocyte progenitor cells or mature oligoden-
drocytes were not found.
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Figure7.  Axonal coverage by astrocyte orthologs in the lamprey CNS. 4, Electron micrograph of the dorsal SCin adult lamprey. The red box is magnified in A’. A’, Magnification of an axon (Ax)
pseudocolored in brown to highlight its coverage by glial processes (As; green). B, Coverage of axonal surface with glial processes. Coverage of axonal surface with glial processes in the larval (green
data points) and adult (black data points) SC plotted against axonal caliber.n = 199 axons in 2 larvae; n = 175 axons in 1 adult. Note that there is no evident correlation between axonal coverage
and caliber. , Electron micrograph of the dorsal SCin larval lamprey. The red box is magnifiedin €". C’, Magnification of an axon (Ax) and glial processes to highlight that the glial cells display a high
density of intermediate filaments and glycogen-particles (red stars). D, Desmosomes (D) were also frequent. Note that a high density of intermediate filaments, glycogen particles, and desmosomes
are ultrastructural features of astrocytes. E, Sequence relationships of the astrocyte marker ALDH1L1 and the related ALDH1L2 in a phylogenetic tree. Note that lamprey ALDH1L1 clusters together
withits orthologs in other species. F, FISH of lamprey SC with probes specific for lamprey Aldh1/7 or a negative control (E. coli Kd12). Maximum intensity projection images showing Aldh1/7 labeling
(pseudocolor representation in white) in proximity to nuclei (N) (DAPI, blue). G, A considerable portion of cells displayed Aldh1/1 labeling in the adult SC. n = 198 DAPI-positive cells in 1 adult
lamprey. H, H', FIB-SEM micrograph (H) of the dorsal larval SC and 3D reconstruction (H"). A glial cell body and its primary processes are pseudocolored in green; large lipid droplets are
pseudocolored in blue. Glial processes not connected to that cell are highlighted in red. D, Desmosome. See also Movie 3.
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Movie3.
dorsal larval SCand 3D reconstruction. A glial cell body and its primary
processes are pseudocolored in green; large lipid droplets are pseudo—
coloredin blue. Glial processes not connected to that cell are highlighted

in red. For preview image, see Figure 7H.

Discussion

We assessed the structural organization of axon—glia units in sea
lamprey, a model for jawless vertebrates (agnathans) that di-
verged from jawed vertebrates before the evolutionary emergence
of myelin in the latter. Our optimized sample preparation with
en bloc contrasting using osmium-thiocarbohydrazide-osmium
(Deerinck et al., 2010) may also facilitate electron microscopy of
nervous system morphology in other aquatic species, for which ex-
cellent tissue preservation and contrast are not routinely achieved.

When comparing larval and adult lamprey, axonal calibers in-
crease markedly in both PNS and CNS. Considering that nerve con-
duction velocity is proportional to axon caliber (Rushton, 1951), this
increase appears suited to accelerate conduction after transforma-
tion from comparatively sedentary larva into adults that require ef-
ficient locomotion control (McClellan et al., 2016). Both large
calibers and myelination of axons facilitate rapid impulse propaga-
tion. However, conduction velocity along myelinated axons is
squared compared with unmyelinated axons of the same caliber but
only proportional to the square root of axonal caliber (Hartline and
Colman, 2007). Myelination thus allows rapid conduction along
many axons with very limited space requirements, a relevant feature
of nervous systems in jawed vertebrates. We hypothesize that myeli-
nation, but not ensheathment, restricts radial growth of axons.
However, whether myelin restricts axonal calibers by mechanic con-
straints, molecular cues, or both is unknown.

Peripheral ensheathing glia in lamprey share many character-
istics with mammalian Schwann cells, including expression of
SoxE transcription factors (McCauley and Bronner-Fraser, 20065
Stolt and Wegner, 2010; Tai et al., 2016), coverage by a basal
lamina, complete ensheathment of all peripheral axons, and the
existence of an axonal threshold caliber for their exclusion from
bundles (Feltri et al., 2016). Together, morphological and molec-
ular criteria imply that peripheral ensheathing glia in lamprey are
orthologs of mammalian nonmyelinating Schwann cells; that is,
Remak-type Schwann cells.

The maximum caliber of lamprey axons in bundles (3 wm) is
larger and less rigorous than the threshold caliber of mammalian
axons (1 wm) to be sorted out of Remak bundles radially. Inter-
estingly, radial sorting of axons is primarily viewed as the mor-
phogenetic prerequisite for their myelination (Feltri et al., 2016).
However, we find that the exclusion of large-caliber axons from
bundles for individual ensheathment predates myelin evolution.
Radial sorting is thus not necessarily coupled to myelination,
implying that it serves additional, possibly metabolic functions.
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In the CNS, lamprey axons are also associated with glial cells,
which are orthologs of mammalian astrocytes according to
Aldh1l1 expression and intermediate filament density. They also
comprise glycogen particles and lipid droplets, which are key to
axon-glia metabolic cooperation. Breakdown of glial glycogen
into glucose enables the transfer of glycolysis products as fuel for
neuronal mitochondria (Fiinfschilling et al., 2012; Lee et al,,
2012; Volkenhoff et al., 2015), whereas glial lipid droplets are
derived from neuronal lipids, at least in flies (Liu et al., 2017). It is
tempting to speculate that oligodendrocytes may have evolved in
ancient gnathostomata from ancestral glial progenitors with
astrocyte-like properties into cells that store neuron-derived lip-
ids as myelin constituents rather than lipid droplets (Nave et al.,
2017). Less speculatively, the long-term integrity of axons neces-
sitates their metabolic cooperation with Schwann cells, oligoden-
drocytes, and astrocytes in mammals and ensheathing glia in flies
(Funfschilling et al., 2012; Lee et al., 2012; Beirowski et al., 2014;
Volkenhoff et al., 2015; Schirmeier et al., 2016; Liu et al., 2017).
The close association of lamprey axons with orthologs of
Schwann cells and astrocytes implies that the metabolic support
of axons is an ancestral function of glial cells that predates the
evolution of myelin.
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