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Alzheimer’s disease (AD) is the most com-
mon form of dementia, and epidemiologi-
cal studies suggest that the rates of incidence
will increase in the next decades (Prince et
al., 2013). Clinically, AD is manifested by
progressive memory loss, but the main
pathophysiological hallmarks include
accumulation of B-amyloid (AB) pep-
tides, formation of neurofibrillary tan-
gles containing hyperphosphorylated
forms of the microtubule-associated
protein tau, and synaptic failure.

Levels of AB, found both as soluble
oligomers or insoluble extracellular pla-
ques, are almost invariably increased in
AD patients’ brains and according to the
amyloid cascade hypothesis of AD patho-
genesis, this accumulation is the initial
pathological event leading to synaptic and
cognitive dysfunction (Hardy and Hig-
gins, 1992; Gong et al., 2003). However,
this hypothesis remains somewhat con-
troversial (Selkoe, 2013; Drachman, 2014).
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Indeed, the discovery that some individuals
without any overt signs of dementia carry
significant cerebral amyloid deposits sug-
gests that A plaques are not sufficient to
cause AD (Herrup, 2015). A variation of the
amyloid hypothesis accounts for this find-
ing by proposing that soluble A oligomers,
instead of AB plaques, are responsible for
cognitive impairmentin AD (Haass and Sel-
koe, 2007). But some authors have sug-
gested that, although brain A levels are
elevated in AD, this is merely a consequence
of upstream problems, rather than being the
cause of the disease (Drachman, 2014). Pos-
sible upstream problems include neurovas-
cular dysfunction, unbalanced glucose
homeostasis, failure in neuronal cell cycle
control, and inflammation (Herrup, 2015).
In support of this hypothesis, signs of neu-
roinflammation can be observed before A3
deposition in AD mice models (Kummer et
al.,2014). The failure of large clinical trials to
demonstrate the effectiveness of potential
disease-modifying treatments suggests that
our understanding of the molecular basis of
AD is incomplete (Mehta et al., 2017).

It is argued that the failure in these
clinical trials stems partly from the chal-
lenge in discriminating the earliest stages
of AD, leading to the inclusion of patients
whose therapeutic window has already
closed. Currently, cognitively normal
patients who reach a threshold of brain
AP plaque load based on positron emis-
sion tomography (PET) imaging using a

radioactive analog of thioflavin T, ''C-
Pittsburgh Compound B (PIB), are classi-
fied as having preclinical AD (Klunk et al.,
2004; Sperling et al., 2011). This classifica-
tion might set thresholds too high to de-
tect earlier stages of disease (Villeneuve et
al.,, 2015). Identifying biomarkers that re-
liably discriminate the initial stages of AD
and determining when these markers
should be measured might therefore im-
prove AD therapeutics.

In a recent article published in The
Journal of Neuroscience, Leal et al. (2018)
longitudinally evaluated AD-associated
biomarkers in 71 cognitively normal el-
ders. Specifically, PIB and ['*F] AV-1451
PET brain imaging were used detect amy-
loid and tau plaques, respectively. The
difference between the first PIB measure-
ments (basal levels) and after an average
of 4.5 years was used to define the rate
of AB plaque accumulation in the brain.
Surprisingly, the authors found an
inverted-U relationship between the AB
plaque accumulation rate and A basal
levels. In other words, in the subset of this
preclinical AD population with a higher
baseline AB burden, the AB plaque depo-
sition rate was slowing down, suggesting
saturation of A plaque formation in the
brain. Furthermore, a higher rate of AS
plaque accumulation was the best predic-
tor of future abnormal tau levels in neo-
cortical brain regions, followed by initial
levels of AP (Leal et al., 2018). The authors
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concluded that the brains of preclinical AD
elders have pathological modifications that
predict future hallmarks of the disease.

Next, Leal et al. (2018) evaluated the
correlation between brain A profile in
preclinical AD patients and memory de-
cline as assessed by verbal learning and
visual reproduction tests. Correlations
were analyzed in three subsets of partici-
pants, classified according to basal PIB
values. Individuals with basal PIB levels
<1.07 were classified as PIB negative, and
participants with basal PIB levels <1.30
(including PIB-negative participants)
were classified as low PIB, while the par-
ticipants with basal PIB levels >1.30 were
classified as high PIB. In PIB-negative peo-
ple, neither basal levels of AB plaques nor
the rate of amyloid deposition predicted
memory loss. In low-PIB participants, an
increase in the amyloid deposition rate was
the best predictor of cognitive decline. Fi-
nally, when including low-PIB and high-
PIB preclinical AD participants, basal levels
of AP best predicted memory loss (Leal et
al., 2018). Importantly, a parallel study rein-
forced the correlation between the rate of
AP accumulation and memory decline in
elders, strengthening the concept that the
rate of amyloid accumulation is a good pre-
dictor of future AD pathology (Landau et
al., 2018). The authors suggested that the
correlation between memory decline and
AB plaque accumulation in the low-PIB
group indicates that disease is still spreading
in individuals with the lowest A burden.
When the disease advances, reaching high
basal levels of A B3, the initial amyloid burden
better predicts future memory decline (Leal
etal., 2018).

Leal et al. (2018) analyzed their find-
ings in terms of the amyloid cascade hy-
pothesis of AD. Thus, they propose that
the correlation between faster AB accu-
mulation and abnormal tau levels seen on
PET imaging stems from Af triggering
cortical tau deposition. The authors also
proposed that their data are consistent
with the hypothesis that AB plaque in-
creases precede tau deposition, and both
precede memory impairment. Based on
that interpretation, they suggest that anti-
amyloid therapies should be started even
earlier than expected, in preclinical AD
patients with fast accumulation of AS
plaques, otherwise the disease would be
too advanced to be effective. If that is true,
the inclusion of these patients in future
clinical trials could elucidate the real effi-
cacy of antiamyloid therapies and the rec-
ommended intervention window.

As noted above, however, some re-
searchers dismiss the amyloid hypothesis,

suggesting that the linear model of AB
leading to cognitive impairment is insuf-
ficient at best (Drachman, 2014). More-
over, the amyloid cascade hypotheses do
not answer some questions arising from
the results of the study by Leal et al.
(2018). For example, why did some par-
ticipants accumulate amyloid faster than
others? Leal et al. (2018) observed that
faster AP plaque accumulation predicts
higher tau levels, but the authors mea-
sured tau only at the end of the study. An
intriguing possibility is that A3 “fast accu-
mulators” actually had higher levels of tau
in the beginning of the study, which
caused their amyloid levels to increase.
Recently, it was shown that N-terminal
fragments of tau can induce A secretion
in vitro (Bright et al., 2015), and autopsy
evidence suggests that tau phosphoryla-
tion precedes AB deposition in some indi-
viduals (Jack et al., 2013). Also tau, but
not AB, induced morphological abnor-
malities in the microvasculature of the
brain and induced plasminogen activator
inhibitor-1 activation in microglia in AD
experimental models (Bennett et al,
2018), and both of these events are associ-
ated with neuronal death (Drachman,
2014). Therefore, tauopathy might be the
primary driver of future cognitive decline.

Another interpretation of the data
from the study by Leal et al. (2018) is that
the amyloid deposition rate in patients
with preclinical AD reflects an already
toxic brain environment, which indepen-
dently modulates A3 accumulation and
neuronal death (Drachman, 2014). When
the brain detects homeostatic imbalance,
microglia are activated, culminating into
neuroinflammation. Accordingly, proin-
flammatory signaling is activated in the
brains of AD patients (Heneka et al.,
2015). Microglia activation promotes Af3
clearance by phagocytosis in mice in a
process mediated by TREM2, a cell sur-
face protein highly expressed in microglia
that directly binds to AB (Zhao et al,,
2018), which could explain the slowing
down of AB plaque deposition in patients
with higher amyloid burden. Cross talk
between angiogenesis and neuroinflam-
mation occurs during the progression of
AD, as shown by TNF-a-dependent mi-
croglial activation inducing blood—brain
barrier disruption (Nishioku et al., 2010).
Therefore, neuroinflammation could si-
multaneously affect levels of AB plaques
and brain functionality. In future studies,
the use of PET probes for markers of im-
mune competent cells, such as (*')C-
PBR28 for measuring TSPO (translocator
protein 18 kda) (Kreisl et al., 2013), and
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the measurement of cerebral blood flow
(Roher et al., 2012) would shed light on
the causality of amyloid and other AD
hallmarks during disease progression.

A comprehensive understanding of the
primary neurological changes in AD is es-
sential for the development of more effec-
tive early intervention. Leal et al. (2018)
provided data showing that the rate of
amyloid plaque accumulation is the best
predictor of future abnormal tau levels
and memory decline in patients with pre-
clinical AD with the lowest amyloid bur-
den, demonstrating that A measurement
is suitable for predicting AD pathology.
However, because the causality of AB de-
positions remains controversial, if amy-
loid deposition is not the fundamental
cause of AD, clinical trials targeting amy-
loids are predicted to fail, even if applied
in patients in the early stages of the dis-
ease. Thus, future investigations should
use longitudinal approaches to measure
simultaneously other AD hallmarks, such
as neuroinflammation, tau alterations,
and brain vascularization. This will im-
prove our understanding of causality in
AD, paving the way for the development
of alternative therapies for treating AD.
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