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The greatest unmet therapeutic need in Parkinson’s disease (PD) is a treatment that slows the relentless progression of the symptoms and
the neurodegenerative process. This review highlights the utility of genetics to understand the pathogenic mechanisms and develop novel
therapeutic approaches for PD. The focus is on strategies provided by genetic studies: notably via the reduction and clearance of
a-synuclein, inhibition of LRRK2 kinase activity, and modulation of glucocerebrosidase-related substrates. In addition, the critical role
of precompetitive public-private partnerships in supporting trial design optimization, overall drug development, and regulatory approv-
als is illustrated. With these great advances, the promise of developing transformative therapies that halt or slow disease progression is

a tangible goal.
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Introduction

Parkinson’s disease (PD) is the second most common neurode-
generative disorder and primarily involves worsening motor im-
pairments. In addition, patients experience nonmotor symptoms
during the course of the disease, including constipation, anosmia,
sleep disturbances, cognitive decline, anxiety, and depression.
The motor symptoms can be initially managed with dopaminer-
gic therapies; however, the disease continues to progress. Thus,
PD patients are in urgent need of disease-modifying therapies
that can slow or halt the relentless progression of the symptoms
and the neurodegenerative process.

This review summarizes a symposium held at the 2018 Society
for Neuroscience Annual Meeting and highlights novel advances
in basic and translational research that impact our understanding
of PD pathophysiology and the path to novel treatments for this
devastating disease. Furthermore, it addresses how initial clinical,
genetic, and epidemiological findings contribute to the understand-
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ing of disease pathophysiology and help develop proof-of-concept
clinical trials to address the critical unmet medical needs.

Over the last two decades, considerable progress has been
made in the identification of mutations that cause and/or alter
the risk for PD. The utility of genetics in therapeutics relies pri-
marily on leveraging findings to understand the pathogenesis of
PD. This new knowledge has enabled the development of thera-
pies that are aimed at halting or slowing the underlying disease
process, rather than just ameliorating symptoms. Current ad-
vances in therapeutics aimed at reduction of a-synuclein (a-
syn), inhibition of LRRK2 kinase activity, and modulation of
glucocerebrosidase (GBA)-related glycosphingolipids are dis-
cussed (Fig. 1).

a-syn as therapeutic target in PD

Why target a-synuclein? a-syn is considered an important ther-
apeutic target in PD for several reasons. First, aggregated a-syn is
the major protein constituent of Lewy bodies and Lewy neurites,
which are characteristic features of PD pathology. While this fact
does not prove that the Lewy pathology is toxic, as opposed to an
innocuous epiphenomenon or part of a protective response
whereby the cell sequesters toxic misfolded protein, there is
abundant evidence from experimental model systems indicating
that a-syn aggregates trigger neuronal dysfunction and death.
Second, point mutations in, and multiplications of, the a-syn
gene lead to neurodegenerative conditions that display parkin-
sonism as a feature. Third, injections of a-syn fibrillar aggregates
into animals trigger the misfolding of endogenous, natively un-
folded a-syn with the spreading of a-syn pathology throughout
the brain and progressive loss of nigral dopamine neurons in
cases where the basal ganglia are targeted. This clearly demon-
strates that a-syn can play a pivotal role in the gradual develop-
ment of experimental neuropathology that mimics PD (Brundin
etal.,, 2017; Sardi et al., 2018).
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Figure 1.  Targeted therapies for PD: from genetics to the clinic. Discovery of genes impli-
cated in PD and subsequent understanding of their physiopathological roles provide the foun-
dation for these genetic-based therapeutic approaches. Large natural history studies, novel
biomarker discovery, and disease modeling can help design clinical trials targeting specific
patient populations and suitable endpoints.

During the past decade, a range of experimental therapies that
target a-syn in principally different ways have emerged. It is be-
yond the scope of this brief review to describe all current ap-
proaches, and more extensive accounts already exist in the
literature (Brundin et al., 2017; Wong and Krainc, 2017). We will
focus on the approaches that are either in clinical trials already or
where clinical testing is imminent.

Because the simple overexpression of wild-type a-syn in neu-
rons is associated with a heightened risk for a-syn aggregation
and neurodegeneration, an approach gaining increased support
currently focuses on reducing a-syn mRNA levels in PD. Build-
ing on the recent approval of antisense therapy for spinal muscu-
lar atrophy and the evidence of target engagement using antisense
oligonucleotides to reduce the mutant huntingtin in Huntington
disease (Wild and Tabrizi, 2017; Parente and Corti, 2018), there is
an active program to develop antisense therapy targeting a-syn in
PD (Cole et al., 2016). Another emerging approach to reduce
a-syn expression uses [32-adrenergic agonists. The scientific
premise for this approach is based on a large epidemiological
study demonstrating reduced PD risk in individuals using 82-
adrenergic agonists for asthma, coupled with a series of studies in
cell cultures and animal models suggesting that (32-adrenergic
agonists reduce a-syn mRNA expression through an epigenetic
mechanism presumably involving Histone 3 lysine 27 acetylation
(Mittal et al., 2017).

Another fundamentally different therapeutic approach is to
reduce a-syn aggregation. The small-molecule NPT200-11 (or
its chemical analog tool compound NPT100-18A) interferes
with the interaction between a-syn and lipid membranes, which
is deemed a crucial step in the oligomerization and further aggre-
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gation of a-syn. This molecule reduced behavioral and patholog-
ical aberrations in animal models of synucleinopathies (Wrasidlo
et al., 2016), and a Phase I safety clinical trial was recently com-
pleted (www.ClinicalTrials.gov, Identifier NCT02606682).

Different forms of cellular autophagy, also involving lyso-
somal proteolysis, are considered major pathways through which
a-syn is degraded by cells. There is abundant evidence from ex-
perimental models that mutations and pharmacological inhibi-
tors that disrupt autophagy lead to accumulation and aggregation
of a-syn. Conversely, genetic modifications and small molecules
that enhance autophagy can reduce a-syn pathology. A class of
inhibitors of the tyrosine kinase c-Abl that were developed as
therapeutics in oncology have been found to reduce a-syn pa-
thology in experimental models, and enhanced autophagy has
been suggested to play a key role in mediating the beneficial ef-
fects (Karuppagounder et al., 2014). A safety trial with the c-Abl
inhibitor Nilotinib in 11 patients with PD dementia and Lewy
body dementia received widespread attention in 2016 (Pagan et
al., 2016). While the trial was not designed or powered to detect
efficacy, highly debated anecdotal reports suggested that patients
improved dramatically (Wyse et al., 2016). In the wake of this trial,
and a growing body of scientific evidence that c-Abl inhibitors are
effective in experimental PD (Brahmachari et al., 2017), a series of
Phase Ila trials are now underway in both PD and other synucle-
inopathies (www.Clinical Trials.gov, Identifier NCT03205488).

One decade ago, the notion that a-syn could act as a prion-like
protein was presented (Kordower et al., 2008; Li et al., 2008). The
hypothesis posits that intraneuronal a-syn aggregates are se-
creted into the extracellular space, taken up by neighboring neu-
rons, seed aggregation of endogenous, natively unfolded a-syn in
the cells that they enter, and are transported between brain re-
gions along axons. All of these features have been demonstrated
in cell culture and experimental animal models. The concept of
prion-like propagation of a-syn pathology can explain why Lewy
pathology in PD appears to spread following a stereotypic pattern
involving peripheral nerves and brain regions that are anatomi-
cally interconnected (Brundin and Melki, 2017). A key compo-
nent of this model is that pathogenic a-syn is present in the
extracellular space, which makes it amenable to targeting using
antibody therapy. There are now several clinical programs that use
either active (immunizing the patient with modified a-syn) or pas-
sive (injecting antibodies targeting a-syn at regular intervals) immu-
notherapy approaches to target different conformers of a-syn
aggregates (www.ClinicalTrials.gov, Identifiers NCT03100149,
NCT03318523, NCT03272165, and NCT02267434). These pro-
grams have been described in some detail in other articles, and it is
beyond the scope of this mini-review to compare the different ap-
proaches (Sardi et al., 2018). However, it is notable that the first
report of safety and target engagement using one of the passive im-
munotherapy approaches in patients with PD, assessed as a reduc-
tion of a-syn in blood, has now been published (Jankovic et al.,
2018).

The number and diversity of experimental therapies targeting
a-syn that are now entering the clinical arena are astounding. The
scientific premise that a-syn plays a pivotal role in PD pathogen-
esis is strong, and the experimental data supporting the therapeu-
tic strategies are often compelling. In light of this, there is cause
for cautious optimism that one or more of the new strategies will
eventually prove to be an effective disease-modifying therapy in
PD. However, the path to a clinically proven therapy is going to
be long, costly, and arduous.


https://www.clinicaltrials.gov/ct2/show/NCT02606682?term=NCT02606682&rank=1
https://www.clinicaltrials.gov/ct2/show/NCT03205488?term=NCT03205488&rank=1
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https://www.clinicaltrials.gov/ct2/show/NCT03318523?term=NCT03318523&rank=1
https://www.clinicaltrials.gov/ct2/show/NCT03272165?term=NCT03272165&rank=1
https://www.clinicaltrials.gov/ct2/show/NCT02267434?term=NCT02267434&rank=1
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LRRK?2 as a therapeutic target in PD

The LRRK2 gene encodes for the enzyme leucine-rich repeat ki-
nase 2 (LRRK2), a large protein kinase containing several con-
served regions, including an armadillo repeat (ARM) region, an
ankyrin repeat (ANK) region, a leucine-rich repeat (LRR) do-
main, a kinase domain, a RAS domain, a GTPase domain, and a
WD40 domain. LRRK2 interacts with many key proteins impli-
cated in PD, suggesting that LRRK2 may be a central player in the
pathways underlying disease pathogenesis (Cookson, 2015).

Although missense mutations in LRRK2 are the most com-
mon cause of autosomal dominant PD, the LRRK2 locus also
contains a polymorphic risk factor for idiopathic PD (Simé6n-
Sanchez et al., 2009). Interestingly, genome-wide association
studies implicated LRRK2 as a major susceptibility gene in
chronic inflammatory bowel diseases (Barrett et al., 2008). These
results prompted a growing body of research suggesting a role for
LRRK2 in the regulation of chronic inflammatory responses in
PD (Cook et al., 2017; Hui et al., 2018).

While it is generally believed that pathogenic mutations in
LRRK2 confer a toxic gain of function, and increased LRRK2
kinase activity has been strongly implicated in pathogenesis
(Greggio et al., 2006), the relative activation state of wild-type
LRRK2 in idiopathic PD has largely been unknown. Nevertheless,
there are hints that, independent of mutations, LRRK2 may play
a role in this more common form of the disease. For example,
genetic ablation of endogenous wild-type LRRK2 or pharma-
cological inhibition of its kinase activity in rats protects the
nigrostriatal system from neurodegeneration caused by AAV2-
mediated a-syn overexpression (Daher et al., 2014, 2015). Im-
plicit in the interpretation of these results is the assumption that
endogenous LRRK2 kinase activity must play a pathogenic role in
the neurodegeneration caused by elevated levels of nigrostriatal
a-syn. It has been somewhat difficult, however, to measure
LRRK2 activity or its physiological regulation. Because LRRK2 is
a large (288 kDa) multidomain protein that is expressed at rela-
tively low levels, conventional assays often rely on immunopre-
cipitation, and they typically use artificial substrates or assess
kinase autophosphorylation by autoradiography (Lee et al.,
2012). As such, it has been difficult to examine the activity of
LRRK2 in specific regions or cell types in the brain.

A novel approach has recently been developed to circumvent
some of these limitations (Di Maio et al., 2018). This approach is
based on the proximity ligation (PL) technology that allow direct
detection of proteins, protein interactions, and modifications
with high specificity and sensitivity. There is a growing consensus
that autophosphorylation of LRRK2 at serine 1292 (pSer1292)
correlates with kinase activity (Sheng et al., 2012). Therefore, the
authors developed a PL assay using an antibody that recognizes
pSer1292 and another that recognizes an epitope in the
C-terminal domain of the protein. Only when the 2 antibodies
both bind specifically to their epitopes on LRRK2 is a strong PL
signal generated. In this way, off-target binding is filtered out and
specific binding is amplified. Additionally, the pSer1292 PL assay
can be coupled to quantitative confocal immunofluorescence
measurement of the phosphorylation state of a LRRK2 substrate,
the Rab GTPase, Rabl10, using an antibody against pThr73-
Rab10, which has independently been suggested as a surrogate
index of LRRK2 activity (Thirstrup et al., 2017). Furthermore,
because LRRK2 binds to 14—3-3 protein when it is in an inactive
state; the authors also developed a second PL assay to measure the
interaction of LRRK2 with 14-3-3. Thus, LRRK2 activity is asso-
ciated with (1) strong pSer1292 PL signal, (2) robust pThr73-
Rab10 immunofluorescence signal, and (3) loss of the LRRK2:
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14-3-3 PL signal. Conversely, low LRRK2 kinase activity is
defined by strong LRRK2:14-3-3 PL signal and loss of the
pSer1292 PL and pThr73-Rabl0 signals. The assays were vali-
dated using CRISPR/cas9-edited cells and pharmacological ki-
nase inhibitors. These assays demonstrated excellent cellular and
subcellular resolution, enabling assessment of LRRK2 activity in
specific cell types under various physiological conditions.

When the assays were applied to sections of substantia nigra
from idiopathic PD brains, there was a marked activation of
LRRK2 in dopamine neurons as shown by strong pSer1292 PL
and pThr73-Rab10 signals and an absence of LRRK2:14-3-3 PL
(Di Maio etal., 2018). In contrast, control brains were marked by
strong LRRK2:14-3-3 signal and very little pSer1292 PL or
pThr73-Rab10 immunofluorescence. Thus, these results support
the contention that endogenous wild-type LRRK2 is activated in
the nigrostriatal system in idiopathic PD.

Interestingly, the nigrostriatal activation of LRRK2 was repro-
duced in animal models of disease by systemic administration of
the mitochondrial toxin, rotenone, and by AAV2-mediated over-
expression of a-syn. Each of these models impacts mitochondrial
function and leads to generation of reactive oxygen species, rais-
ing the possibility that LRRK2 may be activated by oxidative
mechanisms. Indeed, treatment of cells with physiological con-
centrations of H,0, caused LRRK?2 activation and phosphoryla-
tion of Rab10, and both effects were blocked by an antioxidant
(Di Maio et al., 2018).

In vivo experiments showed that rotenone-induced nigrostri-
atal activation of LRRK2 and phosphorylation of its substrate,
Rab10, could be blocked by treatment with a brain-penetrant
LRRK2 kinase inhibitor (Di Maio et al.,, 2018). Rotenone-
induced accumulation of pSer129-a-syn was also blocked by the
LRRK2 inhibitor. Because there is evidence that phosphorylation
of a-syn may target it for autophagic degradation, this accumu-
lation may suggest a problem with autophagy after rotenone ex-
posure. Indeed, rotenone causes a marked loss of the lysosomal
markers LAMP1 and LAMP2A, both of which were preserved by
treatment with a LRRK2 kinase inhibitor (Di Maio et al., 2018).

In summary, these studies suggest that, independent of muta-
tions, wild-type endogenous LRRK2 is activated by oxidative
mechanisms in idiopathic PD and that it plays a pathogenic role
in PD-associated neurodegeneration, likely by causing endolyso-
somal dysfunction. Treatment with a LRRK2 kinase inhibitor
preserved endolysosomal markers and prevented the accumula-
tion pSer129-a-syn. In this context, there is a strong rationale for
the use of LRRK2 therapeutics, not just in mutation carriers, but
in those with idiopathic disease. Several LRRK2 inhibitors are
being pursued preclinically and in healthy human volunteers to
assess drug dynamics, brain penetrance, safety, and tolerability
(Alessi and Sammler, 2018).

Glucocerebrosidase as a therapeutic target in PD

Heterozygous mutations in the glucocerebrosidase gene (GBA)
are the most common genetic risk factor for PD. Their discovery
originated from astute observation of parkinsonsim in genetics
clinics during the examination of patients with a rare lysosomal
storage disease, Gaucher disease (Neudorfer et al., 1996). This
initial suggestion was validated by a large collaborative group that
analyzed GBA mutations in a large cohort by sequencing the
entire coding region (Sidransky et al., 2009). Numerous genetic
studies have substantiated the increased frequency of mutations
in GBA in patients with PD and dementia with Lewy bodies
(DLB). Heterozygous carriers of GBA mutations have an in-
creased frequency of PD, and ~7%-10% of sporadic PD patients
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carry mutations in GBA, which confirm mutations in this gene as
the most common genetic predisposing risk factor for PD iden-
tified to date. It is worth noticing that, while 7%-10% of PD
patients carry a GBA mutation, most of the GBA mutation carri-
ers will not develop the disease, suggesting the presence of addi-
tional genetic modifiers (Beavan and Schapira, 2013).

GBA-associated PD is clinically indistinguishable from idio-
pathic PD; however, the presence of GBA mutations accelerates
the disease course and conveys a higher risk for nonmotor symp-
toms (Cilia et al., 2016; Davis et al., 2016; Liu et al., 2016). De-
mentia is a major complication in the late stages of PD that greatly
affects quality of life and survival. GBA mutation carriers exhibit
an earlier and more rapid cognitive decline compared with non-
carriers. The increased risk for dementia in GBA-related PD is
consistent with earlier genetic studies demonstrating increased
frequency of GBA mutations in patients with PD dementia
(PDD) and DLB (Set6-Salvia et al., 2012; Nalls et al., 2013).

The precise mechanisms of by which GBA mutations predis-
pose to synucleinopathies and affect disease progression are still
undefined. The inverse relationship between glucocerebrosidase
activity and oligomeric a-syn led to the proposal of a pathogenic
feedback loop (Mazzulli et al., 2011). This proposal is supported
by a growing body of epidemiological, clinical, and basic science
studies (Sardi et al., 2015; Aflaki et al., 2017). Decreased glucoce-
rebrosidase activity by heterozygous GBA mutations can alter
glycosphingolipid homeostasis and membrane composition.
This sphingolipid membrane imbalance can result in compro-
mised cellular function, including vesicular transport, lysosomal/
endosomal dysfunction, a-syn aggregation, and selective neuronal
susceptibility (Sardi et al., 2015; Galvagnion, 2017; Kim et al.,
2018; Zunke et al., 2018).

Current therapeutic approaches for GBA-related PD are
founded on the premise that GBA-mediated loss of function
causes an abnormal glycosphingolipid environment which im-
pairs cellular protein homeostasis (proteinopathy) and neuronal
function. In animal models of disease, decreased glucocerebrosi-
dase activity results in progressive CNS accumulation of a-syn/
ubiquitin/tau aggregates and associated cognitive and motor
deficits. These pathological and behavioral aberrations can be
ameliorated (and even reversed) by adeno-associated viral over-
expression of human glucocerebrosidase in the CNS, which could
act by restoring membrane glycosphingolipid balance (Sardi et
al., 2011,2013; Rochaetal., 2015; Rockenstein et al., 2016). Based
on these results, several groups are currently developing gene
therapy and small-molecule approaches to increase glucocer-
ebrosidase activity in the CNS.

The use of brain penetrant small molecules has been proposed
to overcome the limited distribution of gene therapy approaches
(Sardi et al., 2015). Brain penetrant, small molecular chaperones
capable of increasing lysosomal glucocerebrosidase activity are
being developed for PD and related synucleinopathies. Two novel
noninhibitory chaperones (NCGC758 and NCGC607) reduced
lipid substrate accumulation, increased glucocerebrosidase lyso-
somal translocation and activity, and reversed a-syn accumula-
tion in human dopaminergic neurons from patients with
Gaucher disease or PD (Aflaki et al., 2016; Mazzulli et al., 2016).
Another chaperone being investigated for PD is ambroxol, a Eu-
ropean Medicines Agency-approved mucolytic. At high concen-
trations, ambroxol reportedly displayed glucocerebrosidase
chaperone activity improving lysosomal transport and reducing
a-syn and S129-phosphorylated a-syn protein levels in mouse
models of synucleinopathy (Migdalska-Richards et al., 2016).
Based on these results, the safety, tolerability, and efficacy of am-
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broxol in PD is currently being tested in Canada and the United
Kingdom (www.ClinicalTrials.gov, Identifiers NCT02941822
and NCT02914366).

An alternative approach to stabilize the abnormal glycosphin-
golipid accumulation is the antagonism of glucosylceramide syn-
thase (GCS). This approach is referred to as substrate reduction
therapy and does not target the mutant enzyme. Substrate reduc-
tion therapy offsets the buildup of lipid substrates, equilibrating
biosynthesis with the reduced breakdown due to GBA mutations.
GCS inhibitors restored glycosphingolipid balance and dimin-
ished a-syn pathological conformers in PD patient neurons with
and without GBA mutations (Kim et al., 2018; Zunke et al., 2018).
Importantly, a novel brain-penetrant GCS inhibitor improved
a-syn processing and behavioral outcomes in mouse models of
GBA-related synucleinopathy and a-syn overexpression (Sardi et
al., 2017). These results have prompted the initiation of a multi-
national double-blind, placebo-controlled study to assess the ef-
ficacy and safety of a GCS inhibitor in PD patients carryinga GBA
mutation (www.ClinicalTrials.gov, Identifier NCT02906020).

Maintaining glucocerebrosidase activity and/or modulation
of glycosphingolipid levels are potential targets for certain forms
of sporadic PD. Similarly to patients carrying GBA mutations, PD
patients carrying nonmutated GBA alleles present decreased glu-
cocerebrosidase in brain, CSF, and blood (Gegg et al., 2012; Par-
netti et al., 2014; Alcalay et al., 2015), suggesting a role for GBA-
related mechanisms in sporadic disease. It is conceivable that
perturbations in glycosphingolipid homeostasis might result in
exacerbation of the disease process. Further studies to better de-
fine patient populations that would benefit from these interven-
tions are ongoing.

Critical path for Parkinson’s: increasing efficiency, safety, and
speed in clinical trials

The current landscape of drug development in PD is rapidly
evolving with numerous novel therapeutics holding great prom-
ise for patients. This exciting pipeline is being fueled by an in-
creased understanding of the underlying pathogenic mechanisms
and by innovative technology developments (Espay et al., 20165
Sardi et al., 2018), which are paving the way to identifying new
treatments with a vision for personalized medicines (Espay et al.,
2017; Kingwell, 2017). Thus, PD therapeutic development is truly
at a transformative time when the hope for halting or slowing
disease progression is a tangible goal.

Despite this sense of hope and optimism, most therapeutic
candidates will not be approved (Kesselheim et al., 2015). Trials
aimed at neuroprotection in PD have provided extensive lessons
over >15 years, with no treatment gaining successful regulatory
approval for disease modification (Stoessl, 2017; Lang and Espay,
2018). The challenges for drug developers include the following:
unpredictable placebo response, absence of biomarkers to enable
go/no go decisions through stages of drug development, lack of
understanding of disease progression (particularly in nonmotor
manifestations of the disease), lack of diagnostic tools, and need
for outcome measures that objectively measure clinically mean-
ingful changes. Despite such common themes, it has not been
possible to capitalize on failed clinical trials beyond conceptual
learning. There is increased recognition of the value of open sci-
ence and data sharing initiatives (Open Science Collaboration,
2015; Frasier, 2016), which will be key to developing disease-
modifying therapies for slowly progressing and highly variable
diseases, such as PD (Mursaleen et al., 2017).


https://www.clinicaltrials.gov/ct2/show/NCT02941822?term=NCT02941822&rank=1
https://www.clinicaltrials.gov/ct2/show/NCT02914366?term=NCT02914366&rank=1
https://www.clinicaltrials.gov/ct2/show/NCT02906020?term=NCT02906020&rank=1
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Public-private partnerships (PPPs) provide a collaborative
platform to advance goals that benefit all stakeholders. Shared
goals for PPPs focus on enhancing consistency and scientific un-
derpinnings of medical product development to decrease the
time, risk, and cost associated with bringing new products to
patients. There are a growing number of precompetitive consor-
tia focused on PD. These include initiatives led by both gov-
ernment and advocacy organizations including Parkinson’s Pro-
gression Marker Initiative (2011), Parkinson’s Disease Biomark-
ers Program (Rosenthal et al., 2016), Innovative Medicines
Initiative (IMI) (Hofmann-Apitius et al., 2015), Joint Pro-
gramme Neurodegenerative Disease (JPND) (Lerche et al., 2015;
Heinzel et al., 2017), International Parkinsonism Genetics
Network (http://pdgenetics.org/), and more recently Accelerat-
ing Medicines Partnership-Parkinson’s Disease (https://www.nih.
gov/research-training/accelerating-medicines-partnership-amp/
parkinsons-disease). Such efforts commonly focus on biomarker
discovery and natural history studies with the goal of identifying
novel biomarkers as well as novel risk genes (Chen-Plotkin et al.,
2018).

Despite the impressive progress within individual consortia,
more can be gained by integrating diverse data collected across
different cohorts and clinical trials. The Critical Path Institute, a
nonprofit PPP, orchestrates the sharing of data, expertise, and
knowledge among industry, regulatory authorities, government,
patient advocacy groups, and academia in the precompetitive
space to improve the drug development pathway (Brumfield,
2014; Parekh et al., 2015; Maxfield et al., 2017).

The Critical Path for Parkinson’s (CPP) consortium was
launched in 2015 as a precompetitive initiative aimed at sharing
resources and data and advancing novel drug development tools
for regulatory endorsement (Stephenson et al., 2015). The goal
was to replicate the success of Critical Path Institute’s Alzheimer’s
disease consortium, including the following: development of
open access consensus data standards (Neville et al., 2017), inte-
grating data from global sources to produce a clinical trial pla-
cebo database (Neville et al., 2015), and achieving regulatory
acceptance of biomarkers and disease progression modeling tools
(Hill et al., 2014; Romero et al., 2015; Stoessl, 2017).

CPP is unique compared with other precompetitive initiatives
in that its focus is on data-driven strategies to advance regulatory
science; representatives from health authority agencies are par-
ticipants in the consortium’s activities to assure alignment. CPP
acquires and integrates patient-level data from around the world.
These data from ongoing, and completed PD trials and cohorts
can offer key insights to guide and improve development of new
therapies. The deep reservoir of organized data serves as the plat-
form to formally bring the data to regulatory agencies for review.
A key aim is to develop quantitative model-based tools based on
patient-level data from cohorts and clinical trials to ensure con-
fidence that the clinical trial designs are appropriate. Qualified
biomarkers and regulatory-endorsed tools are made publicly
available to benefit the community and to improve trial efficiency
in the future.

Understanding the natural progression of PD is critical for
research and therapeutic development. Thus, great focus has
been placed on advancing genetically defined targets, biomarker-
driven phenotypes, precision medicine strategies, and early diag-
nosis (Fereshtehnejad et al., 2017; Jennings et al., 2017; Postuma
et al., 2017). Global databases consisting of integrated data are
needed to define disease progression across the spectrum of such
a heterogeneous disease. Multiple cohort studies have been de-
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signed globally which hold the potential to identify PD subtypes
and factors influencing the disease course.

In <2 years, CPP has created a large, pooled database of de-
identified, patient-level data that describes the disease progres-
sion of PD patients (>5000 individual patient records) beginning
at the onset of motor symptoms. CPP is advancing PD modeling
tools in formal paths set in place with FDA and European Medi-
cines Agency to advance drug development with direct input
from the regulatory authorities. Recently, CPP has also achieved
letters of support from the FDA (FDA, 2018) and European Med-
icines Agency (European Medicines Agency, 2018) for the use of
dopamine transporter imaging as an exploratory enrichment
biomarker in PD clinical trials targeting early motor stages of the
disease. CPP continues to develop modeling and simulation tools
for use in Phase II and III PD clinical trials.

In conclusion, there is an urgent need for effective treatments
to slow disease progression in PD. Two decades of intense basic
and clinical research are launching a variety of novel therapeutics
into the clinical arena. Recent advances in biomarkers, digital
technology, and disease modeling are also prompting a great deal
of optimism. This next generation of PD clinical studies incorpo-
rates genetic and biomarker information to define suitable pa-
tient populations and trial endpoints for disease progression.
Despite this optimistic outlook, it is important to underscore that
this is just the beginning of a long journey; there are many chal-
lenges ahead. The development of PD therapeutics is particularly
difficult because of the slow progression of the disease, the vari-
ability in clinical course between patients, and the lack of vali-
dated biomarkers that reflect brain pathology. Therefore, it is
imperative to continue to accrue clinical and observational data,
discover additional molecular and biomarker endpoints, validate
emerging technologies, and develop global collaborations to en-
able more efficient clinical trials. We remain optimistic that this
next decade will witness great advances in the treatment for PD.
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