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Abstract: Accurate diagnoses of superficial and deep dermal burns are difficult to make even 
by experienced investigators due to slight differences in dermis damage. Many imaging 
technologies have been developed to improve the burn depth assessment. But these imaging 
tools have limitations in deep imaging or resolving ability. Photoacoustic imaging is a hybrid 
modality combining optical and ultrasound imaging that remains high resolution in deep 
imaging depth. In this work, we used dual-scale photoacoustic imaging to noninvasively 
diagnose burn injury and monitor the burn healing. Real-time PACT provided cross-sectional 
and volumetric images of the burn region. High-resolution PAM allowed for imaging of  
angiogenesis on the hyperemic ring. A long-term surveillance was also performed to assess 
the difference between the two damage degrees of burn injuries. Our proposed method 
suggests an effective tool to diagnose and monitor burn injury. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 
Burns are easily caused under thermal, electrical, chemical and radioactive threats. There are 
more than 486,000 burn injuries receiving medical intervention per year in the United States, 
estimated by the American Burn Association (ABA). Approximately 40,000 of these injuries 
require hospitalization and 3,275 die annually [1]. Severe skin burn injury can lead to not 
only local tissue damage but multiple organ dysfunction syndromes, which urgently demand 
accurate diagnosis for early burn treatment. 

Clinical evaluation of burn depends on two important factors: the depth and area of burn 
injury. In term of depth, burns are categorized into epidermal burn, superficial dermal burn 
(SDB), deep dermal burn (DDB) and deep burn (DB) [2]. Epidermal burn and SDB, as 
superficial partial burns, can heal spontaneously without surgical therapy, whereas tangential 
excision and skin grafting are necessary for a majority of DDB and DB treatment. Hence, 
inaccurate diagnosis might bring improper therapies, resulting in the abuse of medical 
resources in SDB treatment and the loss of perfect time to cure DDB. However, there are 
difficulties distinguishing SDB from DDB because of the small differences in destruction of 
papillary and reticular dermis. Clinically, diagnosis of burn depth mainly depends on visual 
observation or pin-prick tests [3], which are greatly limited by surgeons’ experiences and 
usually inaccurate. Burn biopsy is considered as the gold standard of burn depth assessment. 
But multiple biopsies are commonly required because of inhomogeneous burn depth in 
different sites, which causes additional scars and more diagnostic time delay. 

Many technologies have been developed to produce objective judgments so far, such as 
laser Doppler imaging (LDI) [4], polarization-sensitive optical coherence tomography 
(PSOCT) [5,6]. LDI detects blood flow that might be reduced or stopped within burn region. 
The velocity of blood flow is relative to burn depth, where upper skin layer has faster blood 
flow and the deeper is slower. LDI system enables noncontact, wide area measurements 
through mapping two-dimensional color-coded images of blood flow. However, the 
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we reconstructed 3D structures of burn region and quantified the volume changes during the 
burn healing process. Meanwhile, high-resolution images of angiogenesis on burn hyperemic 
ring were acquired through PAM imaging. The hyperemic ring is the boundary of thermal 
damage on skin surface. Imaging hyperemic ring would help better understand how burn 
heals. To the best of our knowledge, we for the first time employed dual-scale PA imaging on 
burn study in a long-term monitoring. Our method might provide new insights in burn 
diagnosis and healing mechanism study. 

2. Methods 
2.1 Animal preparation 

All in vivo animal experimental procedures were approved by the Institutional Animal Care 
and Use Committee of Xiamen University. Male white mice (ICR, 20~22 g), bought from 
Xiamen University Laboratory Animal Center, were anesthetized using inhalation of 2% 
isoflurane to guarantee the entire procedure performed under anesthesia. The mouse hair in 
dorsal skin was firstly shaved and then depilated gently using hair removal creams. To avoid 
creams-induced chemical irritation on skin, the mice were raised normally for 24 h before 
burn modeling. Burn injuries were made on exposed dorsal skin by direct contact with an 
electric soldering iron thermostatically set to a temperature at 200°C, which is confirmed by a 
thermal temperature sensor (Ax5, FLIR). Mice were randomly divided into two groups and 
inflicted heating with 5 and 8 seconds duration, respectively, to model SDB and DDB 
injuries. To make different models, the burn areas were 10 × 6 mm2 shaped in ellipse for 
PACT and 4 mm diameter round for PAM, respectively. Before imaging, ultrasonic gel was 
applied on skin and a customized water tank filled with deionized water was placed upon gel 
to optimize PA signals transmission efficiency. The bottom of water tank was a layer of 
transparent polyethylene membrane that allows laser beam and acoustic wave to travel 
through. While imaging, the mice limbs were fixed and kept still to avoid image artifacts 
brought by skin movement. A time point experiment was performed to investigate the PA 
signal changes of mouse skin healing after a burn injury. The healing process was completely 
natural without any ointments promotion. 

2.2 PACT imaging 

PACT images were collected using a commercial imaging system (Vevo LAZR-X, 
FUJIFILM VisualSonics Inc.) with a 40 MHz ultrasound array transducer (MX550D, 
FUJIFILM VisualSonics Inc.). When imaging, the ultrasound probe was immersed in water 
for acoustic coupling. The laser pulse was tunable in visible and near-infrared spectrum (680-
970 nm and 1200-2000 nm), which was delivered through optical fiber bundles connected to 
both sides of ultrasound transducer and converged in front of transducer arrays. The operating 
laser wavelength was 680 nm in anatomical imaging for the reason that it was the shortest 
available wavelength with highest hemoglobin absorption. Meanwhile, 750/850 nm were 
selected in functional imaging because oxyhemoglobin (HbO2) have higher absorption than 
deoxyhemoglobin (HbR) at 750 nm but HbR is dominant at 850 nm. The distinct molar 
extinction coefficients enable measuring the concentrations of HbO2 and HbR to calculate sO2 
by the following equation [18]: 

 
2

2

2

[HbO ]
sO =

[HbR]+[HbO ]
.  (1) 

The PACT imaging head was stabilized to a stepper motor to perform 3D volumetric 
imaging under a field of view (FOV) of 15 × 12 mm2 with a step size of 0.1 mm, which 
generated about 150 frames images per scan. After that, multi-wavelength PA data were 
stored and reconstructed in VevoLab software (FUJIFILM VisualSonics Inc.) to display PA 
and sO2 images. Here, every frame of 3D data presented cross-sectional view of skin tissue 
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and could be processed individually. Burn region was outlined for quantification by circling 
PA burn region of interest (ROI) in every frame and fitting all circles to generate 3D burn 
volume and calculate signal intensities. 

2.3 PAM imaging 

We built one laboratory high-resolution PAM to image the partial burn injury. Our PAM was 
characterized to have a lateral resolution of 10 μm at depth of 0.7 mm, which was enough to 
satisfy our imaging requirements. The laser wavelength is 532 nm with 7 ns pulse width 
(AONano532-1-40-V, Advanced Optowave Corporation), where hemoglobin has high molar 
extinction coefficient. A collimated laser beam was focused by a 4 × objective lens (RMS4X, 
Thorlabs) on skin surface, traveling through an optical-acoustic combiner designed to 
separate laser beam and acoustic wave. The incident laser pulse energy focused on sample 
surface is well within the American National Standards Institute safety limits [19]. The laser 
induced PA signals were then acquired by a 50-MHz central frequency ultrasound transducer 
(V214-BB-RM, Olympus) and digitized by a 14-bit data acquisition card (CSE1422, GaGe 
Applied Science). A raster scanning was performed to acquire data. Two-dimensional 
maximum-amplitude-projection (MAP) images were reconstructed by projecting maximum 
PA amplitude of each one-dimensional depth-resolved data. The reconstructed gray PAM 
images were processed and pseudo colored to enhance image contrast. 

2.4 Histological examination 

The mice were sacrificed after experiments. Then skin tissues containing burn injury were 
biopsied and sectioned. The sections were then fixed and stained with hematoxylin and eosin 
(H&E). 

3. Results and discussion 
As depth measurement is important in burn diagnosis, we first investigated the depth changes 
of mice burn healing process in SDB and DDB groups (n = 3, respectively). To evaluate 
depth values, cross-sectional PA images were acquired at pre-burn and post-burn 1, 2, 3, 4, 5, 
7, 10, 14, 21 days (Fig. 2). Here, burn depths at each time point were calculated by measuring 
the PA-signal distance from skin surface to underlying layer as indicated by white double 
arrows in Figs. 2(a) and 2(c). The quantitative burn depth changes were plotted in Fig. 2(e). 
Before burn damage, the whole normal skin depths were 0.71 ± 0.01 mm and 0.54 ± 0.03 mm 
in SDB and DDB, respectively. When thermal damage occurred, the burn depth rose sharply 
and stayed high in both SDB and DDB. The difference was, in the first three days, the mean 
burn values of DDB depth (lowest, 1.68 ± 0.10 mm) were deeper than 1.6 mm while SDB 
(highest, 1.55 ± 0.15 mm) were lower than 1.6 mm. Therefore, the depth value of 1.6 mm 
could be a critical point distinguishing SDB from DDB [13]. The signals pointed by the 
yellow arrows came from the eschar of the skin surface. The more severe burn led to stronger 
PA signal since the light absorption of the eschar was much higher than that of hemoglobin. 
This could explain why PA signal intensity of skin surface, compared to that in SDB, was 
much higher in DDB in Fig. 2(c). As burn wound recovering, the burn depth started to 
decrease gradually from day 4. Hence, the depth diagnosis should be performed as early as 
possible in the first three days in case of inaccurate results. Since post-burn day 14, burn 
depth had turned down to a level as low as normal skin. 

As for cross-sectional sO2 images in Figs. 2(b) and 2(d), the burn depths also changed 
along with burning process. But the regularity was not as continuous as PA images showed, 
because sO2 was changeable owing to blood perfusion. Therefore, the depth of sO2 is 
unreliable to assess burn depth. The more important point conveyed in sO2 images was that 
central area of burn had more hypoxia compared against surrounding area in first week. This 
was mainly caused by dermis damage lacking blood perfusion, especially in DDB. High 
magnification (100-fold) H&E histology images of skin tissues in SDB and DDB were 
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