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Abstract: Accurate diagnoses of superficial and deep dermal burns are difficult to make even
by experienced investigators due to slight differences in dermis damage. Many imaging
technologies have been developed to improve the burn depth assessment. But these imaging
tools have limitations in deep imaging or resolving ability. Photoacoustic imaging is a hybrid
modality combining optical and ultrasound imaging that remains high resolution in deep
imaging depth. In this work, we used dual-scale photoacoustic imaging to noninvasively
diagnose burn injury and monitor the burn healing. Real-time PACT provided cross-sectional
and volumetric images of the burn region. High-resolution PAM allowed for imaging of
angiogenesis on the hyperemic ring. A long-term surveillance was also performed to assess
the difference between the two damage degrees of burn injuries. Our proposed method
suggests an effective tool to diagnose and monitor burn injury.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Burns are easily caused under thermal, electrical, chemical and radioactive threats. There are
more than 486,000 burn injuries receiving medical intervention per year in the United States,
estimated by the American Burn Association (ABA). Approximately 40,000 of these injuries
require hospitalization and 3,275 die annually [1]. Severe skin burn injury can lead to not
only local tissue damage but multiple organ dysfunction syndromes, which urgently demand
accurate diagnosis for early burn treatment.

Clinical evaluation of burn depends on two important factors: the depth and area of burn
injury. In term of depth, burns are categorized into epidermal burn, superficial dermal burn
(SDB), deep dermal burn (DDB) and deep burn (DB) [2]. Epidermal burn and SDB, as
superficial partial burns, can heal spontaneously without surgical therapy, whereas tangential
excision and skin grafting are necessary for a majority of DDB and DB treatment. Hence,
inaccurate diagnosis might bring improper therapies, resulting in the abuse of medical
resources in SDB treatment and the loss of perfect time to cure DDB. However, there are
difficulties distinguishing SDB from DDB because of the small differences in destruction of
papillary and reticular dermis. Clinically, diagnosis of burn depth mainly depends on visual
observation or pin-prick tests [3], which are greatly limited by surgeons’ experiences and
usually inaccurate. Burn biopsy is considered as the gold standard of burn depth assessment.
But multiple biopsies are commonly required because of inhomogeneous burn depth in
different sites, which causes additional scars and more diagnostic time delay.

Many technologies have been developed to produce objective judgments so far, such as
laser Doppler imaging (LDI) [4], polarization-sensitive optical coherence tomography
(PSOCT) [5,6]. LDI detects blood flow that might be reduced or stopped within burn region.
The velocity of blood flow is relative to burn depth, where upper skin layer has faster blood
flow and the deeper is slower. LDI system enables noncontact, wide area measurements
through mapping two-dimensional color-coded images of blood flow. However, the
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correlation between depth of burns and blood flow is not straightforward, resulting in poor
resolution for depth assessment. PSOCT can provide quantitative depth measurement of burn
injury by cross-sectional imaging with high spatial resolution. It measures depth resolved
optical polarization changes, caused by thermal damages of collagen, of reflected light from
burn tissues. The PSOCT signal is closely related to tissue’s optical scattering coefficient,
which conversely restricts itself to a shallow imaging depth of about 1 mm because of strong
light scattering. Therefore, a noninvasive and fast imaging system with accurate diagnosis is
highly desirable to clinical burn depth evaluation.

Photoacoustic (PA) imaging is a hybrid in vivo imaging technique combined optical and
ultrasound imaging. It acoustically detects light absorption in tissue based on the PA effect.
Compared to optical scattering in tissue propagation, ultrasonic scattering is 2~3 orders of
magnitude weaker, possessing deeper transmission ability of PA wave. PA imaging has two
main implementations as PA computed tomography (PACT) and PA microscopy (PAM).
Utilizing high energy pulsed laser and ultrasonic transducer array, PACT can achieve an
imaging depth up to 4 centimeters maintaining a spatial resolution of 255 pum [7], which can
be applied to investigate heart and brain diseases in macroscale [8,9]. PAM has a better lateral
resolution of even less than 1 um [10] by focusing laser beam and acoustic wave tightly but a
lower imaging depth within millimeters. In microscale, PAM can be used to trace drug
delivery in tumor microvessels [11,12]. Blood perfusion and neovascularization provide
nutrients and remove waste in burn wound recovery. In particular, hemoglobin is a natural
endogenous PA contrast agent in visible spectrum. Hence, PA imaging can realize structural
and functional imaging of burn healing by detecting hemoglobin absorption. Several studies
showed the potential application of PA imaging on detecting animal skin tissue changes
induced by thermal injury. Real-time PACT was used to assess burn depth and visualize
distribution of albumin in burn model in vivo [13—15] as well as monitor skin tissue
regeneration [16]. In previous work, researches performed three-dimensional (3D) imaging of
burn, but did not acquire functional information and measure burn volume changes. Acoustic-
resolution PAM was used to image acute pig skin burn ex vivo [17]. However, microvessel
changes in hyperemic ring were not observed during burn healing.

Fig. 1. Schematic of dual-scale photoacoustic imaging on skin burn injury. On the left is the
PACT imaging model in dashed box and a representative PACT image of burn. On the right is
the PAM imaging model and a PAM image of burn. UT, ultrasound transducer; OL, objective
lens.

In this work, we intend to apply PACT and PAM together to realize dual-scale
surveillance and assessment of two damage degrees of burn injuries (i.e. SDB and DDB) (Fig.
1). By volumetric imaging at multi-wavelength, PACT provided 3D structural and functional
information of burn zone. In this way, we were able to analyze the differences of burn depths
and oxygen saturation (sO,) changes between SDB and DDB for accurate diagnosis. Besides,
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we reconstructed 3D structures of burn region and quantified the volume changes during the
burn healing process. Meanwhile, high-resolution images of angiogenesis on burn hyperemic
ring were acquired through PAM imaging. The hyperemic ring is the boundary of thermal
damage on skin surface. Imaging hyperemic ring would help better understand how burn
heals. To the best of our knowledge, we for the first time employed dual-scale PA imaging on
burn study in a long-term monitoring. Our method might provide new insights in burn
diagnosis and healing mechanism study.

2. Methods
2.1 Animal preparation

All in vivo animal experimental procedures were approved by the Institutional Animal Care
and Use Committee of Xiamen University. Male white mice (ICR, 20~22 g), bought from
Xiamen University Laboratory Animal Center, were anesthetized using inhalation of 2%
isoflurane to guarantee the entire procedure performed under anesthesia. The mouse hair in
dorsal skin was firstly shaved and then depilated gently using hair removal creams. To avoid
creams-induced chemical irritation on skin, the mice were raised normally for 24 h before
burn modeling. Burn injuries were made on exposed dorsal skin by direct contact with an
electric soldering iron thermostatically set to a temperature at 200°C, which is confirmed by a
thermal temperature sensor (Ax5, FLIR). Mice were randomly divided into two groups and
inflicted heating with 5 and 8 seconds duration, respectively, to model SDB and DDB
injuries. To make different models, the burn areas were 10 x 6 mm? shaped in ellipse for
PACT and 4 mm diameter round for PAM, respectively. Before imaging, ultrasonic gel was
applied on skin and a customized water tank filled with deionized water was placed upon gel
to optimize PA signals transmission efficiency. The bottom of water tank was a layer of
transparent polyethylene membrane that allows laser beam and acoustic wave to travel
through. While imaging, the mice limbs were fixed and kept still to avoid image artifacts
brought by skin movement. A time point experiment was performed to investigate the PA
signal changes of mouse skin healing after a burn injury. The healing process was completely
natural without any ointments promotion.

2.2 PACT imaging

PACT images were collected using a commercial imaging system (Vevo LAZR-X,
FUJIFILM VisualSonics Inc.) with a 40 MHz ultrasound array transducer (MXS550D,
FUJIFILM VisualSonics Inc.). When imaging, the ultrasound probe was immersed in water
for acoustic coupling. The laser pulse was tunable in visible and near-infrared spectrum (680-
970 nm and 1200-2000 nm), which was delivered through optical fiber bundles connected to
both sides of ultrasound transducer and converged in front of transducer arrays. The operating
laser wavelength was 680 nm in anatomical imaging for the reason that it was the shortest
available wavelength with highest hemoglobin absorption. Meanwhile, 750/850 nm were
selected in functional imaging because oxyhemoglobin (HbO,) have higher absorption than
deoxyhemoglobin (HbR) at 750 nm but HbR is dominant at 850 nm. The distinct molar
extinction coefficients enable measuring the concentrations of HbO, and HbR to calculate sO,
by the following equation [18]:

[HbO:]

$O=———— (M

[HbR]+[HbO:]

The PACT imaging head was stabilized to a stepper motor to perform 3D volumetric
imaging under a field of view (FOV) of 15 x 12 mm? with a step size of 0.1 mm, which
generated about 150 frames images per scan. After that, multi-wavelength PA data were
stored and reconstructed in VevoLab software (FUJIFILM VisualSonics Inc.) to display PA
and sO, images. Here, every frame of 3D data presented cross-sectional view of skin tissue
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and could be processed individually. Burn region was outlined for quantification by circling
PA burn region of interest (ROI) in every frame and fitting all circles to generate 3D burn
volume and calculate signal intensities.

2.3 PAM imaging

We built one laboratory high-resolution PAM to image the partial burn injury. Our PAM was
characterized to have a lateral resolution of 10 um at depth of 0.7 mm, which was enough to
satisfy our imaging requirements. The laser wavelength is 532 nm with 7 ns pulse width
(AONano532-1-40-V, Advanced Optowave Corporation), where hemoglobin has high molar
extinction coefficient. A collimated laser beam was focused by a 4 x objective lens (RMS4X,
Thorlabs) on skin surface, traveling through an optical-acoustic combiner designed to
separate laser beam and acoustic wave. The incident laser pulse energy focused on sample
surface is well within the American National Standards Institute safety limits [19]. The laser
induced PA signals were then acquired by a 50-MHz central frequency ultrasound transducer
(V214-BB-RM, Olympus) and digitized by a 14-bit data acquisition card (CSE1422, GaGe
Applied Science). A raster scanning was performed to acquire data. Two-dimensional
maximum-amplitude-projection (MAP) images were reconstructed by projecting maximum
PA amplitude of each one-dimensional depth-resolved data. The reconstructed gray PAM
images were processed and pseudo colored to enhance image contrast.

2.4 Histological examination

The mice were sacrificed after experiments. Then skin tissues containing burn injury were
biopsied and sectioned. The sections were then fixed and stained with hematoxylin and eosin
(H&E).

3. Results and discussion

As depth measurement is important in burn diagnosis, we first investigated the depth changes
of mice burn healing process in SDB and DDB groups (n = 3, respectively). To evaluate
depth values, cross-sectional PA images were acquired at pre-burn and post-burn 1, 2, 3, 4, 5,
7, 10, 14, 21 days (Fig. 2). Here, burn depths at each time point were calculated by measuring
the PA-signal distance from skin surface to underlying layer as indicated by white double
arrows in Figs. 2(a) and 2(c). The quantitative burn depth changes were plotted in Fig. 2(e).
Before burn damage, the whole normal skin depths were 0.71 + 0.01 mm and 0.54 + 0.03 mm
in SDB and DDB, respectively. When thermal damage occurred, the burn depth rose sharply
and stayed high in both SDB and DDB. The difference was, in the first three days, the mean
burn values of DDB depth (lowest, 1.68 + 0.10 mm) were deeper than 1.6 mm while SDB
(highest, 1.55 + 0.15 mm) were lower than 1.6 mm. Therefore, the depth value of 1.6 mm
could be a critical point distinguishing SDB from DDB [13]. The signals pointed by the
yellow arrows came from the eschar of the skin surface. The more severe burn led to stronger
PA signal since the light absorption of the eschar was much higher than that of hemoglobin.
This could explain why PA signal intensity of skin surface, compared to that in SDB, was
much higher in DDB in Fig. 2(c). As burn wound recovering, the burn depth started to
decrease gradually from day 4. Hence, the depth diagnosis should be performed as early as
possible in the first three days in case of inaccurate results. Since post-burn day 14, burn
depth had turned down to a level as low as normal skin.

As for cross-sectional sO, images in Figs. 2(b) and 2(d), the burn depths also changed
along with burning process. But the regularity was not as continuous as PA images showed,
because sO, was changeable owing to blood perfusion. Therefore, the depth of sO, is
unreliable to assess burn depth. The more important point conveyed in sO, images was that
central area of burn had more hypoxia compared against surrounding area in first week. This
was mainly caused by dermis damage lacking blood perfusion, especially in DDB. High
magnification (100-fold) H&E histology images of skin tissues in SDB and DDB were
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illustrated in Fig. 2(f), verifying the success in burn modeling. The white dashed lines
indicate the boundary between burn and non-burn, which lies in papillary dermis in SDB
while reticular dermis in DDB. The thickness of DDB was also thicker than SDB, confirming
more severe thermal damage in DDB.
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Fig. 2. Cross-sectional PACT images of burn injury. Cross-sectional PA structural images of
(a) SDB and (c) DDB injuries are presented at selected time points. The yellow arrows indicate
the eschar at skin surface after thermal damage. The white double arrows mark the burn depth
of burn wound. Cross-sectional sO, images of (b) SDB and (d) DDB injuries are presented at
selected time points. () Quantitative burn depth changes of two burn models in pre-burn and
post-burn 21 days. DDB has deeper thermal damage than SDB. (f) H&E staining of skin
tissues right after making SDB and DDB. Scale bar is 1 mm.

To study volumetric burn healing process, three-dimensional scanning was performed to
image the entire burn region and obtain 3D PA structural and functional images (Fig. 3), after
the procedure of cross-sectional PACT imaging. Reconstructed images of 3D burn area were
shown in top-view with MAP rendering, providing overall observation. In Figs. 3(a) and 3(b),
there are some similar tendencies in both SDB and DDB. Before burn damage, there were
complete and numerous subcutaneous blood vessels in normal skin tissues. At post-burn day
1, the blood vessel signals disappeared and a large piece of signals emerged in the central
FOV as indicated by yellow dashed circle. These signals were mainly composed of eschar
and stasis of burn wound, which were very consistent with cross-sectional images in Figs.
2(a) and 2(c). However, compared with SDB, DDB image showed a brighter PA signal in
central area on day 1 because of more severe thermal damage. Blood vessels regenerated at
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day 3 and began to grow toward the center. At day 10, the faint circular signals in center are
supposed from remaining red spot generated by sloughed eschar. After day 14, burn signals
faded away and blood vessels were clearly shown. From normalized quantitative PA values of
3D burn region in Fig. 3(e), DDB reached the biggest value on day 1, which was much higher
than SDB because of the strong absorption of eschar. The value of DDB then fell and rose to
second peak and fell again eventually. SDB value rose linearly until day 4 and fell down after
that, which was possibly caused by blood repair and diminished blood perfusion.
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Fig. 3. 3D PACT imaging of burn injury at different days. Top-view PA images of (a) SDB
and (b) DDB injuries. The burn region, indicated by yellow dashed circle, show strong PA
signal due to optical absorption of eschar and stasis in early stage. (c) (d) Relative sO, images
of (a) and (b). DDB has lower sO, in burn center because of suffering more severe thermal
damage. Quantitative analysis of (¢) volume photoacoustic signal amplitudes and (f) sO,
averages of burn zone. Scale bar is 3 mm.

Figures 3(c) and 3(d) show the 3D sO, corresponding to Figs. 3(a) and 3(b), respectively.
In DDB, there is an obvious hypoxia area in the central burn wound in Fig. 3(c), consistent
with cross-sectional images in Fig. 2(d). The quantitative sO, average of burn region shows
the difference between SDB and DDB in Fig. 3(f). SDB had a faster rate of ascent than DDB
because DDB suffered more severe burn injury and had slower blood perfusion, resulting in
slower sO, changes. The lower sO, of DDB can be used as a supplementary judgment to
distinguish DDB from SDB. But it should be noticed that the sO, values were very close for
both SDB and DDB on day 1, at ~24%. Therefore, the best time to detect sO, is on day 2 and
day 3. The dividing value was supposed to be 40%, as SDB reached 44.9 + 2.2% and 47.8 +
2.2% while DDB reached 33.5 + 2.8% and 38.6 + 3.1% at day 2 and day 3, respectively. It
can be deduced that measuring burn depth assessment and 3D sO, values together would
bring a more accurate burn diagnosis at day 2 and day 3.
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Burn region volume is another important indicator to assess healing process. To verify the
hypothesis that burn volume declined linearly with burn healing, we investigated volume
changes in burn injuries. After 3D PACT imaging, we were capable of measuring
approximate burn region volumes. Burn region outline was drawn in the VevoLab via
depicting the edge of burn wound frame by frame and shown in 3D meshes with surface
rendering. After fitting, the software calculated out the approximate value of burn volume.
Because normal skin tissues have no burn injury, Fig. 4 starts at day 1 without pre-burn
volume. The reconstructed shape of burn area was an approximate ellipsoid, which was
consistent with burn model made in Methods 2.1. The volume peak was not at day 1 but day
2, because tissue response to burn continued generally within 48 hours and volume reached a
maximum at day 2. With burn healing, the volume shrank piece by piece to nearly none at
day 21. Compared with DDB, SDB healed much better with smaller burn volume attributable
to weaker thermal damage in skin tissue. This result is consistent with our assumption.
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Fig. 4. Volume changes of burn injuries via time increases. Approximate 3D maps of
reconstructed burn region of (a) SDB and (b) DDB. The elliptical shapes are well consistent
with burn models. (¢) Quantitative analysis of volume changes of SDB and DDB, where DDB
has a larger volume due to more severe thermal damage. Scale bar is 2.5 mm.

Most of previous study focused on macroscale pathological changes about burn healing
process. Here, we applied high-resolution PAM to image burn wound, especially hyperemic
ring that defines the boundary of the thermal damage. Imaging on hyperemic ring would help
understand the burn healing process better. Because we were more concerned about the
changes of blood vessels and the results of SDB and DDB showed similar features in the
hyperemic ring PAM images, we only presented the DDB results (Fig. 5). Figure 5(a) shows
the PAM images of burn healing within 10 days. The bright discoidal signals in the first two
days were skin surface eschar and faded away as time went by. PAM images illustrate clear
micro-vessels growing in hyperemic ring, indicated by white arrows, during burn healing.
The blood vessels in hyperemic ring emerged at day 2 and became more obvious. To
quantitatively calculate the vessel densities, the vessel structures without central eschar
signals were extracted through skeletonization algorithm [20], which matched well with the
PAM images as Fig. 5 (b) showed the result of day 4. From Fig. 5(c), it could be seen that the
blood vessel density rose to peak at day 4 and then fell with burn healing, showing a similar
changing tendency in PACT. The denser blood vessels induced relatively high sO, in early
stage as measured in PACT. The inner diameter of the hyperemic ring was calculated as well
to quantify the shrinkage rate as shown in Fig. 5(d). The descent rate was in good agreement
with the decreasing tendency measured in burn depth and volume changes in PACT, which
remained high in the first three days and declined gradually with burn healing. The slow
changes, in early stage, of either hyperemic ring shrinkage or burn region volume reduction
indicated that skin tissue requires longer response time to rescue from acute burn injury.

The results acquired from PACT and PAM showed pathological changes of burn tissues
from macroscale to microscale. In the recovery process, the depth and the volume of burn
region detected by PACT as well as diameter of inner hyperemic ring detected by PAM
decreased simultaneously. In the first four days, blood vessel density inside the hyperemic
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ring increased showing the similar increment of sO, changes. However, after day 4 post-burn,
the blood vessel density of hyperemic ring decreased but the sO, of whole burn region kept
increasing. The different changing trends might be mainly caused by the regeneration of
subcutaneous blood vessels. The sO, contributions from hyperemic had negligible influence
on whole burn region.
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Fig. 5. PAM imaging of skin surface in burn injuries. (a) High-resolution PAM images of
DDB at different time points. The blood vessel signals peak on day 4 and fade after 10 days.
White arrows point to the hyperemic ring. (b) Representative vessel structure extracted through
skeletonization algorithm at day 4. (c) Relative blood vessel density of (a). (d) Normalized
inner diameter of hyperemic ring. Scale bar is | mm.

4. Conclusion

Burn depth assessment plays a vital role in burn diagnosis. By applying PACT, we were able
to image burn injury in cross-sectional views to assess burn depths between SDB and DDB,
and find the important milestone point, 1.6 mm, to distinguish DDB from SDB. Utilizing
multi-wavelength laser pulses, we also performed structural and functional imaging on burn
region. After thermal damage, the subcutaneous blood vessels disappeared and regenerated
with burn healing. The recovering blood perfusion brings different sO, status. The DDB had
more hypoxia and slower sO, changes than SDB due to more severe burn injury. A sO, value
of 40% was supposed to separate DDB (lower than 40%) from SDB at post-burn day 2 and
day 3. In addition, we visualized the burn volume changes by 3D reconstructing, which
decreased generally as expected. To investigate the micro-vessel changes in hyperemic ring,
we employed a high-resolution PAM to image burn wound. The PAM images show
imperceptible angiogenesis with changes of blood vessel density and inner hyperemic ring
diameter quantified.

In summary, we applied PACT and PAM together to monitor burn healing process in
macroscale and microscale. To the best of our knowledge, dual-scale images of PA signal
changes of skin burn injury were presented simultaneously to unveil the disease pathological
status for the first time. The dual-scale PA imaging capability strengthens the potential
applications on burn surveillance and assessment.
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