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Abstract

This paper presents an approach to surgical tool tracking using stereo vision for the da Vinci® 

Surgical Robotic System. The proposed method is based on robot kinematics, computer vision 

techniques and Bayesian state estimation. The proposed method employs a silhouette rendering 

algorithm to create virtual images of the surgical tool by generating the silhouette of the defined 

tool geometry under the da Vinci® robot endoscopes. The virtual rendering method provides the 

tool representation in image form, which makes it possible to measure the distance between the 

rendered tool and real tool from endoscopic stereo image streams. Particle Filter algorithm 

employing the virtual rendering method is then used for surgical tool tracking. The tracking 

performance is evaluated on an actual da Vinci® surgical robotic system and a ROS/Gazebo-based 

simulation of the da Vinci® system.

I. Introduction

This paper focuses on surgical instrument tracking for the da Vinci® surgical robotic system 

(Intuitive Surgical, Inc., Sunnyvale, CA) under stereo camera image streams. The long-term 

goal is to enable visual servo control [1],[2] of the surgical tools to perform precise visually 

guided manipulation tasks. For instance, given the 3D pose of a needle in the camera frame, 

let the robot arms pick up the needle and place the needle in a desired pose.

Tracking of surgical tools have attracted attention in the literature due to its essential role in 

a number of applications, ranging from surgical skill assessment to task automation in 

robotic surgery. Ren and Kazanzides [3] developed an integrated inertial and magnetic 

navigation system for attitude tracking of surgical tools inside the human body. Using a 

modified miniature integrated inertial sensing systems, the estimated gravity and magnetic 

field are utilized in an Extended Kalman Filter to estimate the orientation of the surgical 

instrument. Richa et al. [4] proposed a surgical tool tracking method and a retina disparity 

tracking method for detecting unintentional collisions between surgical tools and the retina 

using the visual feedback from the stereo cameras. The tool tracking is constructed as a 

direct 2D-3D image registration method based on a similarity metric measure called sum of 

the conditional variances, which extracts the position of the tools. Krupa et al. [5] designed a 
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laser-pointing instrument holder that can be mounted by general surgical tools in minimal 

invasive surgery. One monocular camera is used to localize the optical markers on the tools 

and provide the 3-D positions of the tools, which are further applied to recover and center 

the tools in the image by means of a visual servoing algorithm. Staub, et al. [6] proposed a 

curve density algorithm that optimizes the separation of color statistics between the inner 

object and the background based on the initial kinematic pose prediction. Pezzementi, et al. 

[7] also developed their appearance model by extracting the color and texture features from 

the image which produced the class probability for maximum likelihood estimation. Choi [8] 

built contour templates using CAD models of the general objects and performed the object 

tracking using annealed particle filter and RANSAC algorithm. Reiter [9] considered the 

tool tracking problem from a pure computer vision perspective. By rendering the CAD 

model of surgical tools in various poses in a global manner, the localization of tools can be 

traced using a 3-D template matching algorithm called LINE-MOD [10] through a brute-

force search. Similarly, Baek, et al. [11] provides a 7-DOF forceps tracking algorithm, where 

a database of the contour points of the forceps is built during pre-processing by projecting 

the 3-D geometry of the forceps onto the 2-D image plane under difference kinematic states. 

In this paper, we introduced a 9-DOF surgical tool contour rendering method from a 

graphical and geometrical point of view. Instead of generating the templates off-line and 

performing a brute-force search, we propose an on-line silhouette generation and rendering 

method in order to the dynamically adapt the appearance of each tool part, similar to [12], 

and a Bayesian adaptive filtering estimation scheme. In [12], the templates are defined using 

certain number (14) of keypoints on the tool parts and represented by bounding boxes, while 

a consensus-based verification approach is used for outliers rejection. In our work, the 

templates are modeled by the rendered geometrical silhouette of each tool part, and vision-

based adaptive filtering is employed for correction of the kinematic-based rendering errors.

Bayesian approaches provide an estimation method for dealing with uncertainties in the 

system and the environment. As such, Bayesian state estimation is widely used in the 

literature. One non-parametric algorithm based on Bayesian inference is Particle Filter 

algorithm [13], [14]. The principle of Particle Filter is to represent the posterior probability 

density function using a finite number of random samples. Based on an importance sampling 

approach, particle filter uses a set of particles (or samples) to represent posterior 

distributions. As, the initial state and noise distributions can take any form required, particle 

filter can accommodate non-linear and non-Gaussian system. Particle filter has gained great 

popularity in computer vision applications [15], including, pose estimation on the SE(3) 

group [16].

The method proposed in this paper for robotic surgical tool tracking is a vision-based 

Bayesian state-estimation approach. The proposed method uses forward kinematics of the 

robotic surgical manipulator for state evolution, based on an approximate calibration of the 

robotic manipulator and the endoscopic surgical camera. Image streams acquired from the 

stereo endoscopic cameras are used as the sensing modality for the measurement updates in 

the Bayesian state-estimation. Specifically, as part of the method, an on-line virtual 

rendering algorithm is employed to create virtual images of the surgical tool by generating 

the silhouette of the defined tool geometry under the endoscopic camera view. The 

observation likelihoods used for Bayesian measurement updates are then estimated from the 
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similarity of the virtual images of the tool pose hypotheses generated by the virtual 

rendering algorithms and the real images that are captured by the stereo vision system. A 

particle filter is used as the underlying Bayesian estimator, as the system is nonlinear and 

non-Gaussian. The tracking performance of the proposed method was evaluated on a 

simulation of the da Vinci® robotic surgery system (implemented in the Gazebo simulation 

environment of the Robot Operating System), and an actual physical da Vinci® robotic 

surgical system.

The rest of the paper is organized as follows. In Section II the silhouette generating 

algorithm and the virtual rendering algorithm are presented. The particle filter framework for 

surgical tool tracking is described in section III. The simulation-based and experimental 

validation results are presented in Section IV. And, finally, the conclusions are given in 

Section V.

II. Virtual Tool Rendering

A key component of a Bayesian state estimation scheme is the underlying measurement 

model of the sensing system. In the proposed approach, a virtual rendering method, which 

generates a representation of the surgical tool as observed through the stereo endoscopic 

cameras of the system, is employed for constructing the measurement model (described in 

Section III-B). The tool geometries used in virtual rendering are based on the 3-dimensional 

(3D) CAD models of the real surgical tools, which provide triangulated surface mesh 

representations of the tool body parts and the constraints between the parts. Each 3D tool 

model is composed of a group of faces, which are represented as vertices and vertex normals 

in tool frame coordinates. Given a specific pose, the forward kinematics of the surgical 

manipulator [17] and the camera-robot calibration information are used to calculate the 

spatial configuration of the tools parts relative to the endoscopic camera. The virtual 

rendering method is then employed to generate the silhouette of the tool on a virtual image 

from the vertices and vertex normals that belong to the faces of the tool model. The obtained 

virtual image contains the rendered silhouette, which represents the contour of the tool from 

the endoscopes perspective. This approach can be easily applied to any surgical tool 

represented as a polygonal mesh.

A. Derivation of Tool Geometry Using Forward Kinematics

In this paper, an Endowrist® Large Needle Driver is used as the example surgical tool to be 

tracked. The needle driver tool model is decomposed to different parts with joint angle 

constraints, which we will refer to as cylinder (the tool shaft), oval (the intermediate oval 

shaped link in between the tool shaft and the gripper) and gripper (×2) parts (Fig. 1).

gBT, gBO, gBG1
 and gBG2

 are used to represent, respectively, the pose of the tool frame, oval 

frame and two gripper frames relative to the base frame (B) of the surgical manipulator (Fig. 

1). Each tool body part i pose can be represented as one SE(3) matrix. For convenience, the 

tool frame T on the cylinder part is assumed to be located 10cm away from the oval joint 

along the tool shaft. Since the camera visual range is limited, the rest of the tool shaft is 

ignored to save computational time when preforming the rendering algorithm.
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As the surgical tool has four body parts which are separated to render them in different 

poses, it is important to keep the geometry constraints of the four body parts. In Fig. 1, θ1 

denotes the relative joint angle between oval part and the cylinder part along the Z-axis, θ2 

describes the tilting angle of the gripper tip to the oval frame along the X-axis, and 2θ3 

denotes the relative joint angle between two grippers. Therefore, the tool configuration can 

be represented by the pose of the tool frame along with the 3 joint angles. Specifically, the 

tool geometry can also be expressed in a constrained vector as showing in Fig. 1 as

XT : = (XT
pos, XT

rot, θ1, θ2, θ3), (1)

where XT
pos and XT

rot denote, respectively, the position and orientation vectors of the tool shaft 

frame.

The pose of the tool frame relative to the base frame (gBT ∈ SE(3)) is given by the forward 

kinematics of the manipulator [18] from XT
pos and XT

rot as

gBT =
RT XT

pos

01 × 3 1
, (2)

where gBT denotes the transformation of the tool frame relative to robot base frame, and 

RT = exp(XT
rot) [18]. Then, the oval frame relative to robot base frame is then given by

gBO = gBT

1 0 0 0
0 1 0 l0
0 0 1 0
0 0 0 1

cosθ1 −sinθ1 0 0
sinθ1 cosθ1 0 0

0 0 1 0
0 0 0 1

. (3)

Similarly, the gripper frames can be calculated as

gBG1
= gBO

1 0 0 0
0 1 0 l1
0 0 1 0
0 0 0 1

1 0 0 0
0 cos(ϕ1) −sin(ϕ1) 0
0 sin(ϕ1) cos(ϕ1) 0
0 0 0 1

, (4)
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gBG2
= gBO

1 0 0 0
0 1 0 l1
0 0 1 0
0 0 0 1

1 0 0 0
0 cos(ϕ2) −sin(ϕ2) 0
0 sin(ϕ2) cos(ϕ2) 0
0 0 0 1

, (5)

where ϕ1 = θ2 + θ3 and ϕ2 = θ2 − θ3.

B. Silhouette Generation Using Surgical Tool Model

The silhouette generating algorithm aims to produce virtual images of the surgical tool for 

use as part of the measurement model of the Particle Filter algorithm. In this paper, a 

geometry-based approach [19], where the edges that separate the front facing and back 

facing faces of the tool model, is used to generate the silhouette of surgical tool as it is 

viewed from the pair of cameras of the stereo endoscope used in the da Vinci® robotic 

surgery system (Fig. 2). In this approach, first, the geometric model of the surgical tool’s 

body parts are transformed to their poses under the joint angle constraints, as described in 

the previous section. Then, the silhouette generation algorithm is executed for each tool part 

for rendering under the camera frames.

The CAD models of the surgical tools are defined in Alias/WaveFront Object (OBJ) file 

format [20]. The basic elements of each model file contain a set vertex definitions, along 

with vertex normals and vertex texture coordinates, and a set of face definitions. In the 

proposed silhouette extraction algorithm, the texture of the tool is ignored, and only the 

relative geometry information of the tool model is used. In the model, each face is defined 

by three vertices. The silhouette extraction algorithm generates the object silhouette by 

finding the adjoining edges of neighboring front- and back-facing faces based on the vertices 

and face normals. First, it is important to identify the front-facing faces and the back-facing 

faces. The OBJ file does not provide the face normal directly. Instead of estimating face 

normals from the vertex normals, face normals are computed from the relative positions of 

the three vertices of each of the faces. Meanwhile, it is critical to make sure that each face 

normal is pointing outwards from the object surface.

For a given model of the tool, the front-and back-facing faces are defined as shown in Fig. 3. 

It is easy to see that a front-facing face has a negative dot product of the face normal and 

view vector vi while a back-facing face has a positive one. An edge is drawn when it is the 

connecting edge of a back-facing and front-facing face, as determined by

(ν1 ⋅ n1) ⋅ (v2 ⋅ n2) < 0. (6)

Using this method, the algorithm finds all of the silhouette edges of the object and the 

corresponding 3D positions of the edge vertices. All the edge vertices are then projected to 

the image by using the camera projection matrix given by
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P =
f x 0 cx 0
0 f y cy 0
0 0 0 1

. (7)

The 2D image point of each vertex is then given by

ui

vi

1
= P ⋅

XC

1
=

f x 0 cx 0
0 f y cy 0
0 0 0 1

xi
c

yi
c

zi
c

1

, (8)

where XC denotes the vertex under camera frame. According to the relative transformation 

of each tool body part from equations (2)–(5), the edge points in pixel frame can be 

expressed as:

ui
T

vi
T

1

= P ⋅ gCB ⋅ gBT

xi
T

yi
T

zi
T

1

, (9)

ui
O

vi
O

1

= P ⋅ gCB ⋅ gBO

xi
O

yi
O

zi
O

1

, (10)

Algorithm 1:

Silhouette Extraction
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Input : vertices, vertex normal, gCB, gBT , gBO, gBG1
, gBG2

, P

1 Compute vertices in camera frame: vCT
= gCBgBTvtool, vCO

= gCBgBOvoval, vC
G1 G2

= gCBg
BG1 BG2

vgrippers

2 Compute vertex normals in camera frame: nCT
= gCBgBTntool, nCO

= gCBgBOnoval, nC
G1 G2

= gCBg
BG1 BG2

ngrippers

3 for all f aces i with non−empty neighbors do
4 Compute face normals n f _i, camera view vector v f _i
5 if f ront f ace: v f _i ⋅ n f _i < 0 then
6 for all neighbors j do
7 Compute face normals n f _ j, camera view vector v f − j

8 if back f ace: v f _ j ⋅ n f _ j > 0 then
9 Project the two vertices of the edge using P
10 Draw the edge according to the projected vertices
11 end
12 end
13 end
14 end

Output: silhouette of the tool model

ui
G1

vi
G1

1

= P ⋅ gCB ⋅ gBG1

xi
G1

yi
G1

zi
G1

1

, (11)

ui
G2

vi
G2

1

= P ⋅ gCB ⋅ gBG2

xi
G2

yi
G2

zi
G2

1

, (12)

where gCB is the transformation of the robot arm base relative to camera frame, and, gBT is 

the transformation of the tool frame relative to the robot arm base. xi
body−part

, yi
body−part

 and 

zi
body−part

 are the coordinates of each vertex in each of the tool body part frame, which are 

defined as shown in Fig. 1. ui
body−part

 and vi
body−part

 represent the image points on the 

silhouette of the rendered tool body part. For a given tool pose under the stereo camera 
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frames, these image points can then be used to construct the silhouette of the tool model in a 

pair of 2D images and generate the virtual image that contains the emulation of the contour 

of the tool for further analysis.

The silhouette extraction algorithm, which generates the silhouette of the surgical tool model 

as viewed from a given camera pose, is summarized in Algorithm 1. The virtual tool 

rendering algorithm, which combines the silhouette extraction algorithm and the tool 

geometry computations, is given in Algorithm 2.

The virtual tool rendering algorithm is summarized in Fig. 4. The virtual tool rendering 

algorithm returns the virtual image virtual images with rendered silhouettes of the tool 

model, which is used in the measurement model of the Particle Filter algorithm (described in 

Section III). The experimental results of the virtual tool rendering algorithm are presented in 

Section IV, along with the tool tracking validation results. Algorithm 2:

Virtual Tool Rendering

Input : Tool Model, θ1, θ2, θ3, gCB, gBT , P

1 tool_geometry = Compute_tool_geometry(Tool Model, θ1, θ2, θ3, gCB, gBT)

2 virtual image = Silhouette_extraction(tool_geometry,P)
Output: virtual image

III. Particle Filter for Tool Tracking

The principle of Particle Filter is to represent the posterior probability density function using 

a finite set of random samples. Each of the particles represents a state vector hypothesis, 

where the probability of a state hypothesis to be in the set is proportional to the posterior 

probability density.

Importance resampling is employed in Particle Filters to transform the particles that are 

sampled from the prior into the posterior. In this work, low variance sampling is applied to 

reduce the degeneracy problem [21] in importance resampling. The details of the particle 

filter-based tool tracking under the stereo endoscope image stream is summarized in Fig. 5. 

The initial set of particles in the particle filter is obtained via the forward kinematics of the 

da Vinci® robot arm and the rough robot-camera calibration. This method provides a robust 

way for narrowing the search space, so that it is possible to get a relatively reliable initial 

guess set and avoid the time consuming global search to initialize the particles.

A. Motion Model

The motion model employed in this study assumes the state of the tool evolves 

incrementally based on the incremental joint displacement of the physical manipulator with 

additional Gaussian noise to account for uncertainty in calibration and robot motion. Thus 

the dynamic process noise has the form of a Gaussian with zero mean and joint angle 

variance σ joint
2 , where noise for each of the joint angle components are assumed to be 

mutually independent [22]. Specifically,
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θi(t + Δ t) = θi(t) + Δ θi(t, t + Δ t) + W(0, σi
2), (13)

where Δ θi(t, t + Δ t) denotes the nominal joint displacement reported by the joint angle 

sensors for the time interval (t,t + Δt) and W (0, σi
2) is the Gaussian process noise for joint i.1

B. Measurement Model

In the proposed approach, the measurement model quantifies the similarity or proximity 

between the virtual images of the tool pose hypotheses and the real images that are captured 

by the stereo vision system. The measurement likelihood p(zt|xt) [22] used is in the form

p(zt xt) = ηπ( ⋅ ), (14)

where η is the normalization constant that makes the measurement distribution integrate to 

1, and v(·) denotes the measurement energy potential, which depends on the distance 

between the virtual image and real image. The correspondence between each set of virtual 

images that contain both left and right camera rendered tool and the real images are 

evaluated by the measurement energy potential function π(·). The proposed approach is 

based on edge-based tracking, where the distance function or the measurement energy 

potentials are calculated by a pixel-wise matching algorithm. In this study, the Chamfer 

distance map [23],[24] is used to describe the similarity between the two 2D images. 

Specifically, the Chamfer matching score is calculated to measure the distance between a 

virtual rendered tool image and a segmented image captured from the camera. In this paper, 

Canny edge detector [25], [26] is applied for the segmentation of the tool image, which is 

shown to be sufficient for the regular tracking scenes [11]. Algorithm 3:

Particle Filter Algorithm for Tool Tracking

1If there is no information available about the nominal motion of the physical robot, the term for the nominal joint displacement can 
be excluded, and the variance for the Gaussian noise term increased. This would result in a Brownian motion model for the tool 
motion [16].
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Input : Tool Model, χt − 1, ut, zt, Pt, gCB
t

1 χt = χt = ∅

2 for m = 1 : M do
3 sample xt

m p(xt ut, xt − 1
m )

4 Compute and normalize the Chamfer matching score using the set of virtual images:

5 p(zt xt
m) virtual_tool_rendering(Tool Model, xt

m, Pt, gCB
t )

6 wt
m = p(zt xt

m)

7 χt = χt + xt
m, wt

m

8 end
9 for m = 1 : M do
10 draw i with probability ∝ wt

i

11 add xt
i to χt

12 end
Output: χt

Let X denote the state vector, and the obtained Chamfer distance indicate the measurement 

error for each camera. Then we define s(X) as the matching score in order to map the 

measurement error to particle weight as

s(X): = exp( −
dcm

τ ), (15)

where τ is the sensitivity factor and dcm denotes the Chamfer distance. The measurement 

model π(X) is defined as

π(X): = sle f t
2 (X) + sright

2 (X), (16)

where sle f t
2 (X) and sright

2 (X) are the matching scores derived from the left and right camera, 

respectively [27]. The resulting particle filter based tracking algorithm is summarized in 

Algorithm 3 [28]. In the algorithm description, χ denotes the set of particles, z. denotes the 

measurement, i.e., the endoscopic images, and u denotes the input, i.e., the incremental 

motion of the surgical manipulator at the corresponding time steps. Fig. 6 gives an example 

of the robotic surgical tool pose estimation using the proposed tracking algorithm.

IV. Experiment Results

The proposed surgical tool tracking algorithm was evaluated both in a simulation 

environment and on hardware.
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A. Simulation-based Validation Results

For simulation based validation of the proposed method, a ROS/Gazebo-based simulation of 

the da Vinci® surgical robotic system was used. In the idealized world of the simulation, the 

endoscope to robot base transformation, robot forward kinematics, and the joint sensor 

feedback are exactly known, which provides an exact baseline to quantitatively evaluate the 

tracking performance. Noise was intentionally added to the joint sensor feedback to the 

particle filter algorithm, in order to create a validation scenario with realistic position and 

orientation errors.

Fig. 7 presents an example of surgical tool tracking results with the proposed algorithm in 

the Gazebo world using 200 particles. The projection of the best matched particle is 

superimposed by the white lines on the endoscopic images shown in the top row. 

Distribution of all of the particles are shown in the bottom row.

Fig. 8 presents a noised sample pose and the recovered tracking pose using 700 particles. 

The performance of the tracking was evaluated for 20 random selected initial poses with 

initial position and orientation errors of, respectively, 13mm and 10°. The resulting tracking 

errors averaged over 50 trials each are shown in Fig. 9.

The robustness of the surgical tool tracking was also evaluated by varying the joint sensor 

noise variances in the simulation environment. The results, averaged over 50 trials for each 

noise level, starting from 20 randomly selected initial surgical tool configurations are 

reported in Fig. 10.

The simulation-based evaluation results demonstrate that the proposed algorithm, with 

relatively small number of particles (700 particles), results in robust surgical tool tracking 

for moderate initial position/orientation errors and joint sensor noise levels. The results also 

indicated that the tracking performance is sensitive to the pose of the oval part since it has 

relatively more noise than the cylinder and gripper parts for the segmentation algorithm to 

identify the contour.

In order to test the robustness of the proposed method during dynamic tracking, the surgical 

tool was given a sequence of movement over 50 randomly selected trajectories in the 

Gazebo simulation environment [27]. At each trajectory, all particles were initialized with 

the true position and orientation. Three different noise levels were added to the joint sensor 

feedback during the motion of the robot arm. The position and orientation errors averaged 

over the 50 trials for each of the three noise level cases are presented in Fig. 11.

B. Experimental Evaluation on the Physical da Vinci® System

The hardware validation of the proposed method was performed on a da Vinci® IS-1200 

Surgical Robotic System, upgraded with the open-source/open-hardware da Vinci Research 

Kit (dVRK) [17], which allows direct computer-based control of the system.

When executing the tracking algorithm in real robot system, the camera to robot base 

transformation is also corrupted by calibration uncertainty. Therefore, the camera-robot 
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calibration errors were directly included as part of the system state used in the tracking 

algorithm. Specifically, the robot state defined in (1) is augmented as

XT : = (gCB, Xθ), (17)

Xθ: = (θ1, θ2, …, θ7) (18)

where the transformation between the camera and robot base frames, gCB, is included in the 

state vector to estimate and compensate for the camera-robot calibration errors, along with 

all of the robot joint angles θ.

Experimental tracking results under 9 different example trials are shown in Fig. 12. In all of 

the hardware experiments, 500 particles are used in order to handle the uncertainty observed 

in the system while maintaining interactive tracking rates (please see Section V for a 

discussion on the computation times). In all trials, only one tool is tracked by the proposed 

algorithm. The second and/or the third tools of the da Vinci® system was moved inside the 

endoscope view in some of the trials, in order to make the background visually more 

complex during the experiments. Specifically, in trials 1–8, the additional tools were placed 

in locations and orientations that have the potential to create false positive matches, in order 

to validate if the tracking algorithm is capable of handling potential local optima in the 

matching function. Furthermore, in trials 2–8, the additional tools were placed above the 

target tool in different configuration, in order to evaluate tracking performance under 

occlusions.

The experimental results indicate that the proposed tracking algorithm is able to recover the 

tool pose from the real endoscope views, in highly noised environment with occlusions 

caused by surgical tools or other objects. Besides, the proposed algorithm generally tracks 

the target tool when the oval parts and grippers are entirely or partially covered, since the 

forward kinematics provides a relatively robust coarse guess to compensate for loss of vision 

feedback.

In order to further validate the tracking performance under occlusion during the tracking, a 

second tool was placed in different poses to block the target tool during the tracking process. 

Fig. 13 shows a time sequence of tracking results, where the target tool is occluded in 

several body parts. The results suggests that the proposed approach can recover from 

intermittent occlusions.

Additional hardware tracking results are presented in the video attachment of the present 

paper.

V. Conclusions

This paper presented a particle filtering-based framework for tracking robotically controlled 

surgical tools under stereo vision based image streams. As part of the proposed framework, a 
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virtual tool rendering algorithm is introduced and implemented to produce the silhouette of 

the surgical tool model. Using the virtual tool images generated by the virtual tool rendering 

algorithm, computer vision-based techniques are employed to construct the measurement 

model for the Particle Filter algorithm. The tracking performance was evaluated in a 

simulation environment and using the physical da Vinci® surgical robotic system.

The future work will proceed on several avenues. The current version of the algorithm is 

implemented as a serial algorithm on a CPU. Although the algorithm operates in real-time, it 

has a frame rate which is currently insufficient for closed-loop visual servo-control (at 

approximately 0.3 frames-per-second). The primary bottleneck in computation of the 

algorithm is the virtual tool rendering for the individual particles used in the filter. 

Fortunately, this part of the algorithm is parallelizable, since each of the particle hypotheses 

can be processed independently in parallel. As part of our future work, we are working on a 

GPU-based parallel implementation of the algorithm in order to speed up the tracking 

algorithm to a frame rate sufficient for visual servo control (~10 frames-per-second). 

Additionally, the tool models can be further refined to get more robust rendering results, 

potentially including color-based features. In order to perform the visually guided surgical 

manipulations with the da Vinci® robotic system, some additional pieces still need to be 

incorporated, such as motion planning algorithms for the da Vinci® arms and a needle 

tracking algorithm.
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Fig. 1. 
Definition of tool geometry, joint angle constraints, and the associated coordinate frames.
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Fig. 2. 
Virtual tool rendering under stereo camera view.
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Fig. 3. 
Silhouette generation.
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Fig. 4. 
Overview of virtual tool rendering.
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Fig. 5. 
Particle filter-based tool tracking framework.
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Fig. 6. 
The kinematic-based silhouette rendering using the calibration and the recovered pose based 

on vision feedback of the da Vinci robot. Left camera view is given in first row, and right 

view is given in the second row.
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Fig. 7. 
Surgical tool tracking in the Gazebo-based simulation environment: Top row shows the right 

and left camera images superimposed with best matched particle (white lines). Bottom row 

shows the distribution of all of the particles. In this particular simulation, the particle filter 

was initialized with an initial position error of 15mm and orientation error of 3.2°. After 

convergence of particles, the resulting position error was 0.6mm, and orientation error was 

2.4°.
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Fig. 8. 
Example tracking results in Gazebo-based simulation environment: Simulation starts with an 

initial position error of 10mm and an orientation error of 14°, as shown in (a) and (b). After 

convergence of the filter, the resulting position and orientation errors are, respectively, 

2.6mm and 3.8°, as shown in (c) and (d).
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Fig. 9. 
Average root-mean-square position and orientation errors in the Gazebo-based simulation 

environment using 700 particles.
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Fig. 10. 
Performance of particle filter tool tracking with different joint sensor noise levels.
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Fig. 11. 
Tracking performance of various sequences of arm motions under three levels of joint sensor 

noise. The algorithm was tested with 50 different randomly generated trajectories. Here we 

chose 800 particles to compensate the highest noise level. The best particle position and 

orientation error were recorded at each iteration during the tracking for all 50 trajectories.
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Fig. 12. 
Tracking results from hardware validation experiments for 9 different configurations (results 

referred to as trial 1–9, row-wise from top-left to bottom-right, in the text). Pairs of images 

show the left and right camera views from the da Vinci® system’s stereo endoscopes, 

overlaid with the best particles from the tracking algorithm rendered in cyan. In the 

experiments, only one surgical tool is being tracked, while manually controlled additional 

tools are placed in the view make the scene visually more complex.
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Fig. 13. 
The sequence of tracking results under different occlusion conditions. The images (a-f) 

correspond to a time sequence of images from a single trial. The cyan lines mark the best 

particle overlaid on the images from the left and right endoscope views. In (d), the particles 

were briefly “distracted” by the tool in background due to the occlusion. However, the 

tracking algorithm was able to recover from the occlusion in the subsequent time steps.
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