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Abstract

Controlling light propagation through a step-index multimode optical fiber (MMF) has several 

important applications, including for biological imaging. However, little consideration has been 

given to the coupling of fiber and tissue optics. Here, we characterized the effects of tissue-

induced light distortions, in particular those arising from a mismatch in the refractive index of the 

pre-imaging calibration and biological media. By performing the calibration in a medium 

matching the refractive index of brain, optimal focusing ability was achieved, as well as a gain in 

focus uniformity within the field-of-view. These changes in illumination resulted in a 30% 

improvement in spatial resolution and intensity in fluorescence images of beads and live brain 

tissue. Beyond refractive index matching, our results demonstrate that sample-induced aberrations 

can severely deteriorate images from MMF-based systems.

Focusing laser light some distance away from the distal end of a MMF (away from the 

source) is of particular interest in biological sensing and imaging applications where the 

small diameter (< 0.2 mm) of the MMF minimizes invasiveness and enables multiplexing of 

measurements [1–3]. As light propagates in a MMF, unpredictable phase delays and 

coupling occur between modes causing the output intensity profile from a Gaussian input to 

have a speckle-like appearance. Several methods have been developed to evaluate this 

deterministic transformation such that the complex light field propagating through MMF 

could be controlled using active wavefront shaping [4–6]. In each case, a calibration 

procedure involving distal optical components is necessary; however the impact of distal 

optical aberrations present during calibration versus imaging is not known. In this Letter, we 

characterise the effects of a refractive index mismatch between the biological and calibration 

media on focus formation in the context of brain imaging using one-photon fluorescence 

point-scanning microscopy through MMF. This type of mismatch is commonly encountered 

as calibrations are routinely performed in air, while imaging is performed in brain tissue [1–

3].
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The system comprised 3 units [1, 7]: a source, a wavefront shaping, and a calibration unit 

(Fig. 1). In the source unit, laser light (CrystaLaser, DL488-020-S, CW, 488 nm) was 

coupled into two single-mode optical fibers (Thorlabs, P1-488PM-FC-2 and P1-405B-FC-5) 

for delivery to the wavefront shaping and calibration unit, respectively. The wavefront 

shaping unit was composed of a liquid-crystal spatial light modulator (LC-SLM, 

Meadowlark Optics, HSPDM512), the MMF (Thorlabs, FG050UGA, core diameter 50 μm, 

NA 0.22), and relay optics. The LC-SLM was conjugated to an iris letting through the on-

axis first-order diffraction beam for wavefront shaping [8]. The modulated wavefront was 

then given a circular polarization with a quarter-wave plate (Thorlabs, WPQ05M-488) 

before it reached the MMF because this polarization state is power-invariant in a MMF [9]. 

Finally, the calibration unit imaged the MMF output at the distal facet with a microscope 

objective lens (Olympus, Plan N 20X, NA 0.4) and an achromatic doublet lens (f = 150 mm) 

on a CCD camera (Basler pilot, piA640-210gm), where it interfered with the reference 

beam. A second quarter-wave plate was positioned behind the objective to make the 

polarization linear and parallel to that of the reference beam. The calibration camera was 

also used to capture the illumination focal volume, but without the reference beam being 

present.

All fiber segments were cut to a length of 2.0 cm and glued into a ferrule (Thorlabs, 

CF128-10) before being positioned into the optical system. Subsequently, the wavefront 

shaping module was aligned with the calibration unit by imaging the distal facet of the MMF 

on the calibration camera. Then, the coupling of light into the MMF was optimized by 

translating axially and laterally the lens located immediate before (Thorlabs, C240TME-A, 

NA 0.5). To focus a known distance away from the MMF distal facet, the wavefront shaping 

unit was moved by such a distance from the calibration unit before performing the 

calibration (to select an axial focusing plane by imaging it onto the camera). Data were 

acquired 50 μm away from the distal facet unless otherwise mentioned. The calibration 

consisted of the acquisition of the transmission matrix (TM), which describes the field 

propagation between two planes within the optical system [1]. The TM enabled the 

determination of the linear superposition of input modes (2401 modes) across the proximal 

fiber facet, or equivalently the LC-SLM pattern generating the shaped wavefront, required to 

produce a single focus at a specific location of the distal fiber facet. The fiber could support 

2504 modes.

First, we assessed the effect of a refractive index mismatch between the calibration and 

imaging media on the illumination focus. For a single measurement, the illumination focus 

was captured with 4 different illumination powers (optical densities from 0 to 3) in order to 

reconstruct high dynamic range images [3]. Three metrics were used to characterize focus 

quality: the peak intensity, the intensity enhancement factor (IEF), and the lateral full width 

at half maximum (FWHM). The IEF was defined as the peak intensity divided by the 

average intensity from all pixels within the central 50 μm diameter of the field imaged by the 

fiber. The FWHM was quantified by fitting a Gaussian profile to a line profile drawn 

through the focus.

The TM is frequently evaluated with the distal facet in air (with an air objective lens 

corrected for some thickness of glass). For several applications, fibers might be inserted in 
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other milieus than air such as an aqueous solution or biological tissue. The primary optical 

property affecting focusing that will differ in such cases is the index of refraction (nair = 

1.00, nwater = 1.33, and nbrain = 1.37 [10]). In order to quantify the effect of an index of 

refraction mismatch on focusing, we evaluated the FWHM and IEF of the illumination focal 

volume when the distal end of MMF were submerged in a solution of 22% glucose to mimic 

the rodent brain (nglu,22% = 1.37 [11]). A coverglass was located just below the desired focal 

plane. Calibrations were acquired with a media present between the MMF distal facet and 

the coverglass, either air or a 22% glucose solution, which will be referred to as the air and 

glucose calibration for the remainder of this Letter.

At the center of the imaged field, the peak intensity and IEF were 20 ± 11% and 11 ± 10% 

larger, respectively, when using the calibration acquired in a 22% glucose solution over the 

one acquired in air (n = 6, one-sided paired Wilcoxon signed rank (opWSR) test, pvalue = 

0.016, Fig. 2(a)). Similarly, the FWHM decreased from 1.28 ± 0.05 μm with the air 

calibration to 1.24 ± 0.05 μm with the 22% glucose one (n = 6, opWSR rank test, pvalue = 

0.03, Fig. 2(b)). These results indicate that matching the refractive index of the calibration 

and imaging media will significantly improve the signal-to-background ratio and the lateral 

width of the illumination focus. By analyzing the variation in peak intensity and FWHM as a 

function of the distance from the center of the fiber, we also observed that the peak intensity 

and FWHM were constant over a larger radius in the index-matched condition, thus 

providing a more uniform field-of-view (Fig. 2(c,d)). Of note, we also compared focus 

quality achieved with calibrations acquired in air using an air objective lens corrected for 

170 μm of glass with and without a coverglass in place. The illumination focal volume was 

then evaluated in air immediately at the fiber output in its center. The IEF indicates that 

significantly better focusing was achieved when a coverglass was used during the calibration 

(Table 1; 4 segments per group, 5 trials per segments, one-sided paired t-test, ΔIEF = 7%, 

pvalue = 0.019). This results indicates that aberrations in the calibration unit can also degrade 

the quality of the illumination focus.

Having demonstrated the improved illumination focus achieved when determining the TM in 

a medium having the same refractive index as the sample to be imaged, we characterized 

how calibrations performed in different media impacted the imaging of fluorescent beads. 

Beads (FluoSpheres carboxylate-modified microspheres, 1.0 μm, yellow-green fluorescent 

(505/515), 2% solids) were placed on a glass slide and immersed, together with the distal 

MMF facet, in a 22% glucose solution. Images were acquired with both an air (Fig. 3(a)) 

and a glucose calibration (Fig. 3(b)) at their respective optimal focal plane. Comparing the 

two conditions revealed that individual beads had a circular profile in images acquired with 

the glucose calibration (0.91 ± 0.05), whereas the bead shape was less symmetric for the air 

calibration (0.79 ± 0.11, circularity, n = 36, opWSR rank test, pvalue = 2.1 × 10−6). 

Circularity was calculated after fitting an ellipse to individual beads and calculating the ratio 

of the minor to major axis. We also measured the FWHM of single beads and found that the 

ratio between the glucose and air calibration was of 0.69 ± 0.17 (n = 51, Δ35%, op-WSR 

test, pvalue = 3 × 10−9). Most of the variability originated from the FWHM measured with 

the air calibration (2.1 ± 0.5 μm, Fig. 3(c)), while the FWHM with the glucose calibration 

was more consistent between beads (1.37 ± 0.13 μm). This observation is in line with a more 

uniform illumination being achieved with the glucose calibration. However, the significant 
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gain in peak intensity, a factor of 1.3 ± 0.2 (n = 75, opWSR test, pvalue = 1.0 × 10−13, Fig. 

3(d)), was larger than that of the illumination peak intensity. This difference likely results 

from the detected fluorescence signal being a lateral and axial integration within the 

illumination focus. Thus, the latter result corresponds more closely to the actual 

improvement that will be achieved in images of biological samples [12].

Deep-brain imaging is an important application for MMF-based microscopes because of the 

modest damage imparted to surrounding tissue as compared to alternative methods [1–3]. 

Representative images of a live neuron in organotypic hippocampal slices are shown in Fig. 

4(a,b) (Wistar rats, thickness 350 μm). For visualization, CA1 pyramidal cells were patched 

with Alexa Fluor 488 fluorescent dye (0.5-1 mM, Life Technologies) for 3-5 minutes. To 

maintain slice health, imaging was performed in physiological Tyrode’s solution (in mM: 

120 NaCl, 2.5 KCl, 30 glucose, 2 CaCl2, 1 MgCl2, and 20 HEPES; Sigma Aldrich). Two 

calibrations were performed: in air and in Tyrode’s solution. With the air calibration, no 

synaptic specialisations (dendritic spines) were visible (Fig. 4(a)). In contrast, dendritic 

spines were clearly visible with the Tyrode’s calibration (Fig. 4(b)). This improvement in 

spatial resolution and signal-to-background ratio was also apparent in the Fourier transform 

images (Fig. 4(c,d)), revealing the larger spatial frequency bandwidth accessible with the 

Tyrode’s calibration. In addition, the dendrite appeared tilted with respect to the focal plane 

with the air calibration. This observation has previously been assumed to reflect the actual 

position of the dendrite [1], however this is clearly erroneous as the dendrite lay within the 

focal plane of the Tyrode’s image. In fact, it was the reduced uniformity in focusing ability 

with the air calibration that generated less resolved structures, appearing out-of-focus, at the 

circumference of the image.

Fiber-specific calibration is required to shape light through MMF for imaging. It is well 

known that such calibration will compensate not only distortions occurring inside the fibre, 

but proximal aberrations as well. We showed that this is not true for distal aberrations. 

Indeed, the ability to resolve subcellular, synaptic structure, essential when addressing many 

questions in neuroscience, is substantially improved when one takes account of the refractive 

index of brain during the calibration. Even when focusing light at 488 nm through only 50 

μm of tissue a significant difference was measured, both in terms of focus quality and 

uniformity across the field-of-view.

The aberrations present when performing the calibration in air are akin to spherical 

aberrations. They nevertheless differ in that the light field at the distal facet, the interface 

where the refractive index changes, is not uniform and varies between fibers. Accordingly, 

the aberrated focal profile will be fiber-dependence, depending on the spatial intensity and 

phase variations at the interface. It is also interesting to note that the lateral extent of the 

focus deteriorated when a mismatch was present, while spherical aberrations typically have a 

limited effect on this parameter [12]. We expect that as the numerical aperture (NA) is 

increased, so will the aberrations originating from a mismatch in refractive index between 

the calibration medium and the sample. A fiber with a relatively low NA, 0.22, was used in 

this study. Using fibers with higher NA is desirable because they would provide an increased 

spatial resolution, but also because high-NA MMF have been linked to a decreased 

sensitivity to bend translation [13, 14]. In addition, two-photon fluorescence (2PF) MMF-
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systems are desirable because of the intrinsic optical sectioning they offer, and high-NA 
fibers would again be needed as 2PF efficiency increases nonlinearly with the NA [6, 15].

Our results point to the importance of assessing the performance of MMF-based imaging 

systems, in the context of optical aberrations or in any other context, using the signal of 

interest. Indeed, the effects of refractive-index matching on fluorescence imaging were 

substantial, while the improvements in illumination focus were moderate. This suggests that 

it might not be sufficient to look exclusively at the illumination, as is commonly done for 

MMF-based imaging system, to characterize the impact on imaging performance. While we 

have emphasized the significance of these observations for biological imaging, our 

conclusion relating to the importance of considering distal aberrations, applies to all 

applications requiring focusing light at the distal end of a MMF, including microfabrication 

[16] as well as other types of optical manipulation.
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Fig. 1. 
(a) Simplified schematic of the optical system (SMF: single mode optical fiber, PBS: 

polarizing beam splitter, PMT: photo-multiplier tube, DM: dichroic mirror, SLM: spatial-

light modulator, NPBS: non polarizing beam splitter, MMF: multimode fiber, and OL: 

objective lens. (b-d) Schematics of the experimental setup: (b) for air calibration, (c) for 

glucose (refractive index matching) calibration, and (d) for imaging (CG: coverglass).
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Fig. 2. 
Characterization of the illumination focal volume through a MMF in a 22% glucose 

solution. (a,b) Focal volume at the center of the MMF characterized by (a) the IEF and (b) 

FWHM as a function of the calibration medium (n = 6 fiber segments, open circles represent 

individual measurements). (c,d) Radial variation in (c) the peak intensity and (d) FWHM of 

the focal volume for a calibration done in air and in a 22% glucose solution (n = 3 fiber 

segments). Full circles are average values and error bars represent the standard deviation.
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Fig. 3. 
Imaging of fluorescent beads through a MMF. (a,b) Images of 1.0-μm beads acquired with 

the TM determined from a calibration in (a) air and (b) a 22% glucose solution. Scale bar: 

10 μm. Images were normalized to the peak intensity in (b). (c) Graph of FWHM ratio for 

individual beads from images acquired with the glucose TM over that of the air TM as a 

function of the FWHM measured from images acquired with the air TM (n = 51, slope = 

−0.3 μm−1, R2 = 0.81). (d) Graph of the peak intensity for individual beads from images 
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acquired with the glucose calibration as a function of the peak intensity measured from 

images acquired with the air calibration (n = 75, slope = 1.3, R2 = 0.47).
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Fig. 4. 
Imaging of live neurons through a MMF in organotypic slices. (a,b) Images of a dendrite 

labelled with Alexa Fluor 488 acquired with the TM determined from a calibration in (a) air 

and (b) Tyrode’s solution. Scale bar and inset width: 10 μm. Images were normalized to the 

peak intensity in (b). (c,d) Power frequency spectra of the images shown in (a,b), 

respectively. Scale bar: 0.22 μm−1.
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Table 1
Effect of a coverglass during calibration in air

Coverglass thickness [μm] FWHM [μm] IEF [1]

0 1.30 ± 0.02 343 ± 7

170 1.30 ± 0.02 366 ± 5
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