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Abstract

OBJECTIVE.—The objective of this article is to show how artificial intelligence (AI) has 

impacted different components of the imaging value chain thus far as well as to describe its 

potential future uses.

CONCLUSION.—The use of AI has the potential to greatly enhance every component of the 

imaging value chain. From assessing the appropriateness of imaging orders to helping predict 

patients at risk for fracture, AI can increase the value that musculoskeletal imagers provide to their 

patients and to referring clinicians by improving image quality, patient centricity, imaging 

efficiency, and diagnostic accuracy.
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Imaging remains an important tool for the evaluation of patients with musculoskeletal 

(MSK) conditions, and its value has contributed to increased utilization of common MSK 

imaging modalities [1]. Increased utilization has had several downstream effects for a 

radiology department or private practice, including an increased need for achieving 

operational efficiency while maintaining excellent accuracy and imaging report quality [2].

Artificial intelligence (AI) is an exciting tool that can help radiologists meet these needs. AI 

has the potential to significantly affect every step in the imaging value chain. In the current 

early stages of the introduction of AI into radiology, several studies involving MSK imaging 

have already examined and shown the potential value of AI. The purpose of this article is to 

give MSK radiologists an introduction to AI by reviewing the most current literature 

highlighting its use in various stages of image formation and utilization.

Technical Aspects

The terms AI, machine learning (ML), and deep learning (DL) are often used 

interchangeably; however, there are notable differences in what these related terms signify 
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(Fig. 1). AI refers to any technique that enables computers to mimic human intelligence [3]. 

ML is a more specialized subfield of AI that enables machines to improve performance of 

tasks with experience, using various tools drawn from statistics, mathematics, and computer 

science. DL is an even more specialized subfield within ML that studies the use of a certain 

category of computational models, called deep neural networks, that are exposed to large 

datasets. DL [4] has led to several breakthrough improvements in areas such as image 

classification [5], semantic labeling [6], optical flow [7], and gaming [8].

The building blocks of all neural networks are nodes, which might be considered the 

computational analogue of neurons in a biologic brain. These nodes perform elementary 

mathematic operations, such as weighted addition, on their various inputs, resulting in 

outputs that are passed on to other nodes to which they are connected. The weighted 

connections between nodes may be seen as analogues to the synapses between biologic 

neurons. In addition to linear operations like addition, neural networks also typically 

perform nonlinear operations such as thresholding or rectification, yielding output only 

when certain levels of input signal are reached. In this respect, computational neural 

networks emulate neuronal activation (and, indeed, the functions describing elementary 

nonlinear operations are usually known as activation functions). In deep neural networks, the 

nodes are generally organized into layers, with each layer receiving input from previous 

layers (and, in some specialized cases, also receiving recurrent feedback from subsequent 

layers). One might be tempted to draw analogies to various stages in the processing of 

sensory stimuli, such as processing by the retina, the lateral geniculate nucleus, and the 

primary visual cortex, each of which performs distinct operations essential to the 

interpretation of visual input by the human brain. A neural network is generally identified as 

deep when it has more than just a few layers.

This general network structure can be traced back to 1958, when Rosenblatt [9] described 

what he called the Perceptron, a computational model to describe the function of the human 

brain. In such a computational network, just as in the brain, the computational capacity of 

any single neuron is very limited, but the grouping of neurons together into organized layers 

has a substantially greater computational capacity. This was first shown formally in the late 

1980s via the so-called universal approximation theorem [10–12].

Whereas the basic architecture of artificial neural networks has a rich historical backdrop, 

the means of training neural networks have undergone a revolution in recent times. For 

example, until 2012, the predominant paradigm in ML for vision emphasized the careful 

design of handcrafted features [13], which were then used as the input to a trained classifier 

that would identify useful combinations of features [14] (Fig. 2). In contrast, the DL 

paradigm largely removes human experts from the feature discovery process [5]. The input 

to a typical DL model is the unprocessed data (e.g., image data, in the case of image 

categorization), and in the course of training, intermediate layers automatically learn salient 

features of the data while subsequent layers of the same network perform the classification 

(Fig. 2). Because DL models can be very large, containing many layers and very many nodes 

and having extremely large total numbers of trainable parameters, the essential prerequisites 

for DL training are the availability of both large datasets and substantial computational 

power. In this sense, both the network structures and the required data reserves in DL may 
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be characterized as deep. The advent of the modern Internet, with its vast repositories of 

easily accessible data, as well as modern advances in computational speed and capacity have 

therefore been key enablers of DL.

The process of training a deep neural network is as follows for the exemplary concrete task 

of image classification (Fig. 3). Pixels from a sample image containing items of interest 

(e.g., a cat or a knee) are fed as input into the nodes comprising the first layer of the 

network, and the data are propagated through the network using a default set of weights for 

the weighted addition operations previously described. This results in a numeric 

classification (e.g., the likelihood of the image con-taining a knee) that is compared with a 

ground truth label previously provided by human inspection or other suitable means. Any 

difference from ground truth is then used to adjust the network’s weights (e.g., with use of a 

procedure known as backpropagation) [15], to increase the likelihood of achieving a correct 

classification the next time. This process is repeated with numerous additional images from 

the training dataset, and the weights are progressively refined. For robustness, the training 

dataset is often configured to include diverse examples containing items of interest as well as 

counterexamples that do not contain those items. Once the weights have been suitably 

refined (as measured, for example, by the performance of the network on a validation 

dataset), they are fixed, and the network is ready to be presented with new data. As we 

previously implied, given the large number of data points, nodes, and weights involved, the 

training of a deep neural network may be computationally intensive. However, once effort 

has been invested up front in training the network, processing of any new data (e.g., 

classification of a new image) can be remarkably fast and efficient, with data simply flowing 

through the various layers and being subjected to simple preset operations along the way. 

When processing image data, one of the most important architecture classes is convolutional 

neural networks (CNNs). In a CNN architecture, each node is connected to only a 

comparatively small number of neighboring nodes. Such structures are highly efficient in 

extracting local features in images (Fig. 4).

Imaging Appropriateness and Protocoling

Selecting the most appropriate imaging examination for a patient can be a difficult decision 

for a clinician. Although tools such as imaging ordering guidelines, decision support 

software, and virtual consult platforms are available to make this decision easier, ML can 

provide a more comprehensive evidence-based resource to help select the best imaging 

examination [2, 16]. ML algorithms can incorporate various sources of information from a 

patient’s medical records, including symptoms, laboratory values, physical examination 

findings, and prior imaging results, to recommend an appropriate patient-specific imaging 

examination tailored to the clinical question that needs to be answered [17].

Once the appropriate examination is ordered, it is the responsibility of the radiologist to 

make sure the examination is protocoled and performed correctly. Inappropriately 

protocoled studies can lead to suboptimal patient care and outcomes, repeat examinations 

that could involve additional radiation exposure, significant frustration and inconvenience 

both for patients and for referring physicians, and added cost to the radiology practice.
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Recently, two studies have examined the use of DL for natural language classification and its 

potential use in automatically determining MSK protocols and the necessity of IV contrast 

medium [18, 19]. The study by Lee [18] showed the feasibility of using deep CNNs to 

classify MSK MRI examinations as following routine protocols versus tumor protocols with 

the use of word combinations that included “referring department,” “region,” “contrast 

media,” “gender,” and “age” [18]. Trivedi et al. [19] used a DL-based natural language 

classification system (Watson, IBM) to determine the necessity of IV contrast medium for 

MSK MRI examinations on the basis of the free-text clinical indication. Although both 

studies showed promising results for potential applications in clinical decision and 

protocoling support, further research will no doubt explore increasingly complex classifiers 

to more fully reflect the diversity of available MSK imaging protocols. For example, to 

determine the most appropriate protocol, ML not only could draw from information on the 

examination order but could also potentially mine the electronic medical record, prior 

examination protocols and examination reports, CT or MRI scanner data, the contrast 

injection system and contrast agent data, the cumulative or annual radiation dose, and other 

quantitative data [20].

Scheduling

No-shows and same-day cancellations represent a significant opportunity cost for radiology 

practices. This is especially true for advanced imaging examinations such as MRI and CT 

[21].

Predictive analysis with AI regression models using electronic medical record data has been 

used to predict imaging no-shows successfully [22]. ML algorithms have also been used to 

predict missed appointments in other clinical settings, ranging from diabetes clinics to urban 

academic centers [23, 24]. Although these prior studies used regression-based analyses of 

inputs to define the best predictors of the desired outcome (missed appointments), more 

advanced ML algorithms may identify relationships between inputs that are not presently 

identified and that could better predict these outcomes.

Image Acquisition and Reconstruction

Increasing the Speed of MRI Data Acquisition

Decreasing imaging acquisition time has been a major ongoing field of research since the 

invention of MRI. Parallel imaging was one of the most successful developments in this field 

in the late 1990s and early 2000s [25–28], followed by the introduction of compressed 

sensing in 2007 [28]. Both of these methods achieve accelerated acquisitions by 

subsampling k-space, which means that the number of phase-encoding lines that are 

acquired during a scan is reduced below the Nyquist limit. Although this speeds up the 

acquisition because less data need to be collected, it also introduces artifacts in the 

reconstructed images. ML has been proposed as a means of solving the problem of 

reconstructing MR images from accelerated acquisitions [29–32]. The central idea is to learn 

the separation of true image content from aliasing artifacts. Early studies have shown 

promising results in terms of image quality and diagnostic accuracy when ML-accelerated 

knee MRI is compared to conventional MRI [33]. Figure 5 shows an example in which data 
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acquisition accelerated four times faster with the use of ML reconstruction is compared with 

a fully sampled reconstruction with traditional reconstruction by Fourier transformation. A 

systematic comparison of this accelerated ML-based reconstruction of a complete clinical 

knee protocol with parallel imaging [34], the combination of parallel imaging and 

compressed sensing [35], and dictionary learning [36] can be found in a recent study by 

Hammernik et al. [29].

Decreasing CT Radiation Dose

Continuous efforts have been made to decrease the amount of radiation that a patient is 

exposed to when undergoing diagnostic imaging [37, 38]. ML provides an exciting new tool 

for reducing the radiation dose in CT. The current ML-based techniques for radiation 

reduction operate in a manner similar to techniques used to increase the speed of MRI 

acquisition-namely, they aim to reconstruct high-quality images from reduced quantities of 

raw data or raw data of a reduced quality (e.g., as a result of noisy data obtained at low tube 

currents). In a recent study by Cross et al. [39], more than 90% of readers found that the 

quality of low-radiation-dose CT images, which were produced in part with the use of an 

artificial neural network, was equal to or greater than that of CT images obtained using 

standard radiation doses.

Image Presentation

Radiologists are facing ever-greater pressure to increase productivity, confronting higher 

daily volumes of more complex cases than they have been asked to interpret in the past [40]. 

Radiologists can work more efficiently if the PACS automatically displays each series in the 

correct preferred position, orientation, and magnification as well as the correct preferred 

window and level, syncing, and cross-referencing settings. Such hanging protocols should 

load consistently and should be accurately based on modality, body part, laterality, and time 

(in the case of prior available imaging). AI has the potential to revolutionize the way in 

which a PACS displays information for the radiologist, by using smarter tools that process a 

variety of available data. One PACS vendor uses ML algorithms to learn how radiologists 

prefer to view examinations, collect contextual data, present layouts for future similar 

studies, and adapt after any corrections [41]. These intelligent systems could overcome 

issues related to variable or missing data that may cause traditional hanging protocols to fail 

and can help radiologists achieve greater efficiency.

Image Interpretation

Currently, the most popular area of research within ML relates to pattern detection and 

image interpretation. In MSK radiology alone, ML algorithms have been applied to various 

conditions, including diagnosis of fractures, osteoarthritis, bone age, and bone strength [42–

46].

Fractures

Two studies in the orthopedic literature have shown that deep CNNs perform equally as well 

as or better than orthopedic surgeons in the detection of proximal humerus, hand, wrist, and 

Gyftopoulos et al. Page 5

AJR Am J Roentgenol. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ankle fractures on radiographs [47, 48]. In a study by Chung et al. [47], the network 

performed well in detecting the presence of fracture in the proximal humerus, but it did not 

perform as well in classifying fractures according to the Neer classification. Given that the 

data-sets for training three- and four-part fractures were smaller, Chung and colleagues 

suggested that the lower accuracies for more complex proximal humerus fracture types 

would likely improve with more training.

ML has also been used to detect posterior element fractures and vertebral body compression 

fractures on CT [49, 50]. Roth et al. [49] established the feasibility of using a deep CNN to 

facilitate automated detection of posterior element fractures using a relatively small dataset, 

reporting an AUC value of 0.857 and sensitivities of 71% and 81%. The same group was 

also able to develop an automated ML system to detect, localize, and classify thoracic and 

lumbar vertebral compression fractures with the use of support vector machine regression 

(SVMR), reporting sensitivity of 95.7% and a false-positive rate of 0.29 per patient for the 

detection and localization of compression fractures [50].

Osteoarthritis

Using a binary classifier (normal vs abnormal), Xue et al. [51] reported that a CNN was able 

to automatically detect hip osteoarthritis on radiographs with performance comparable to 

that of an attending radiologist with 10 years of experience. Using a pretrained CNN model 

with fine-tuning for the final model on a set of 420 radiographs, the authors reported 

sensitivity of 95%, specificity of 90.7%, and accuracy of 92.8%, compared with a reference 

standard of chief physicians (defined as physicians with more than 20 years of experience).

Other studies have examined the performance of CNNs in grading the severity of knee 

osteoarthritis using existing large datasets, such as the Osteoarthritis Initiative (OAI) and 

Multicenter Osteoarthritis Study (MOST) [52–54]. Tiulpin et al. [52] used a deep CNN to 

automatically score the severity of knee osteoarthritis on radiographs according to the 

Kellgren-Lawrence (KL) grading scale, which yielded results comparable to known values 

of human reader agreement. The authors also provided the probability distribution of KL 

grades with the images, showing when the CNN may have similar predicted probabilities 

across two adjacent KL grades. This is not unlike real-life clinical practice, in which the 

severity of arthritis may not clearly be classified as one grade or another and may reflect the 

overlap or transition between two grades.

Antony et al. [53] attempted to address the same limitation of using the finite KL grading 

scale by redefining knee osteoarthritis grading as a regression rather than a classification ML 

problem (e.g., treating KL grading as a continuous variable, which the authors argued more 

accurately replicated continuous disease progression). A more recent study by the same 

group used CNNs to both localize the knee joint and quantify the severity of knee 

osteoarthritis with both multiclass classification and regression outputs [54].

Bone Age

Several studies have shown promising results of using ML to determine bone age [55–58]. 

Using datasets from two separate children’s hospitals, Larson et al. [55] found that their 

deep CNN was able to estimate skeletal maturity with accuracy comparable to that of an 
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expert radiologist as well as to that of existing automated bone age software. Tajmir et al. 

[59] showed that AI-assisted radiologist interpretation performed better than AI alone, a 

radiologist alone, or a pooled cohort of experts, by increasing accuracy and decreasing 

variability and the root-mean-square error. Their findings suggest that the most optimal use 

of AI for determination of bone age may be in combination with a radiologist’s 

interpretation.

Bone Fragility

There is increasing interest in how ML can improve quantitative bone imaging for the 

assessment of bone strength and quality. Several recent studies have attempted to incorporate 

existing methods of assessing trabecular bone microarchitecture, such as geometric and 

textural characteristics, with the ML methods of support vector machines and SVMR [60–

62].

A study by Yang et al. [60] used SVMR to predict the failure loads of ex vivo proximal 

femur specimens on the basis of a combination of conventional dual-energy x-ray 

absorptiometry bone mineral density (BMD) measurements and other methods of capturing 

trabecular bone microarchitecture on MDCT. These methods included statistical moments of 

MDCT BMD distribution, morphometric parameters like bone fraction and trabecular 

thickness, and geometric features derived from the scaling index method. They found that 

prediction of failure load was significantly improved with the addition of geometric features 

to supplement conventional dual-energy x-ray absorptiometry BMD distribution.

A study by Huber et al. [61] that used similar techniques showed the ability to predict 

trabecular bone strength of ex vivo proximal tibia specimens from knee MRI data by use of 

scaling index method–derived features and SVMR. They showed that the addition of scaling 

index method features and SVMR to the standard bone volume fraction parameter had the 

highest prediction accuracy when compared with bone volume fraction and linear multiple 

regression analysis. Ferizi et al. [63] found that random undersamling-boosted trees, logistic 

regression, and linear discriminant were the best ML classifiers for predicting osteoporotic 

fractures. This group also found that the intertrochanteric, greater trochanteric, and femoral 

head regions contributed the most to ML prediction performance.

These studies have shown that the combination of trabecular bone microarchitecture features 

and ML techniques can be used to more accurately predict biomechanical strength of 

trabecular bone and that ML automated segmentation has the capacity to more rapidly 

translate MRI-based bone structural assessment into clinical practice. Further development 

and refinement of these prediction and segmentation models will aid the automated and 

objective assessment of osteoporosis, disease progression, and treatment response.

Quantitative Image Analysis

Segmentation

Current imaging segmentation techniques, including model-, atlas-, and graph-based 

techniques, are limited for several reasons, including the need for large training sets, user 

interaction, significant time investment, and accurate robust registration technique [64]. ML 
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can improve quantitative analysis by allowing automatic segmentation of the areas of 

interest, depending on the region of the body and clinical question. Attempts to use ML for 

the purposes of MSK image segmentation can be found as far back as 2008, in a study by 

Gassman et al. [65], who used artificial neural networks to successfully segment hand 

phalanges. Most of the recent literature has focused on knee cartilage segmentation, with 

promising initial results noted [66, 67]. Liu et al. [67] successfully used a combination of a 

deep CNN, a 3D fully connected conditional random field, and 3D simplex deformable 

modeling to accurately and efficiently segment the different structures of the knee, including 

cartilage, menisci, and bones.

ML-driven segmentation sets the stage for easier assessment of osteoarthritis progression 

and degeneration of important stabilizing structures, such as the meniscus, with advanced 

imaging sequences. One recent study by Norman et al. [68] used a DL-based model to 

automatically segment knee cartilage and menisci while also determining cartilage 

relaxometry and morphologic findings with T1-rho and 3D double-echo steady-state 

imaging. By use of manual segmentation and quantifications of the articular surfaces and 

menisci as ground truth, the model was found to be strongly accurate for both the 

segmentation and morphologic tasks. These techniques can also be extremely useful for 

outcome prediction when applied to other common MSK joint-related conditions, such as 

femoroacetabular impingement and anterior shoulder instability.

It is necessary to segment the proximal femur when using MRI to assess proximal fem-oral 

structural bone quality. Most studies have used manual segmentation of the whole proximal 

femur, but a recent study by Deniz et al. [69] that involved proximal femur MRI 

segmentation using deep CNN showed a high dice similarity score of 0.95. The dice score is 

a statistic used to assess the similarity of two samples, with values approaching 1 indicating 

higher similarity. In the case of segmentation, it is often used to compare the similarity 

between the algorithm-generated segmentation mask and the ground truth, which is typically 

manual segmentation by human experts. A dice score of 0.95 is indicative of successful 

automated segmentation.

Radiomics

Radiomics is an emerging field in medicine that is based on the extraction of diverse 

quantitative characteristics from images and the use of these characteristics for data mining 

and pattern identification. These data can then be used with other patient information to 

better characterize and predict disease processes [70]. ML techniques have led to a rapid 

expansion of the potential of radiomics to impact clinical care. For instance, the description 

of a sarcoma diagnosed on MRI will typically include estimates of tumor size, shape, and 

enhancement pattern. ML-driven algorithms can also identify and collect other 

characteristics that are not easily appreciated on images (e.g., texture analysis, image 

intensity histograms, and image voxel relationships) and can lead to more precise treatment 

[71].

One recent study applied ML-enhanced radiomics to differentiate sacral chordomas from 

sacral giant cell tumors on 3D CT [72]. Comparing different feature selection and 

classification methods, the authors found contrast-enhanced CT characteristics more useful 
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than those from unenhanced imaging for differentiation of these two tumor types. This type 

of works highlights the potential for ML-enhanced radiomics in evaluating other MSK 

tumors as well as in guiding more precise treatment of this patient population.

Conclusion

The use of AI has the potential to greatly enhance every component of the imaging value 

chain. From assessing the appropriateness of imaging orders to helping predict patients at 

risk for fracture, AI can increase the value that MSK imagers provide to their patients and to 

referring clinicians by improving image quality, patient centricity, imaging efficiency, and 

diagnostic accuracy.
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Fig. 1—. 
Schematic showing machine learning as specialized subcategory of artificial intelligence. 

Deep learning is another subcategory of machine learning that studies use of certain 

category of computational models that are fit to large datasets.
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Fig. 2—. 
Learning paradigms.

A, Schematic shows classic machine learning paradigm.

B, Schematic shows deep learning paradigm.
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Fig. 3—. 
Schematic shows training of deep neural network for task of image classification. Process of 

prediction and backpropagation is repeated for numerous examples from training dataset, 

with progressive refinement of weights to improve future predictions. Circles represent 

nodes. Black lines represent weighted connections between nodes, with thickness of each 

line representing magnitude of corresponding weight. Long arrow below each process 

denotes flow of information through network at this step. Shaded areas of bars and small 

triangles to right of each process show probability of input image being categorized in 

certain category. Areas of bars between double-headed arrows denote difference of 

prediction to actual ground truth that drives refining of weights in training.
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Fig. 4—. 
Schematic of example of convolutional neural network (CNN) architecture that takes input 

image and performs binary classification on basis of content of image. Dimensions of 

images, as they are processed by CNN, are shown below images. Please note that choice of 

four convolutional channels in every convolution layer is arbitrary choice in this didactic 

example of CNN architecture. Architecture consists of five convolutional layers that 

alternate with pooling layers, each of which combines its input into output that is four times 

smaller (i.e., 320 × 320, followed by 160 × 160, 80 × 80, 40 × 40, and then 20 × 20), 

followed by fully connected layer. Convolutional layers perform task of feature extraction at 

progressively higher level. Fully connected layer performs classification. Values in brackets 

denote output of classification obtained by network (1 corresponding to image being 

corrupted by artifacts, 0 corresponding to uncorrupted image).
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Fig. 5—. 
Comparison of 4-times-accelerated data acquisition with machine learning (ML) 

reconstruction to conventional, fully sampled (FS) clinical protocol in two anonymized 

patients.

A and B, Tear of medial meniscus (arrows) can be easily seen on FS (A) and ML (B) 

coronal proton density images. C and D, Bone contusion (black arrows) and subchondral 

edema (white arrows) in medial femoral condyle can be easily seen on FS (C) and ML (D) 

coronal fat-suppressed T2-weighted images.
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