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Abstract

Mass spectrometry imaging is a powerful tool widely used in biological, clinical and forensic 

research, but its often poor repeatability limits its application for quantitative and large-scale 

analysis. A systematic evaluation of infrared matrix-assisted laser desorption electrospray 

ionization mass spectrometry (IR-MALDESI-MS) repeatability in absolute ion abundances during 

short- and long-term experiments was carried out on liver slices from the same rat with minimal 

biological variability to be expected. Results of median %RSDs ranging from 14-45, pooled 

%RMADs ranging from 11-33 and Pearson correlation coefficients ranging from 0.83 to 1.00 

demonstrated an acceptable repeatability of IR-MALDESI-MS. Normalization is commonly 

applied for the purpose of accounting for analytical variability of spectra generated from different 

runs so to reveal real biological differences. Nine data normalization strategies were performed on 

the rat liver data sets to examine their effects on reducing analytical variation, and further on a hen 

ovary data set containing more morphological features for the investigation of their impact on ion 

images. Results demonstrated that the majority of normalization approaches benefit data quality to 

some extent, and local normalization methods significantly outperforms their global counterparts, 

resulting in a reduction of median %RSD up to 22. Local median normalization was found to be 

promisingly robust for both homogeneous and heterogeneous samples.
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INTRODUCTION

Mass spectrometry imaging (MSI) has been gaining considerable popularity in tissue 

analysis due to its capability of simultaneous detection of hundreds of biomolecules while 

retaining their spatial distributions. The development and application of ambient MSI allows 

for direct tissue characterization with minimal sample pretreatment [1]. One such ambient 

ionization source is infrared matrix-assisted laser desorption electrospray ionization (IR-

MALDESI), which combines features of both matrix-assisted laser desorption/ionization 

(MALDI) and electrospray ionization (ESI). IR-MALDESI employs a pulsed mid-infrared 

(mid-IR) laser at 2940 nm to resonantly excite O-H stretching modes of molecules present in 

the sample. An exogenous ice layer can be deposited to facilitate the desorption of neutral 

materials from sample [2]. The high laser fluence enables complete ablation of a 10 μm 

thick tissue section at each spatial location with two laser pulses, therefore each pixel in the 

ion images are usually referred to as voxel to represent a volume element [3]. The desorbed 

neutrals are allowed to partition into an orthogonally oriented electrospray plume, where 

they are ionized via an ESI-like mechanism [4, 5]. IR-MALDESI, due to its matrix- and 

label-free nature, has been widely used to study biological samples ranging from single hair 

strands [6] to complex biological matrices such as whole neonatal mice [7].

High repeatability of analytical techniques is of prime importance for meaningful intra- and 

inter-sample comparison, which is particularly essential for large-scale studies where 

measurements are made over long time periods or where accurate quantification is required 

(e.g., clinical applications). However, variability in ion abundances between replicates is a 

widely recognized problem with MSI [8, 9]. These uncertainties present in mass spectra may 

compromise the precision of MSI, pose challenges for quantification, and consequently limit 

its usefulness as a tool for routine analysis. Attempts have been made to characterize the 

repeatability of various MSI techniques. The intraexperiment relative standard deviations 

(RSD) of protein peak abundances were reported to be 2-40% varying among studies using 

MALDI-MS [8]. The origins of the analytical variation in MALDI-MS are currently poorly 

understood, but studies have suggested that this issue could be attributed to non-uniform 

matrix coating, heterogeneous crystallization, variations in laser energy, and detector 

sensitivity [10-12]. Gurdak et al. reported average absolute abundance repeatability of 30% 

over 8 separate days using a desorption electrospray ionization mass spectrometry (DESI-

MS) platform [13]. Impurities in electrospray solvent was proposed to possibly play an 

important factor in the day-to-day variation. Our previous studies demonstrated that the raw 

voxel-to-voxel %RSD of antiretroviral drugs in IR-MALDESI is 41-56% depending on the 

adducted cations [3], but the variability in ion abundances over longer time periods remains 

to be characterized. Additionally, the limited number of m/z features selected in some 

studies may bias the precise estimation of the instrument repeatability. A thorough 

evaluation with a significant number of features should be undertaken to allow more 

quantitative statistics to be derived.
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Normalization is a crucial data processing step to identify and address experimental 

variance, hence improving the comparability of spectra generated from different 

measurements. The process is normally performed by subtracting an offset from a mass 

spectrum (optional) and then dividing by a normalization factor. The offset and 

normalization factor can be calculated over the full spectrum, which is known as global 

normalization, or over segmented m/z windows, which is known as local normalization [14]. 

The most frequently applied normalization techniques in MSI include total ion current (TIC) 

normalization, which forces all voxels in a data set to have an identical TIC value [15], and 

reference normalization, which scales analyte responses by a well-matched reference ion, 

usually an analogue of the analyte deposited uniformly over the sample (internal standard) 

[16, 17] or a matrix ion [18, 19]. Although they frequently correct for signal variability [3, 

15, 20-22], TIC normalization and reference normalization may be prone to bias due to their 

inherent limitations. For example, the assumption of TIC normalization may not be fulfiled 

for heterogeneous samples where high-abundance but localized peaks exist [23] or when 

multiple classes of samples are compared. Internal standard normalization is impractical for 

untargeted analysis since analytes with different chemical structures have different ablation 

and ionization efficiencies. The fact that the optimal normalization method for a certain 

platform or a data set is not readily clear requires careful exploration of the selection so to 

ensure a reliable downstream analysis, otherwise severe data skewness can result, causing 

inaccurate conclusions or interpretation.

This work aims at comprehensively and quantitatively evaluating IR-MALDESI 

performance on yielding repeatable data from animal tissues across voxels, lines, time points 

and days. Then detailed comparisons were performed to illustrate the effect of a wide range 

of commonly used normalization strategies on minimizing data variation between technical 

measurements and improving ion image quality.

MATERIALS AND METHODS

Materials

HPLC-grade methanol and water were purchased from Fisher Scientific (Fair Lawn, NJ, 

USA). Formic acid and acetic acid were purchased from Sigma-Aldrich (St. Louis, MO, 

USA). Hematoxylin and Eosin (H&E) reagents were purchased from Electron Microscopy 

Sciences (Hatfield, PA, USA). All chemicals were used without any purification. Nitrogen 

gas used for purging the MALDESI sample stage enclosure was obtained from Arc3 Gases 

(Raleigh, NC, USA).

Samples

Rat liver tissue samples were obtained from NCSU Department of Biological Sciences. 

Liver was selected for this study as a relatively homogeneous model to provide quasi-

technical replicate sections with minimal biological variability. An ovary tissue coming from 

a healthy white leghorn commercial egg laying hen was obtained from an in-house 

biorepository. The ovary was an example for a heterogeneous model, of which mass 

spectrometry images could serve for evaluating the effect of normalization on image quality. 

Animals were managed in accordance with the Institute for Laboratory Animal Research 
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Guide, and all husbandry practices were approved by North Carolina State University 

Institutional Animal Care and Use Committee (IACUC). Both tissues were frozen in 

isopentane/dry ice and stored at −80 °C until sectioning.

Tissue sections of 10 μm thickness were produced using a Leica CM1950 cryostat (Buffalo 

Grove, IL, USA) at a temperature of −15 or −20 °C for rat liver and hen ovary, respectively. 

The sections were thaw mounted onto standard glass microscope slides and kept frozen until 

the time of analysis. A serial section of ovary tissue was Hematoxylin and Eosin (H&E) 

stained then imaged by Leica LMD7000 microscope (Leica Microsystems, Buffalo Grove, 

IL, USA). The microscopic image was used to provide an independent evaluation of the 

effects of normalization by comparing the agreement between raw/ normalized ion images 

and the histology shown on the optical image.

IR-MALDESI-MS Analysis

Details about the in-house built IR-MALDESI source and the implementation of tissue 

imaging has been reported elsewhere [2, 24]. Briefly, an ice layer is formed on the surface of 

the tissue section. Then, a mid-IR laser at 20 Hz pulse rates of 2940 nm incident wavelength 

(IR-Opolette 2731, Opotek, Carlsbad, CA, USA) is focused on the sample surface to 

resonantly excite water, desorbing neutrals from sample. Each voxel is subjected to two laser 

pulses to completely ablate probed sample materials. The laser spot size on tissue was 

measured to be 150 μm. The desorbed neutrals partition into charged droplets of the 

electrospray and are converted into gas-phase ions. 50% (v/v) aqueous methanol modified 

by 0.2% formic acid and 1 mM acetic acid were used for electrospray solvent in positive and 

negative ionization mode respectively. A Q Exactive Plus mass spectrometer (Thermo Fisher 

Scientific, Bremen, Germany) was coupled to the IR-MALDESI source for accurate mass 

detection. The automatic gain control function (AGC) was disabled and the injection time 

(IT) was fixed in imaging experiments to coordinate the laser desorption and ion acquisition 

events.

The rat liver data sets were acquired at a spatial resolution of 200 μm in both positive and 

negative ionization mode in the m/z range of 250-1000 with the resolving power of 140,000 

(FWHM, m/z = 200). A 10-by-10 voxel region was sampled on each tissue section for each 

ionization mode, producing 100 mass spectra per section. Regions containing visible vessels 

and bile channels were avoided to minimize the contribution from possible biological 

variability. The IT was held constantly throughout the experiments as 75 ms. Lock mass re-

calibration was used to achieve parts per million mass accuracy [25]. The peaks of 

polysiloxane at m/z 371.1012 [M + H]+ and diisooctyl phthalate at m/z 391.2843 [M + H]+ 

were used as lock masses in positive ionization mode. Two peaks of palmitic acid at 

255.2329 [M − H]− and stearic acid at 283.2643 [M − H]− were used as lock masses in 

negative ionization mode.

The hen ovary-based data was acquired in positive ionization mode in the m/z range of 

250-1000 with the resolving power of 140,000 (FWHM, m/z = 200). The spatial resolution 

of 200 μm-by-100 μm was achieved by applying the over-sampling method. More details 

about the experimental parameters for ovarian tissue have been described previously [26].
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Data Processing

The raw data files were converted into a mzML file using MSConvert from the 

ProteoWizard toolkit [27], followed by conversion into an imzML image file by 

imzMLConverter [28]. These files were subsequently loaded, processed and visualized in 

MatLab (R2018a; MathWorks, Natick, MA, USA) environment using MSiReader [29, 30]. 

Ion images were generated with ±2.5 ppm m/z tolerance. Peak picking in MSiReader was 

performed using the MSiPeakfinder tool to generate a list of biological ions which mainly 

originated from animal tissue sections but barely from the background. Each image was 

queried for peaks present over a threshold abundance in at least 80% of a user-defined 

interrogated region (on-tissue) while either exist in less than 20% of a reference region (off-

tissue), or present at an average abundance ratio of 2 or higher. The abundance thresholds for 

peak picking in positive and negative mode were set to be 3000 and 1000 counts⋅s−1, 

respectively, for the purpose of producing sufficient ion statistics and incorporating 

consistently existing features.

Repeatability Measurements

Four different levels of variability of rat liver-based data were evaluated in this work, 

including voxel-to-voxel, line-to-line, intra-day and inter-day. Signal variability across all 

voxels on one tissue section was assessed at voxel-to-voxel level. Line-to-line variability was 

measured by comparing mean spectra that were acquired from replicate scan lines on the 

same tissue section. 10 scan lines were acquired per sample. each line consisting of 10 non-

overlapping measurements. For Intra-day and inter-day variability measurements, the mean 

spectrum across 100 measurements on each tissue section was calculated to create a single 

data vector. Mean spectra that were acquired at 8am, 12pm and 4pm during the same day 

were compared for intra-day variability study, while spectra acquired within 11 consecutive 

days were compared for inter-day variability study.

Considering the linear relationship between the mean and standard deviation with ion 

abundances, relative standard deviation (RSD)

% RSD =
σA

∣ μA ∣ × 100 %

and relative median absolute deviation (RMAD)

% RMAD =
median[ ∣ Ai − median(Ai) ∣ ]

median(Ai)
× 100 %

were chosen to estimate scale-independent estimations of variance, where σA is the standard 

deviation, μA is the mean and Ai is the abundance of an ion in the ith spectrum. %RSD 

quantifies the amount of variation or dispersion of data, while %RMAD serves as a 

supplementary estimator since it is more resilient to outliers [31]. %RSDs and %RMADs 

over all selected tissue-relevant peaks, including 196 cations and 101 anions, were 
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computed, then the median %RSD value with interquartile range and pooled %RMAD at 

each level were presented. Pearson correlation coefficients were further calculated by

rA, B = 1
N − 1 ∑

i = 1

N
(
Xi − μX

σX
)

Yi − μY
σY

= cov(X, Y)
σXσY

to measure the degree of linear relationship between spectrum X and Y, so to quantify their 

similarity [32], where Xi and Yi are the ith ion abundance in X and Y, respectively. μA and 

μB, σA and σB are mean and standard deviation of ion abundances in spectrum X and Y, 

respectively. cov(A, B) represent the covariance of spectrum X and Y.

Normalization Techniques

Nine commonly used normalization approaches based on different assumptions were 

specifically selected for adjusting ion abundances between measurements. For those 

normalization methods with the notable exception of quantile normalization, the mass 

spectrum is divided by a normalization factor (f). All calculations were completed in 

MatLab with in-house scripts which are provided in the Electronic Supplementary Material 

(ESM).

Total ion current normalization (TIC normalization): 

f = ∑
t

yt

where yt is the abundance of the tth peak in the spectrum. This classic and simple method 

based on the assumption that all measurements have equal TIC value may be limited for 

ambient MSI, in which numerous ions generated from environment or solvent are also 

detected and contribute a lot to TIC. These background ions vary over time unpredictably, 

causing problems performing TIC normalization.

In order to overcome the limitation of involving all detected ions, we tend to only use 

selected biological ions for estimating normalization factor. For this reason, all 

normalization methods used in this work except TIC normalization are based on biological 

ions that are mainly present on animal tissues. The peak picking process was detailed in 

“Data Processing”.

p-normalization-sum normalization, vector normalization, max normalization: 

f = ∑
i

yi
p

1
p

where yi is the abundance of the ith biological ion in the spectrum. Sum, vector and max 

normalization are special cases of p-normalization.
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For p = 1, the spectrum is normalized to the sum of biological ion abundances. Sum 

normalization is a variant of traditional TIC normalization. The rationale that the biological 

constituents are expected to be constant across pixels or samples makes it more robust to the 

fluctuation in background ions. Sum normalization seems to be more reliable especially for 

IR laser-based MSI, in which probed tissue areas are completely ablated. For p = 2, the 

formula leads to vector normalization. It forces all spectra to have the equal length. For p → 
∞, it is known as maximum normalization and normalizes spectrum based on the most 

abundant biological ion.

Median normalization:

f = median(yi)

Median normalization is the division of the ion abundance by the median value of ion 

abundances in a spectrum. Using this approach, the normalization factor is less affected by 

outlying ions from a statistical point of view, so median normalization is thought to be more 

robust than p-normalization. Although there is no theoretical basis for it, median 

normalization has been successfully applied on MALDI-MS data [18, 23].

Median fold change normalization (MFC normalization):

f = median ∕Ref i

yi

MFC normalization scales the spectrum to the median fold change of ion abundances with 

respect to a reference spectrum. The choice of the reference spectrum is not critical but 

typically the median spectrum [33]. The rationale behind this method is that non-

differentially expressed molecules should have fold changes in abundances approximately to 

be one across different spectra [34]. However, applying MFC normalization to MSI data 

may be less appropriate when the distribution of fold-change regarding to the reference 

spectrum deviates far from symmetrical Gaussian distribution [18].

Standard deviation normalization (Std Normalization) and Median absolute 
deviation normalization (MAD Normalization): Std and MAD normalization factor 

can be computed respectively as

f = std(yi)

and

f = median( ∣ yi − median(yi) ∣ )

The dispersion-based techniques are frequently used to scale microarray data with the 

assumption of equal spread for all arrays [35, 36]. MAD was also estimated as the noise 

Tu and Muddiman Page 7

Anal Bioanal Chem. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



level in MSI [23], and normalizing to MAD is performed when a consistent noise level is 

assumed for all spectra.

Quantile Normalization:

This non-parametric technique is motivated by the idea that the distribution of ion 

abundances is expected to be identical across measurements [37]. Median quantile 

normalization is performed by first sorting m/z variables in each spectrum by their 

abundances, then the median value of the highest abundances was substituted for the highest 

abundance in every spectrum, the median value of the next highest abundances was assigned 

to the next highest abundance in every spectrum, and so forth. Therefore, quantile 

normalization as a rank order-based method is thought to be more robust than intensity-

based in some respects, but its limitations including discarding potentially informative 

abundance values and impracticability on tissue with different compositions may decrease 

its effectiveness [18].

RESULTS AND DISCUSSION

Assessments of Voxel-to-voxel, Line-to-line, Intra- and Inter-day Repeatability

Rat liver was used as a chemically homogeneous model to study the repeatability of IR-

MALDESI-MS. Molecular profiles of tissue sections were collected at different voxels 

(voxel-to-voxel), scan lines (line-to-line), three time points during one day (intra-day) or on 

11 continuous days (inter-day). The variations in absolute abundances of selected biological 

ions were characterized for 196 and 101 peaks in positive and negative mode, respectively. 

The mean centroid mass spectra of rat liver with selected biological ions and their 

abundance distributions are presented in Figure 1. Abundances of representative ions which 

are common lipids or metabolites present in animal tissues were plotted over time to visually 

display the signal fluctuation (Figure 2). %RSDs and %RMADs in ion abundances of all 

selected biological ions were computed at different levels to represent scale-independent 

estimations of variance, and the median %RSDs with interquartile ranges and pooled 

%RMADs were shown in Table 1. Pearson correlation coefficients were further calculated to 

quantify the similarity of replicate spectra (ESM Fig. S1). A low variation value and a high 

correlation score mean a stronger similarity between replicates, thus indicating a better 

repeatability of the analysis.

As an important indicator of instrument stability, the TIC values have been monitored during 

the acquisition period. It can be observed from Figure 2 that the TIC values from the same 

section remained fairly constant, while they varied from day to day, and the change is not 

necessarily positively associated with the abundance change of biological ions. Data points 

of biological ions spread within a single section with median %RSD of approximately 40%, 

which is in accordance with our previous study [3]. This variation may originate from a 

range of sources, including laser energy, stability of electrospray and ionization efficiency. 

Most ions have line-to-line and intra-day %RSD lower than 20%, revealing decent 

repeatability at these two levels. No significant change in acquisition direction indicates that 

stage movement does not adversely influence data quality.
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For inter-day data, the relatively significant variability in positive mode with median %RSD 

of 40% and mean correlation coefficient of 0.83 can be possibly attributed to the fluctuation 

in atmosphere or accumulation of contamination across days. For example, strong signals 

m/z 637.3060 and m/z 666.3327 were only observed in spectra shown on day 7 (data not 

shown). These ions might suppress ionization and/or detection of biological signals. This 

hypothesis is supported by the opposite trend between TIC and biological ions from inter-

day data sets in positive mode. Interestingly, data in negative mode revealed fairly constant 

ion abundances, which could be explained by more stable background ions. Median %RSD 

of 29% and mean Pearson’s coefficient of 0.99 were achieved in this ionization mode.

Effect of Normalization on Voxel-to-voxel, Line-to-line, Intra-and Inter-day Repeatability

The observed variations in ion abundances emphasize the need for normalization to remove 

experimental bias while revealing the authentic biological features. A comparison of nine 

commonly used normalization techniques including TIC, sum, vector, max, std, MAD, 

median, quantile and MFC normalization were performed on rat liver data. The 

performances of these normalization methods were judged in terms of the reduction of 

%RSDs and %RMADs (Figure 3 and Table 2). Additionally, multiple comparison tests with 

Bonferroni correction were carried out at the 5% significance level to determine whether the 

mean %RSDs of normalized data are significantly lower than unnormalized data.

Although normalizing to TIC is one of the most common methods in mass spectrometry 

field, it did not help decrease signal variability in this work, especially in positive mode. 

This may be a result of abnormally intense background ions accounting for approximately 

65-80% TIC while suppressing the biological ion abundances. Therefore, this normalization 

approach is not recommended for ambient MSI-based data, especially for processing data 

sets acquired over a long period.

Normalizing to a sum or vector of biological ions achieved significant %RSD reduction up 

to 14. Nevertheless, these p-normalization methods may cause dangerous artifacts when 

applied on chemically heterogeneous samples with highly abundant localized peaks. The 

artifacts will be amplified with increasing p because abundant peaks have greater impact on 

normalization factor with larger p. For instance, Deininger et al [23] found that the insulin 

signal was unusually intense in the islets of Langerhans in mouse pancreas. After 

normalizing to TIC or vector, the signal at m/z 14,014 which was expected to be ubiquitous 

in the entire mouse pancreas was decreased in the islets of Langerhans. The artifacts should 

be taken seriously since the reconstructed image would be in agreement with the histology. 

The authors suggested a possible solution by excluding these high abundance peaks before 

normalization, but this step requires manual interaction which is comparatively time-

consuming and introduces potential operator error.

Our results show that the median, MFC and quantile normalization approaches led to 

considerable improvements of inter-day repeatability by reducing the median %RSD by 

12-16, whereas the voxel-to-voxel, line-to-line and intra-day %RSDs were less affected. The 

robustness of normalizing to median signal has been reported previously [18, 23, 38]. It is 

robust not only to significantly changing background (unlike TIC normalization), but also to 

abnormally high but localized peaks (unlike p-normalization), hence is able to avoid 
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detrimental normalization artifacts. Quantile normalization works constantly well on all data 

sets. It is a well-established method in microarray analysis to remove systematic bias 

between arrays of non-biological origin [39]. However as stated previously, quantile 

normalization may cause loss of informative abundance values and the assumption may not 

hold true for chemically heterogeneous tissues where distinct distributions are existent.

Global vs. Local Normalization

One interesting observation was made for inter-day data sets in positive mode, that the boxes 

of %RSDs in Figure 3A show extended ranges following most of the normalization 

methods, implying that some ion abundances varied even more after normalization. To 

characterize the ions of which variation can be reduced by normalization, the relationship 

between variation reduction ratio and m/z or ion abundance was assessed. Here, the variation 

reduction ratio of each ion was calculated as:

RSDa f ter norm
RSDbe f ore norm

where a ratio less than 1 indicates normalization improved agreement. It turns out that 

positive ions with m/z > 600 show an overall %RSD reduction by normalization, while those 

with m/z < 600 generally obtain larger variability after normalization (Figure 4). The 

contrary behavior could be tentatively explained in terms of competitive ablation, ionization, 

and/or detection between these two ion groups, which is suggested by the roughly negative 

association for the sum of ion abundances with m/z < 600 and > 600 (ESM Fig. S2). No 

similar pattern was observed in negative mode.

It is proposed that local normalization may be more suitable for addressing spectra with non-

uniformly distributed noise levels [40]. Based on what we found above, the same 

normalization methods with locally estimated scaling factors were investigated using m/z 
segments of 250 < m/z < 600 and 600 < m/z < 1000 for positive mode. Although no similar 

scenario was observed in negative mode, we still evaluated how local normalization 

performed on negative mode data, and the m/z window was selected with the criteria of 

similar number of features and totally different background signal present in the two 

windows. Therefore, 250 < m/z < 300 and 300 < m/z < 1000 for negative mode were chosen. 

The comparison between global and local normalization is graphically depicted in Figure 5. 

Local normalization methods perform generally better on positive mode data than their 

global counterparts, displaying lower median %RSDs and more normalized data achieving 

statistically significant %RSD reduction (Figure 5 and Table 3). For example, normalizing to 

TIC globally deteriorated the signal repeatability, while normalizing to TIC locally reduced 

the median %RSD from 38 to 28 (voxel-to-voxel), 17 to 10 (line-to-line), 14 to 11 (intra-

day), 40 to 26 (inter-day). A similar observation can also be made when using the pooled 

%RMAD as the variation estimator. More details can be found in Table 3. Local quantile, 

median and MFC normalization were overall the optimal methods in reducing data 

variability, bringing the median %RSDs from 38 to 25 (across voxels) and from 40 to 18 

(across days), showing comparable performance to normalization on internal standards [3]. 

No obvious improvements was observed for negative mode data.
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Visual Inspection of Bias between Measurements

Another way of evaluating normalization procedures is by looking at their effect on 

minimizing differences in pairwise comparisons between spectra. MA plot is a practical tool 

for discerning the differences between two runs by presenting a scatter plot of the logged 

abundance ratios (M) versus the logged abundance products (A). M and A are calculated by

M = log2(Xi ∕ Yi)

A = 1
2log10(Xi × Yi)

where Xi and Yi are the abundance of the ith ion in mass spectrum X and Y, respectively. 

[41, 42]. It can be seen that the more closely the data points are centered around M = 0, the 

more the two spectra are similar. In this work, MA plots of pairwise inter-day data were 

drawn with each normalization method. Since local normalization was found to be more 

successful in positive mode, we only compared positive mode data normalized locally, while 

negative mode data was processed with global normalization. As shown in Figure 6, the 

clear curvature in MA plot of unnormalized data suggests the abundance-dependent bias, 

while representative MA plots of normalized data show the point clouds were concentrated 

more tightly around x axis, the locally weighted scatter plot smooth (Lowess) lines 

approached M = 0 and less data points had larger than 2-fold change. MA plots of other 

pairs of data can be found in ESM Figs. S3-S4. These results clearly indicate improved 

similarities in ion abundances between experiment pairs after most normalization 

techniques.

Effect of Normalization on Ion Images

Normalization was further applied on a hen ovary tissue-based data acquired in positive 

mode, which contains more morphological features and represents a typical imaging data 

set, to assess the impact of normalization on reconstructed images. Local normalization with 

the same m/z windows used previously was mainly evaluated here considering its excellent 

performance on variation reduction. The ion images for four m/z values prior to or following 

different normalization strategies (global or local TIC, local median) are displayed in Figure 

7. See ESM Fig. S5 for the ion images using other normalization methods. Note that 

quantile normalization was excluded here since the sampling area included regions outside 

the tissue section. Applying this method will largely change the image if pixel selection is 

not performed first.

It can be clearly observed that unnormalized images show significant variability in ion 

abundances, and experimental artifacts coming from changes in background ions, 

manifested as a dramatic signal change in TIC image (Figure 7B). Normalizing to TIC 

globally does not compensate for these anomalies, while local normalization approaches 

such as local TIC and median normalization substantially reduce voxel-to-voxel variation 

across the entire tissue section, so to allow tissue anatomy to be more readily distinguished 

(Figure 7C, D), improve the agreement of ion images with the stained optical image (Figure 

Tu and Muddiman Page 11

Anal Bioanal Chem. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



7A), and minimize experimental artifacts (Figure 7E, F). Indeed, some normalization 

methods which achieved satisfactory results in rat liver-based data show unfavorable results 

for ovary-based data. A good example is that local MFC normalization efficiently reduces 

the spectral variation but leads to less accurate reconstructed images by highlighting certain 

voxels on the sample edge (ESM Fig. S5), which is clearly undesirable. Local TIC or 

median normalization are therefore recommended for processing images of heterogeneous 

tissues in the light of our evaluation.

CONCLUSIONS

In this study, serial rat liver tissue sections as quasi-technical replicates were analyzed by IR-

MALDESI-MS to evaluate the short-term and long-term repeatability in absolute ion 

abundances. Minor median %RSD (<18) at line-to-line/ intra-day level and acceptable 

median %RSD (~40) at voxel-to-voxel/ inter-day level, along with high Pearson’s coefficient 

(values ranging from 0.83 to 1.00) demonstrated that IR-MALDESI is essentially a well-

behaved technique with decent repeatability for profiling metabolites and lipids in animal 

tissues. The nonbiological variability can be efficiently reduced with appropriate 

normalization strategies. Normalization was found to work differently on ions with m/z < 

600 and m/z > 600 in positive mode, which could be refined by using locally calculated 

normalization factors. Quantile, median and MFC normalization outperformed other 

methods in variation reduction, bringing the median %RSDs from 38 to 25 (across voxels) 

and from 40 to 18 (across days), showing comparable performance to normalization on 

internal standards. The same normalization approaches were further compared on hen ovary 

tissue to investigate their impact on image quality improvement. Local normalization of 

imaging data led to minimized experimental artifacts and voxel-to-voxel variability, hence 

constructed more smoothed images showing higher agreement with the optical image. This 

study can serve to increase confidence in applying IR-MALDESI on clinical research which 

typically requires high comparability and long acquisition periods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Left: mean centroid mass spectra of rat liver acquired in positive and negative ionization 

mode with selected biological peaks marked in red and blue, respectively. Right: abundance 

(counts⋅s−1) distributions of selected biological peaks in positive and negative mode.
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Fig. 2. 
The sum ion abundances (counts⋅s−1) of representative ions and TIC values from rat liver 

sections were monitored over time. Data points within two vertical gridlines are from the 

same section. Top: m/z 369.3517, 435.3329, 744.5547, 792.5551, 810.6016 in positive 

mode; Bottom: m/z 279.2330, 303.2330, 306.0766, 329.2487, 379.0829 in negative mode. 

Solid brown and blue lines are Lowess smoothed lines fitted to the data points.
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Fig. 3. 
Box-plots show %RSD distributions of raw or normalized ion abundances acquired in 

positive (A) and negative (B) mode. From top to bottom, the variability was measured at 

voxel level, line level, intra-day level and inter-day level. The red asterisk indicates the mean 

%RSD of the normalized data is significantly lower than the corresponding unnormalized 

one, while the blue asterisk indicates the opposite.
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Fig. 4. 
Scatter plots of RSD ratios of normalized data to raw data versus m/z in positive mode (top) 

and negative mode (bottom). A data point below x=1 line indicates the ion achieves reduced 

inter-day variation after normalization.
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Fig. 5. 
Comparison of the performance of global and local normalization on reducing signal 

variability. From top to bottom, the variability was measured at voxel level, line level, intra-

day level and inter-day level. (A) Lower median %RSDs of positive mode data were 

achieved by applying local normalization. No improvement was found on negative mode 

data. (B) More locally normalized data in positive mode obtained significantly reduced 

variation (marked by red asterisk) than globally normalized ones (Figure 3A).
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Fig. 6. 
Representative MA plots in (A) positive and (B) negative mode under different 

normalization strategies. Spectra from different days were compared with day 1. Two 

horizontal fold-change lines marked in orange correspond to a ratio of 1 and −1 on a log2 

(Ratio) scale, showing a fold-change level of 2. Each data point represents an ion, and those 

with 2-fold increased or decreased abundances are located outside of the fold-change lines 

and appear in orange. The black solid line is the Lowess smoothed line fitted to the data 

points with window size of 0.5 to visually exhibit the abundance-dependent bias.
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Fig. 7. 
Comparison of ion images in positive mode from a hen ovary section before/after different 

normalization strategies. (A) H&E staining image of ovary tissue in parallel section; (B) TIC 

graph for all scans showing a dramatic signal change in the middle of experiment. Example 

ion images show normalizing m/z (C) 732.5563, (D) 768.5900; (E) 632.6362 and (F) 

630.6197 to global/local TIC and median abundance of biological ions. Color bar shows 

signal from low (bottom) to high abundance (top).
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Table 1

Analysis of intra-section, intra- and inter-day %RSDs and %RMAD in ion abundances.

Intra-section
Intra-day Inter-day

Voxel-to-voxel Line-to-line

196 Ions in positive mode

Median %RSD 38 17 14 40

(IQR) (12) (8) (28) (13)

Pooled %RMAD 26 11 21 30

101 Ions in negative mode

Median %RSD 45 14 17 29

(IQR) (28) (11) (11) (7)

Pooled %RMAD 33 11 14 16
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