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Abstract

Cancer led to the deaths of more than 9 million people worldwide in 2018,1 and most of these 

deaths are due to metastatic tumor burden. While in most cases we still do not know why cancer is 

lethal, we know that a total tumor burden of one kilogram – equivalent to one trillion cells – is not 

compatible with life. While localized disease is curable through surgical removal or radiation, 

once cancer has spread, it is largely incurable. The inability to cure metastatic cancer lies, at least 

in part, to the fact that cancer is resistant to all known compounds and anti-cancer drugs. The 

source of this resistance remains undefined.2 In fact, the vast majority of metastatic cancers are 

resistant to all currently available anti-cancer therapies, including chemotherapy, hormone therapy, 

immunotherapy, and systemic radiation. Thus, despite decades – even centuries – of research, 

metastatic cancer remains lethal and incurable.3 We present historical and contemporary evidence 

that the key actuators of this process – of tumorigenesis, metastasis, and therapy resistance – are 

polyploid giant cancer cells.
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The term cancer is derived from the Greek word for crab, used by Hippocrates to describe 

solid malignant tumors, circa 400 BC. The word metastasis, from the Greek for 

“displacement,” was formally described by French physician Joseph Récamier in 1829 in his 

treatise Recherches sur le traitement du cancer (translated Research on Treatment of 
Cancer).4 By this time, the idea that cancer spreads from its primary site was well 

appreciated and cell theory was established and accepted, though the routes or origins of 
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metastases were not clear. In 1889, Stephen Paget, a surgeon at the West London Hospital 

and the Metropolitan Hospital in London, UK, performed an autopsy series of 735 women 

who died of fatal breast cancer.5 In this Lancet publication, he addressed the common 

theories of metastasis held by his colleagues and presented his data that demonstrated a clear 

pattern of metastatic spread. His now-famous “seed and soil hypothesis” remains the 

framework for all modern cancer metastasis research: “… every single cancer cell must be 

regarded as an organism, alive and capable of development. When a plant goes to seed, its 

seeds are carried in all directions; but they can only live and grow if they fall on congenial 

soil.” In concluding this landmark paper, Paget states, “The best work in the pathology of 

cancer is now being done by those who…are studying the nature of the seed.”5

In modern cancer biology, it is well accepted that metastatic spread is a stochastically rare 

event; the overwhelming majority of cells that leave the primary tumor will not establish a 

secondary tumor.6 Likewise, we also know that patients with metastatic disease, even with 

an initial response to systemic therapy, will eventually fail and their disease will recur. 

Tumor burden falling below levels of radiographic and biochemical detection indicates that 

the resistant tumor is derived from a single or a few cancer cells that are intrinsically 

resistant or develop resistance in response to therapeutic selective pressure.3 This 

phenomenon of tumor growth from a single or a few cells is supported by phylogenetic 

analysis.7–9 Importantly, it appears that both metastasis and therapeutic resistance is 

mediated by only one or a few cells.

To better understand cancer, tumors may be described and modeled as ecosystems, with 

cancer cell species co-existing in a complex habitat with host cell species.6,9–18 The cancer 

cells, the body’s normal cells, and the tumor microenvironment in which they reside and 

influence make up the cancer ecosystem. In many ecosystems, the community structure and 

ecosystem integrity are dependent on a single and often low-abundant species termed the 

keystone species.13,19 Keystone species are named after the architectural keystone of an 

arch. If the keystone is removed, the arch – or the ecosystem – collapses. Keystone species 

exert a disproportionally large effect on the ecosystem relative to their abundance.19 While 

there are relatively few individuals within the keystone species in any given community, they 

occupy a unique and nonredundant niche within the ecosystem – they are not replaceable. 

Examples of keystone species include the wolves of Yellowstone and the elephants of the 

Serengeti. Loss of these keystone species had a cascading negative effect on all the other 

species of the ecosystem, causing fundamental changes and even collapse of the ecosystem 

structure.

We propose here that the cancer ecosystem is dependent upon a keystone species: a rare 

population of cells that has the capacity to survive the harsh conditions of the of the tumor 

microenvironment (e.g., hypoxia, low nutrients, low pH), to metastasize, and to mediate 

therapeutic resistance by surviving treatment and then repopulating tumors with resistant 

cancer cells. While these keystone cancer cells survive, metastatic cancer will remain 

incurable. If we can identify and eliminate the keystone cancer cells, the tumor ecosystem 

will collapse, making the bulk tumor cells vulnerable to traditional therapies, opening the 

door for the opportunity for cancer cure. These rare keystone cancer cells, however, remain 

undefined.
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For centuries, physicians and scientists could only observe the natural history of cancer 

within a patient, without understanding the basic units of the disease: cancer cells. With the 

invention and wide adoption of the microscope, cancer biologists were finally able to see 

what cancer cells looked like – to truly study the nature of the seed. With the discovery of 

cells in 1665 by Robert Hooke, the field of cell biology was born. Johannes Müller, a 

pioneer in tissue microscopy and histology, published some of the first descriptions and 

illustrations of cancer cells in his 1838 book Ueber den feinern Bau und die Formen der 
krankhaften Geschwülste (translated: On the Finer Structure and Form of Morbid Tumors) 

(Figure 1A).20 By 1839 cell theory was formally codified, attributed to plant biologist 

Matthais Schleiden and Müller’s students Theodor Schwann and Rudolph Virchow, and has 

served as the basis of all modern cell and molecular biology.21 Virchow, the “father of 

pathology” and cancer and metastasis biologist, recorded further descriptions of cancer cells 

in his book Die Cellularpathologie in ihrer Begründung auf physiologische und 

pathologische Gewebenlehre (translated: Cellular pathology as based upon Physiological 
and Pathological Histology), based on his lectures given to the Pathological Institute of 

Berlin in 1858 (Figure 1B).22,23

These discoveries made possible through advances in technology gave the cancer research 

community the ability to observe and record the phenotypes of cancer cells within primary 

tumors and metastatic lesions, but early studies were limited to autopsy studies and static 

tissue sections. The advent of cell culture enabled researchers to observe, perturbate, and 

phenotype cancer cells over time. George Gey and Margaret Gey successfully isolated 

cervical cancer cells from Henrietta Lacks in 1951 to generate the first cell line, HeLa, still 

in use today.24 Since that time, hundreds of cancer cell lines have been isolated or generated 

through genetic transformation, enabling new discoveries in cancer cell and molecular 

biology, as well as advancements in anti-cancer therapies.

Despite all of these discoveries - from the description of the progression of the disease and 

necessity of the “seed and soil” in 1889,5 to the visualization and description of cancer cells 

from patient tumors in 1838–1858, 20,22 to the widespread use of cancer cell lines in vitro 
starting in 195124 – we still do not understand, nor can we cure, metastatic cancer. What 

have we missed?

Prostate cancer biologist Dr. John Isaacs often reminds us that “The most powerful tool we 

have is our eyes.” Have we stopped seeing what is under the microscope? We are blinded by 

the assumptions of what we expect to see when we look at cancer cells: monolayers or 

spheroids of more-or-less differentiated epithelial-like cells. Looking through the 

microscope, at histological sections or cell cultures, we pick out nuclei and cell borders, 

search for regular patterns of cell size and morphology. We have been trained for generations 

to dismiss aberrant cells as artifact of the technique or protocol. ResearchGate, the social 

media forum that allows scientists to seek advice from other researchers worldwide, is 

peppered with questions about unusual cells in culture. Posters typically respond that the 

cells are artifact of some external pressure (e.g., old media, over confluence, loss of CO2 

conditions, viral manipulation) or are irreversibly senescent cells that will not survive 

passaging. Even in our cartoons describing cancer progression and the metastatic cascade, 

the cells follow a uniform prototype – cuboid for proliferative cells, spindle-shaped for 
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invasive cells. This is what we teach and this is what we learn. While the stochastic data we 

have indicates that the critical mediators of lethal and incurable disease appear to be a rare 

population, we only base our observations on the majority population.

In looking at the hand-drawn illustrations of Müller and Virchow, it is immediately apparent 

that they observed the inherent cellular heterogeneity of a tumor. While Müller’s hand-

drawn illustrations are dominated by the typical more-or-less differentiated epithelial-type 

cells, there are examples of giant multinucleated or large nucleated cells that he specifically 

highlights (Figure 1A).20 Virchow described the heterogeneity of cancer cells in his volume 

as “… curious bodies, provided with large nuclei and nucleoli, which are described as the 

specific, polymorphous cells of cancer.” His illustration of the cancer cells shows great 

phenotypic heterogeneity, including very large cells with multiple nuclei (Figure 1B).22,23

These cells, few in number but persistent within cancer cell populations, may be a cancer 

keystone species. Close examination of any cell culture flask of any solid tumor type will 

reveal similar non-typical cells that are morphologically distinct (i.e., non-cuboid and non-

spindle shaped) cells with large cytoplasmic region and high DNA content as a single large 

nucleus or within multiple nuclei. Indeed, a polyploid giant cancer cell is evident in the first 

published photographs of HeLa cells, the first cancer cell line developed (Plate 39),25 and 

this rare population of cells persists today (Figure 1C).

Polyploid giant cancer cells (PGCCs) were observed and recorded at least 180 years ago, 

and have been visualized in cell culture, the workhorse of cancer cell biologists, for 65 

years. The formation of PGCCs following therapeutic intervention, including chemotherapy 

and radiation, and upon conditioning in hypoxia, simulating the tumor microenvironment, 

has been described in the literature. Most measures of cell response to therapy, including 

dose response curves generated through viability or proliferation assays, do not account for 

the presence or phenotype of the very rare population of cells that survives treatment below 

the limit of detection of the assay. It has been assumed by most researchers that observed 

PGCCs do not survive and die due to mitotic catastrophe subsequent to multipolar cell 

division. Indeed, the only way to appreciate the presence of PGCCs in tissue culture at all is 

to directly observe them through microscopy.

There is a small body of literature specifically related to PGCCs (74 PubMed listed entries 

with query: [polyploid giant cancer cells]26–99 versus 3,857,567 with query [cancer]; 

accessed 05/10/2019; Figure 2), but this literature, taken holistically, makes a compelling 

case for defining them as the essential keystone cancer species and actuators of 

tumorigenesis, therapeutic resistance, and recurrence in metastatic disease. Keystone species 

are relatively few in number, but have a significant impact on the health and composition of 

the ecosystem. In this case, the survival of keystone cancer species mediates 1) metastatic 

spread, 2) survival of cancer cells during and after therapeutic insult and 3) clonal expansion 

to generate a clinically significant tumor mass. In cancer biology terminology, this translates 

to PGCCs playing critical roles in all 3 capacities: in metastasis, therapeutic resistance, and 

having stem-like capacity to asymmetrically divide to give rise to a clonal population of 

cancer cells. Of the 74 publications, 15 address metastasis, 16 discuss therapeutic resistance, 
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and 20 explore stem-like characteristics (Figure 2). Notably, only 2 publications combine all 

three essential characteristics under the investigation of PGCCs.

The presence of PGCCs has been described in a multiple cancer types (breast, ovarian, 

colon, melanoma, lung, pancreas, urinary bladder, renal, thyroid, prostate), but systematic 

analyses to assess PGCC status with clinical prognostic have not been performed.
43,54,60,92,100–110 For example, PGCCs have been documented in a PCa patient with 

pT3bN1Mx, Gleason 5+4=9 (Grade group 5) PCa (Figure 3A). At time of radical 

prostatectomy, the primary tumor and 7/12 lymph nodes were positive for focal regions of 

pleomorphic giant cells. Alharbi, et al. analyzed a series of 30 cases of PCa patients with 

PGCC present in the diagnostic specimen collected from 2005 to 2018.111 Presence of 

PGCCs in PCa diagnostic specimens indicates aggressive disease and is associated with a 

rapid disease course and death. Of the men with a new PCa diagnosis with >1 year follow 

up, 7/19 (37%) were dead at a median of 8 months. 4/7 (57%) men who had a previous 

history of PCa were dead at a median of 7 months after diagnosis of recurrent PCa. This is in 

grim contrast to reported PCa-specific mortality of <5% at 2 years and 10% at 4 years for 

men with similar nonmetastatic PCa diagnoses (Gleason score 9 and 10).112 Notably, despite 

their apparent role in mediating aggressive disease, PGCCs typically make up a small 

minority of the assessed tumor region (5–20%). These striking data highlight the likely role 

for these keystone PGCCs as actuators of rapid lethal disease progression.

Studies conducted in yeast, drosophila, cancer models, and clinical data suggest that the 

polyploidy state mediates therapy-resistant phenotypes.113 PGCCs have been observed 

emerging in response to a variety of genotoxic stresses, including anti-cancer therapy such 

as radiation and chemotherapy, as well as tumor microenvironment-simulating 

hypoxia36,56,65,73,78,97,114–122. In addition to simply emerging in response to stressors, there 

is evidence that PGCCs contribute to overall therapeutic resistance. Cells derived from 

PGCCs that form upon Cisplatin treatment have increased resistance to cytotoxic drugs.78 

There is also evidence in castration-resistant prostate cancer (CRPCa) that PGCCs drive 

resistance to taxane-based chemotherapy.65,73,117–119,122 The mechanism of this multi-

therapy resistance phenotype remains unknown. One hypothesis is that that PGCCs enter a 

protective and reversible state of therapeutic-induced-senescence, allowing them to survive 

therapy and later reenter cell cycle to form to daughter cells.123 Studies have shown that 

PGCCs express a stem-like phenotype (e.g., expression of self-renewal markers).124,125 

Moreover, there is strong evidence that PGCCs can asymmetrically divide to give rise to 

daughter cells of typical size and ploidy (Figure 3B).65,97,122 PGCCs have been shown to re-

enter the cell cycle and either undergo error prone aberrant mitoses or an error prone process 

of cell division independent of a mitotic spindle that uses budding or bursting called amitosis 

or neosis.80,85,93,126,127 This stem-like phenotype of asymmetric division gives PGCCs the 

capacity to generate a clinically evident metastasis of majority non-PGCC cells. In addition, 

there is recent data that PGCCs that form in response to hypoxia, such as would be found in 

the primary tumor microenvironment, and in response to therapy have increased metastatic 

potential, including increased mesenchymal phenotype as well as enhanced migration and 

invasion.42,97,128
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As the field of PGCC research grows, it is important to set a definition of the cell type of 

interest. Pathologists have borrowed language from Virchow, describing regions of 

“polymorphous giant cells,” and there are other reports of “osteoclast-like cells” in tumor 

sections, describing multinucleated cancer cells. PGCCs have two phenotypic defining 

characteristics: 1) polyploidy (though not necessarily multinucleation) and 2) relatively large 

size. Most solid tumors and cancer cell lines are aneuploid (i.e., have an abnormal number of 

chromosomes or segments of chromosomes). Polyploidy describes a multiple of the baseline 

set of chromosomes that does not have an upper limit (e.g., 4n, 6n, or 16n). In the case of 

polyploidy observed in an aneuploid cancer cell line, therefore, it would be a multiple of that 

“aneuploid n.” Importantly, polyploidy does not require multinucleation and can simply 

present as a single large nucleus, though cells with multiple nuclei are likely polyploid. The 

other defining phenotypic characteristic of PGCCs is their “giant” morphology (Figure 3A–

B). PGCCs are physically and visually larger than their surrounding sister cells, not just with 

elevated genomic content, but also cytoplasmic area. Further research is needed to assess if 

size or deformability of PGCCs is biologically significant.

In order to understand and eventually target PGCCs, it will be important to both study 

PGCCs in isolation as well as in their native ecosystem, especially to appreciate the initial 

emergence of PGCCs in the primary tumor ecosystem. While there are not currently any 

biomarkers for PGCCs, either for monitoring in vivo or for isolation, this should be an area 

for future research. The most commonly used assays to study PGCCs rely on microscopy of 

in vitro cultures in order to capture essential PGCC events, such as formation and cell 

division. Currently, there are no commonly adopted high-throughput methods to isolate a 

pure population of PGCCs. One of the most common methods to quantify (and in rare cases 

to isolate) PGCCs in a population is flow-cytometry using standard cell cycle analysis to 

isolate relative >4n cells (e.g., with 7AAD or other DNA stain. Addition of Cyclin-B1 

staining can be used discriminate the G2/M diploid cells that have undergone S phase and so 

have 4n genomic content. Overall, however, such flow-cytometry methods drastically reduce 

viability and are impractical due to the long assay time. Theoretically, researchers may be 

able to take advantage of the relative size difference of PGCCs compared to the other cancer 

cells in the population using size-exclusion techniques such as have been developed for 

circulating tumor cell research, but such a method has not been widely adopted. Importantly, 

conventional laboratory assays designed to assess efficacy of anti-cancer therapy (e.g., 

viability or proliferation assays taken days after treatment of cells in vitro or tumor 

recurrence measured weeks after treatment of tumor-bearing animals in vivo) do not account 

for the rare population of surviving PGCCs that exist below the limit of detection until they 

reenter cell cycle.62 The majority of modern methods to count and assess cell viability do 

not require the investigator to actually look at the remaining population. Observing a 

population of PC-3 cells 72 hours after treatment with a LD90 dose of docetaxel reveals that 

the majority of cells are PGCCs (Figure 4) (personal communication, Amend and Pienta). 

Assessing PGCCs in vivo, either in histological sections or in liquid biopsies, has its own 

challenges. It is difficult to assess cell membranes from a typical H&E stain, making 

polyploidy difficult to ascertain, though focal regions of majority PGCC phenotype (called 

“polymorphous giant cells” or “osteoclast-like cells”) have been reported. Addition of a 

membrane stain followed by careful evaluation by a skilled pathologist would provide an 
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opportunity for assessing single or rare PGCC status in patient samples. The presence of 

PGCCs in the circulation has not been systematically assessed. In liquid biopsy research, it 

is important to carefully review the algorithm requirements. Many such automated counting 

systems define a cell as one with a single and/or small nucleus, and so would automatically 

eliminate any multinucleated or large-nucleated cell from analysis, including possible 

PGCCs.

While we and others have highlighted the likely role for PGCCs in mediating disease 

resistance, there are no currently available therapies to specifically target these cells. Indeed, 

PGCCs emerge in response to all tested standard-of-care therapeutics. As they have a unique 

phenotype, however, PGCCs may have unique vulnerabilities. For instance, it is clear that in 

order to divide, it is likely that PGCCs may have to use different cell division machinery 

than non-polyploid cells (e.g., microtubule organizing center [MTOC] assembly). With such 

elevated DNA content, it is likely that cell cycle checkpoints may also represent a viable 

therapeutic target. As discussed above, there is evidence that PGCCs exit the cell cycle and 

enter a quiescent state. Restraining the cells in that G0 state may represent a way, not to 

eliminate the PGCCs, but to prevent the lethal tumor burden that arises when the PGCCs 

reenter cell cycle. Clearly, this is a critical area of further research – to define therapeutic 

targets and determine optimal delivery to eliminate the keystone PGCCs from a tumor. 

Importantly, the PGCCs represent a minority population of the tumor burden, any anti-

PGCC therapy can be used in combination with current standard-of-care that will eliminate 

the bulk of the tumor population.

Metastatic cancer remains incurable because a subset of cells within a tumor has intrinsic or 

develops resistance to anti-cancer therapy. While standard-of-care hormone therapy, 

chemotherapy, or radiation may reduce overall tumor size, only a single or a few cancer cell 

“seeds” are required to mediate metastasis and therapy resistance. These keystone cancer 

cells, while few in number, exert a large effect on the tumor ecosystem. PGCCs have been 

observed for more than a century since the first descriptions of cancer cells by Müller and 

Virchow. It is clear from the limited available clinical data that presence of PGCCs in 

localized or recurrent prostate cancer indicates a dismal prognosis. The current PGCC 

literature, though limited, suggests that this distinctive phenotype of cancer cell can 1) 

initiate the metastatic cascade, 2) survive “lethal” doses of therapeutic, and 3) 

asymmetrically divide to generate typical cancer cells with increased resistance to different 

classes of anti-cancer therapy. To cure metastasis, the PGCCs actuating metastasis, therapy 

resistance, and tumor outgrowth must be eliminated.
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Figure 1. Historical evidence of polyploid giant cancer cells.
(A) Illustration (Plate II, Fig 2) from Ueber den feinern Bau und die Formen der krankhaften 
Geschwülste (translated: On the Finer Structure and Form of Morbid Tumors) by Johannes 

Müller, 1838; Caption translates “Cell spheres with germ cells and the nuclei of the germ 
cells…of Carcinoma reticulare.” (Public domain, CC BY-SA 4.0) (B) Illustration (Fig 142) 

from Die Cellularpathologie in ihrer Begründung auf physiologische und pathologische 

Gewebenlehre (translated: Cellular pathology as based upon Physiological and Pathological 
Histology) by Rudolph Virchow, 1858 (translated by Frank Chance); Caption: “Various, 

polymorphous cancer-cells…two with multiplication of nuclei. 300 diameters.” (Public 

domain, CC BY-NC 4.0) (C) PGCCs in HeLA cell culture indicated by arrows. Multiphoton 

fluorescence image: cytoskeletal microtubules, magenta; DNA, cyan. (Image by NIH, public 

domain, CC-PD-Mark)
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Figure 2. PubMed queries of the polyploid giant cancer cell literature.
PubMed-listed entries of indicated queries accessed on 05/10/2019. Entries that are listed 

with multiple search terms are indicated by connecting edges.
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Figure 3. Polyploid giant cancer cells in prostate cancer in vivo and in vitro.
(A) H&E image of a lymph node prostate cancer metastasis with PGCCs (one region 

indicated by yellow border). (B) Phase image of a PC3 PGCC undergoing asymmetric 

division to form mononuclear and typical-sized daughter cells. PC3 cells were cultured with 

10nM Docetaxel for 3 days followed by 4 days in Docetaxel-free media. (scale = 200 um)
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Figure 4. Polyploid giant cancer cells are the majority population following docetaxel treatment 
in vitro.
(A) PC3 cell culture at baseline contains rare PGCCs (arrow). (B) After treatment for 72 

hours with LD90 docetaxel, PGCCs are the dominant population and virtually no non-PGCC 

cells remain. (Phase contrast; scale = 100 um)
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