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Abstract

Objective: To identify trends in mobility and daily pain levels among a cohort of patients with 

clinically diagnosed spine disease.

Methods: Participants with spine disease were enrolled from a general neurosurgical clinic and 

installed a smartphone application (Beiwe™) designed for digital phenotyping to their personal 

smartphone. This application collected passive meta-data on a minute-to-minute basis, including 

GPS, WiFi, accelerometer, text and phone logs, and screen on/off time. The application also 

administered daily Visual Analogue Scale pain surveys. A Linear Mixed Model framework was 

used to test for associations between self-reported pain and mobility/sociability from passively 

collected data.

Results: 105 patients were enrolled with a median follow-up time of 94.5 days; 55 patients 

underwent a surgical intervention during follow up. Weekly pain survey response rate was 73.2%. 

By the end of follow up, the mean change in pain for all patients was −1.3 points (4.96 at the start 

of follow up to 3.66 by the end of follow up). Increased pain was significantly associated with 

reduced patient mobility as measured by three daily GPS summary statistics (average flight length, 

maximum diameter travelled, total distance travelled).

Conclusions: Patients with spine disease who report higher pain have reduced mobility as 

measured by passively collected smartphone GPS data. Smartphone-based digital phenotyping 

appears to be a promising and scalable approach to assess mobility and quality of life in patients 

with spine disease.
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Introduction

Few effective methods currently exist for objectively evaluating patient recovery after spine 

surgery. Among the most widely used and clinically evaluated are a broad set of measures 

known as Patient Reported Outcome Measures (PROMs), which often consist of validated 

questionnaires aimed at determining a patient’s quality of life in response to surgical 

treatment [1]. These are paper-based or electronic surveys that require significant clinician 

and patient investment, necessitating multiple in-office follow-up appointments and regular 

patient contact. Typically, these are administered pre-operatively and at several points post-

operatively, with exact administration varying by practice [1–3].

Unfortunately, questionnaire-based instruments have their limitations, both practical and 

conceptual [4,1]. First, they rely on patient recall at a particular moment in time, making 

them subject to bias. Second, they often require patients to return to clinic, or have a phone 

call or other interaction with a care provider. Third, they require the patient to make 

reporting assumptions regarding all events subsequent to the last encounter. If they are asked 

to report their pain, the patient must interpret if that means the average pain since the last 

visit, the average pain of the encounter day, or their pain at the current moment. Lastly, 

surveys provide a limited view of a patient’s life, based solely on their ability to complete 

those tasks assessed in a particular questionnaire.

A recent study by Falavigna et al. highlighted some of these major limitations, 

demonstrating that among an international community of spine surgeons, 31.9% do not ever 

use PROMs for either research or clinical purposes [2]. Reasons for limited use included 

limited time in clinic for administration (57% of all respondents), difficult follow-up after 

discharge (36%), and lack of staff to assist in data collection (55%). In light of these 

limitations, novel methods for monitoring patient outcomes has been proposed, including 

digital phenotyping.

Digital phenotyping has been recently defined as the “moment-by-moment quantification of 

the individual-level human phenotype in-situ using data from personal digital devices,” such 

as smartphones [5,6]. In this approach, subjects download and launch a smartphone 

application that collects both active data (such as surveys) and passive data (such as GPS 

data) from participants. This data is then used to study variations in patient behavior, 

including mobility (using GPS data), sociability (using text message and call logs), and sleep 

(using screen activity logs), among a variety of other measures. These objective 

measurements can be correlated with patient responses to phone surveys or any other data 

that might be available, including clinical examinations conducted at the clinic.

As smartphones have become ubiquitous, with ownership exceeding 77% of adults in the 

U.S.,[7] digital phenotyping for the purpose of improving patient outcomes through 

voluntary monitoring has become feasible and economical on large scales. Already, digital 
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phenotypes have been successfully used to link patient mobility to mood and depressive 

symptoms in a variety of clinical contexts [8–10]. While digital phenotyping is being used in 

the study and treatment of psychiatric disorders, its use for monitoring and aiding patients 

with debilitating physical conditions such as spine disease has not been attempted.

In this study, we report the first ever use of digital phenotyping in patients with spine disease 

in order to identify associations between behavioral data, passively collected from patients’ 

smartphones, and daily self-reported pain. We report strong associations between self-

reported pain and multiple aspects of patient mobility as measured by digital phenotyping.

Materials and Methods

Patient Recruitment

All patients included in this study were neurosurgical candidates with clinically diagnosed 

spine disease, seen in a general neurosurgical clinic. Enrollment began in June 2016 and 

continued through May 2017. Over the study period, 52.4% of patients underwent 

neurosurgical intervention (Table 1). Only adults were included in this study (≥18 years old), 

and patients who did not own a smartphone were excluded. The project was approved by the 

Institutional Review Board of Brigham and Women’s Hospital, and patients provided 

expressed written consent to participate in this study. Upon entering the study, the research 

assistant helped each patient download the application onto their smartphone in clinic, and 

established each participant’s user account. Patients were then given uniform instructions on 

how to operate the application, including keeping it running as a background application and 

responding to daily and weekly questionnaires.

Data Collection

Patients enrolled in the study installed the Beiwe application, which is part of the Beiwe 

research platform developed by a subset of the authors, onto their personal smartphone. The 

Android and iOS Beiwe applications collect both active and passive data from patients, and 

is accessible only with a unique username and password known only to the user.

Data collected by the current version of the Beiwe app includes global positioning satellite 

(GPS) data, accelerometer records, Bluetooth and Wi-Fi data, phone and call logs (Android 

only), and screen on/off time. These data streams are collected by the application at different 

customizable rates. In this study, we configured Beiwe to collect GPS data for 1 minute 

every 5 minutes and accelerometer data for 10 seconds every 10 seconds. It also collected 

anonymized phone call and text message logs, which included information about the timing 

of communication events, anonymized identifiers of communication partners, and message 

length for text message. The application did not record any of the actual content of phone 

calls or text messages. For modeling purposes, the collected raw sensor and phone usage 

data is represented in terms of daily summary statistics that capture salient features of each 

data stream (see Table 2). For each subject, the summary statistics are represented as a 

matrix, where the rows corresponding to different statistics and columns to different days. A 

visual representation of this data matrix for a single participant is shown in Figure 1.
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In this study, patients were surveyed once per day at 5:00 p.m. EST with the following 

prompt: “Please rate your pain over the last 24 hours on a scale from 0 to 10, where 0 is no 

pain at all and 10 is the worst pain imaginable,” with a sliding scale answer that ranged from 

0–10. The Beiwe application encrypted the data as it was collected, stored it temporarily on 

the user’s smartphone, and then periodically uploaded the data to a secure server via Wi-Fi 

[11].

Statistical Methods

Overall trends in pain over follow-up were evaluated as the difference between the first and 

last survey pain scores submitted over the course of follow-up.

In order to measure mobility, the raw GPS data for each patient was converted into a 

sequence of flights (straight-line movement) and pauses,[12] missing portions of data were 

imputed, and a variety of daily mobility summaries were produced [13]. Daily measures of 

sociability were summarized from call and text logs. These passively collected GPS mobility 

measures and call/text log sociability measures are listed in Table 2. With the aim of 

identifying how a patient’s pain is related to mobility and sociability over the course of the 

same day and to avoid biased/inaccurate responses, we excluded late survey responses 

submitted after midnight (more than 7 hours after prompting).

Given the longitudinal nature of the data, to test for associations between daily self-report of 

pain and daily mobility and sociability, we used a Linear Mixed Model (LMM) [14]. For the 

daily mobility metrics, we ignored days that either had no GPS data or had no response to 

the pain survey. Similar to the analysis of Wang et al.,[8] we fit the following model for each 

of the 30 mobility and sociability passive data summaries: yij = β0 + β1Xij + bi0 + bi1Xij + 

ϵij, where the outcome yij is self-reported pain score on a 0–10 scale, Xij is one of the 30 

passive data summaries, and ϵij is the normally distributed residual for the ith subject on 

their jth day of data collection. The fixed coefficients are the intercept (β0) and slope (β1), 

with random patient-specific coefficients (bi0) and slopes (bi1). This mixed-effects model 

allows for patient-specific relationships (intercept and slope) between the predictor and pain. 

Two-sided inference was performed on β1 using a likelihood ratio test, and this modeling 

and testing procedure was repeated for each of the 30 passive data summary/features taking 

turns as the predictor Xij. With 30 different and correlated tests being performed, we used 

the Generalized Higher Criticism to correct for multiple testing and identify statistically 

significant associations between passive data features and self-report of pain [15].

To measure the tendency of patients to stay home during prolonged periods of pain or 

discomfort, we estimated a daily probability of moving less than 1km, a somewhat arbitrary 

threshold that was selected to capture days of little to no movement within a reasonable 

margin of error. A Gaussian kernel, centered on the day of interest, averaged the indicator 

variables of whether or not the patient moved more than 1km across all days of the patient’s 

follow up. Kernel averaging gives higher weight to days closer to the day of interest. This 

process was repeated to calculate a probability for each day in follow up.
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Results

Over the enrollment period, 216 patients were approached for enrollment. Of these, 90 

(42%) were immediately excluded because of lack of smartphone ownership. Of the 

remaining 126 patients, 15 (12%) could not recall necessary phone passwords for 

enrollment, four (3%) did not have their phone accessible on the day of the visit, and two 

(1%) declined consent over data security concerns; the remaining 105 (83%) patients were 

enrolled.

Demographics of included patients and relevant data collection metrics are shown in Table 1. 

On average, patients completed 43% of their daily surveys over the course of follow up; 

weekly pain survey response rate was 73.2%. Of the surveys that were completed, 71% were 

completed on the day they were administered (Figure 2). Median follow-up time was 3.15 

months from enrollment, and 52.4% of patients underwent neurosurgical intervention during 

the study period.

Over the course of follow-up, the mean change in pain for all patients was −1.3 (from an 

average of 4.96 at the start of follow up to 3.66 by the end of follow up).

After correcting for multiple testing, average flight length, maximum diameter travelled, and 

total distance travelled were each statistically significantly associated with patient-reported 

pain. With the mobility trace of each patient broken into a sequence of flights (straight-line 

movement) and pauses (periods of stationarity), an average increase in self-reported pain by 

0.1 was associated with 2.8-fold decrease in the average length of a patient’s flights that 

same day (p=0.002),[16] a 5.1-fold decrease in a patient’s maximum diameter, the largest 

distance between any two points the patient had been over the course of a day (p=0.004), 

and a 6.0-fold decrease in a patient’s distance travelled over the course of a day (p=0.004). 

Associations between self-reported pain and various measures of mobility and sociability are 

shown in Table 3.

These cohort-level relationships between mobility and pain were averaged across all 

patients, and corresponded to β1 from the above model [12]. The patient-specific 

relationships were captured by bi1 for the ith patient. Examples of patient-specific 

relationships between mobility and self-report of pain are visualized in Figure 3. 

Representative results for four patients using kernel averaging are shown in Figure 4.

Discussion

The limitations of clinical outcomes studies for patients with spine disease are well known 

and have been previously well described [17]. Comprehensive, quantitative evaluation of 

outcomes is impeded by recall bias and poorly-defined outcome measures. In clinical 

practice, patients with spine disease who are neurosurgical candidates are, at best, simply 

assessed with a validated PROMs instrument that can be used to track specific symptoms 

over time. In most cases, they are asked about their symptoms, their quality of life, and their 

ability to complete their activities of daily living. Over time, changes in overall symptoms 

are tracked based solely on these patient reports, and are not recorded in a systematic fashion 

[1]. In clinical research settings, PROMs surveys are administered at set intervals pre- and 
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post-operatively, usually including follow-up through at least one year after surgery. In 

typical clinical practice, they may not be used at all [2]. An international survey of spine 

surgeons by Falavigna et al. demonstrated that almost one third of spine surgeons did not use 

PROMs at all, for either research or clinical care [2].

Nevertheless, PROMs have frequently been used to assess outcomes after spinal surgery 

since they began to emerge in the early 2000s [1,2,18–22]. The results of these studies have 

often demonstrated improvement in patient quality of life and symptoms post-operatively, 

although limitations in follow-up and the quality of survey instruments have limited the 

generalizability of these findings [23,19].

In neurosurgical practice, the results of the limitations associated with PROMs and other 

classic survey instruments are serious. Often, neurosurgeons counsel patients on the benefits 

of surgical intervention based largely on subjective reports of pain and other symptoms, and 

imaging findings that may or may not correlate with severity of disease presentation. 

Without high-quality data demonstrating reduced quality of life with spine disease in a 

particular patient, or high quality data demonstrating the effectiveness of surgical 

intervention, decisions in the care of patients with spine disease are often made without 

strong evidence [17,24,25].

In this study, we report the first-ever application of smartphone-based passive data collection 

for the objective measurement of patient mobility in a cohort of 105 patients with spine 

disease. Over an average follow up period of 94.5 days, we used the Beiwe smartphone 

application and research platform to collect both active and passive data from these patients, 

in an effort to identify trends in self-reported pain and objective measures of mobility and 

sociability. In doing so, we demonstrated statistically significant associations between 

patient self-reported pain and patient mobility, but no associations between pain and 

sociability.

The relationship between pain and patient mobility has historically been difficult to study 

[26–31]. On the one hand, pain is an inherently subjective experience, and is affected by a 

multitude of factors, including the patient’s disease state, current pain medication regimen, 

daily activities, and mental health. It changes constantly, is impossible to measure 

objectively, and varies from patient to patient. While it is reasonable to imagine that patients 

in significant pain would have reduced mobility, it is just as possible that those patients who 

increase their mobility suddenly may provoke significant pain. This multidirectional 

relationship makes identifying trends in patient quality of life based on pain scales difficult. 

With the advent of wearable pedometers that track mobility, some research has recently been 

performed that uses these more objective patient measures to evaluate mobility [32–34]. 

Unlike using smartphone based software, these studies typically require participants to wear 

an additional device, increasing the likelihood of patient non-compliance and subsequent 

missing data.

Similarly, the association between pain and other patient outcomes and sociability, social 

networks, or social support systems has also been difficult. Typically, studying these 

associations has involved in-depth interviews or PROMs-like paper or electronic 
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questionnaires completed by patients to identify networks of social support [35–37]. 

Outcomes can be tracked as usual and compared statistically with objective measures of 

patient social networks, with most studies demonstrating that patients with stronger social 

networks have reduced mortality and improved outcomes [38].

The novel method of in situ human research employed in this study, known as digital 

phenotyping, has the potential to revolutionize the study of these types of quality of life 

measures. Digital phenotyping has previously been used to assess patient mobility with 

mood and depressive symptoms [5,6,11]. The introduction of smartphone data-driven 

approaches to patient outcomes in psychiatric research has provided an objective grounding 

for understanding of patient behavior. We believe that among patients with spine disease, 

digital phenotyping has the potential to revolutionize patient care, which is increasingly 

driven by patient quality of life and personal outcome measures such as functional status and 

pain.

In this study of patients with spine disease, we identified three statistically significant 

relationships between pain and mobility. Specifically, patients who reported increased pain 

showed reduced mobility in that they traveled shorter total distances across each day, 

traveled within a narrower diameter, and took shorter average trips. Although we did not 

identify associations between pain and patient sociability, future studies focusing on other 

illnesses, including brain tumors, will attempt to identify relationships between disease and 

objective sociability, as measured by phone and text responsiveness.

Using non-invasive means through data collected from a patient’s own personal smartphone, 

digital phenotyping allows for the moment-by-moment analysis of patient behavior. Using 

historical trends, analysis of data obtained from the Beiwe application can allow for 

identification of deviations in expected trends, possibly even allowing for clinical 

intervention. In patients with spine disease, digital phenotyping allows clinicians to track 

symptoms, such as pain and mobility, objectively over time. This could play an important 

role in operative planning, and in assessing patient response to neurosurgical procedures. In 

the future, digital phenotyping may even be useful for identifying adverse events during the 

post-operative period, such as the development of a surgical site infection, or changes in 

patient mental status.

The advantages of digital phenotyping are numerous, and include the ubiquity of personal 

cell phones, the low cost of installing and using the application, the outstanding granularity 

of data collected, and the ability to assess patient’s self-reported pain on a daily basis. 

Additionally, digital phenotyping is non-invasive, and does not require patients to carry or 

use an additional device. In this way, digital phenotyping truly allows for analysis of patient 

behavior and quality of life in situ. Electronic survey response is easy and quick for patients 

to do, and has previously been shown to result in higher response rates than other modes, 

such as postal or telephone interviews [39,40].

Limitations of this study include the exclusion of patients without smartphones, which may 

result in underrepresentation of patients of lower socioeconomic status and the elderly, 

though recent data regarding cell-phone ownership demonstrate increased ownership across 
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the population [7]. Additionally, given that the collection of high-frequency sensor data 

causes some battery drainage, sensors need to be sampled according to a sampling scheme 

that unavoidably introduces some missingness by design. Some further missingness occurs 

because of human behavioral factors, such as individuals deactivating smartphone GPS. The 

missing data must then be imputed or accounted for in statistical calculations.

Despite these limitations, the current study nevertheless includes millions of data points on 

over 100 patients with spine disease, providing the first objective measurement of pain and 

mobility in this patient population based on in situ data rather than survey responses. 

Patients with spine disease who report increased pain demonstrate reduced mobility, as 

measured by passively collected GPS data from personal smartphones correlated with daily 

self-reported pain. The method of digital phenotyping is a novel way of objectively assessing 

quality of life in patients with spine disease on a moment-to-moment basis. Digital 

phenotyping has the potential to revolutionize the surgical care of patients with spine disease 

by providing objective measures of patient symptoms and functional status both before and 

after intervention.

Conclusions

Patients with spine disease who report higher pain have reduced mobility as measured by 

passively collected smartphone GPS data. Smartphone-based digital phenotyping appears to 

be a promising and scalable approach to assess mobility and quality of life in patients with 

spine disease.
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EST Eastern standard time

GPS global positioning satellite

LMM linear mixed model

PROMS Patient Reported Outcome Measures
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Figure 1. Visual display of daily summary statistics collected for a patient.
Surveys are represented in orange. Measures of mobility obtained from smartphone GPS are 

shown in purple. Measures from call logs are in blue and measures from text logs are in 

green. Measures are calculated from raw smartphone data on a daily basis. Only a smaller 

representative sample of the total set of measures both collected and calculated are 

displayed. Darker color represents a larger quantity/amount of the measure on a given day. 

Each column represents one day of data collection, with vertical black lines representing 

division between weeks.
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Figure 2. Response times to daily smartphone pain score survey.
Daily response times are combined across all patients in the cohort. Patients are prompted 

with a survey at 5:00PM each day where they are to report their pain from over the course of 

that day. Late responses submitted by the patient on the next day were excluded from the 

analysis. 70.7% of all survey responses were submitted on the same day the patient was 

prompted. Across all patients, 43% of these daily surveys were completed, late or on time. 

On average patients completed at least one survey per week 73.2% of the time.
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Figure 3. Patient-specific relationships between self-report of pain and mobility on the same day.
The six patients displayed are selected arbitrarily for demonstration purposes. The dotted 

lines represent the expected relationship between various mobility metrics and pain for 

individual patients, whereas the solid line is the average relationship across the cohort. These 

lines, representing the expected, or average, relationship between pain and mobility, result 

from fitting a linear mixed model with a random intercept and slope for each patient. A 

different model is fit for each mobility metric. The x-axis is on logarithmic scale.
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Figure 4. Patient pain and mobility trajectories over time.
The trajectories of four patients are displayed over the course of their recovery after surgery. 

X-axis tick marks represent weeks, and each point represents a day. The vertical red line is 

the date of surgery. The black line is the smoothed pain trajectory over time. Days where a 

patient travels less than 1km are highlighted with a purple point, with the patient traveling 

more than 1km on all other days. Some patients stopped taking their smartphone surveys 

after recovery despite continuing to collect smartphone GPS location and mobility data 

passively.
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Table 1.

Participant demographic information and digital phenotyping data.

Demographics Total (n=105)

 Male (no., %) 48 (45.7)

 Age (mean, st. dev.) 52.0 (14.0)

 Surgery (no., %) 55 (52.4)

Site of Disease (no., %)

 Cervical 35 (33.3)

 Thoracic 6 (5.7)

 Lumbar 64 (60.1)

Passive Data Collection

 GPS Days (mean, st. dev.) 82.5 (68.4)

Active Data Collection

 Daily Survey Response Rate (mean, (25%,75%) quantiles) 43.4 (23.2,69.8)

 Weekly Survey Response Rate (mean, (25%,75%) quantiles) 73.2 (50.6,100.0)

Change in Pain Score

 All patients (mean start/end score) −1.3 (4.96 to 3.66)

Digital Phenotypes*
Daily (median, (25%, 75%) quantiles)

 Time spent at home (minutes) 927.1 (623.9, 1242.8)

 Distance travelled (meters) 51989.1 (18691.9, 97833.3)

 Radius of gyration (meters) 3218.8 (846.8, 9881.9)

 Maximum diameter (meters) 13828.1 (4867.5, 29382)

 Maximum distance from home (meters) 13296.5 (4612.7, 29285.7)

 Number of significant locations visited 2 (1, 3)

 Average flight length (meters) 236.0 (160.1, 334.9)

 Std. dev. of flight length (meters) 296.4 (173.3, 487.3)

 Average flight duration (seconds) 42.7 (32.0, 74.3)

 Std. dev. of flight duration (seconds) 98.2 (56.9, 257.1)

 Fraction of the day not moving 0.88 (0.79, 0.94)

 Significant location entropy 0 (0, 0.28)

 Missing GPS data (minutes) 1349.7 (1323.7, 1379.2)

 Circadian routine (0-low, 1-high) 0.59 (0.42, 0.71)

 Week end/day stratified circadian routine 0.61 (0.44, 0.73)

 Number of outgoing texts 4 (0, 14)

 Total outgoing text length (characters) 165 (0, 756)

 Texting outdegree 1 (0, 3)

 Number of incoming texts 4 (0, 13)

 Total incoming text length (characters) 188 (0, 689)

 Texting indegree 2 (0, 4)
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Demographics Total (n=105)

 Text reciprocity 4 (0, 15)

 Text responsiveness 0.04 (0, 0.28)

 Number of outgoing calls 1 (0, 4)

 Total outgoing call lengths (seconds) 72 (0, 561)

 Call outdegree 1 (0, 3)

 Number of incoming calls 1 (0, 3)

 Total incoming call lengths (seconds) 75 (0, 619)

 Call indegree 1 (0, 2)

 Call reciprocity 0 (0, 2)

 Call responsiveness 0 (0, 0.44)

*
For detailed descriptions and definitions of the mobility and sociability digital phenotypes, see Barnett and Onnela (2016).
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Table 2.

Daily smartphone mobility and sociability features collected by digital phenotyping.

Data summary/feature Collection type Units

Pain Active (survey) 0 (low) - 10 (high)

Time spent at home Passive Minutes (log10 scale)

Distance travelled Passive Meters (log10 scale)

Radius of Gyration Passive Meters (log10 scale)

Maximum diameter Passive Meters (log10 scale)

Maximum distance from home Passive Meters (log10 scale)

Number of significant locations visited Passive None

Avg. flight length Passive Meters (log10 scale)

Std. of flight length Passive Meters (log10 scale)

Avg. flight duration Passive Seconds (log10 scale)

Std. of flight duration Passive Seconds (log10 scale)

Fraction of time not moving Passive None

Significant location entropy Passive None

Circadian routine Passive None

Circadian routine (weekend/day stratified) Passive None

Number of outgoing texts Passive None

Cumulative length of outgoing texts Passive Characters (log10 scale)

Number of people texts were sent to Passive None

Number of incoming texts Passive None

Cumulative length of incoming texts Passive Characters (log10 scale)

Number of people texts were received from Passive None

Text reciprocity Passive None

Text responsiveness Passive None

Number of outgoing calls Passive None

Cumulative length of outgoing calls Passive Seconds (log10 scale)

Number of people calls were made to Passive None

Number of incoming calls Passive None

Cumulative length of incoming calls Passive Seconds (log10 scale)

Number of people calls were received from Passive None

Call reciprocity Passive None

Call responsiveness Passive None
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Table 3.

Associations between daily passively collected variables and self-report of pain by linear mixed modeling each 

feature with a random slope and intercept for each participant.

Feature Coef Std. Err. P-value

Average Flight Length −0.226 0.068 0.002

Maximum Diameter −0.142 0.047 0.004

Distance −0.129 0.043 0.004

Radius of Gyration −0.134 0.051 0.011

Std. dev. Flight Duration −0.124 0.045 0.013

Std. dev. Flight Length −0.174 0.071 0.020

Maximum Distance From Home −0.124 0.055 0.029

Number of Significant Locations Visited −0.740 0.408 0.077

Average Flight Duration −0.108 0.062 0.089

Significant Location Entropy −0.920 0.706 0.225

Text Responsiveness 0.576 0.456 0.247

Text Out-degree 0.284 0.256 0.320

Physical Circadian Routine (weekend/day stratified) −0.632 0.737 0.408

Call In-degree 0.189 0.250 0.458

Text In-degree 0.223 0.257 0.474

Outgoing Texts 0.083 0.133 0.538

Call Responsiveness 0.255 0.435 0.568

Time Spent at Home 0.023 0.045 0.651

Physical Circadian Routine −0.341 0.800 0.676

Number of Incoming Calls 0.084 0.213 0.694

Call Out-degree −0.074 0.195 0.705

Call Reciprocity −0.105 0.282 0.714

Number of Outgoing Calls −0.044 0.195 0.820

Fraction of Time Stationary −0.290 1.383 0.836

Number of Incoming Texts 0.030 0.142 0.837

Text Reciprocity 0.018 0.132 0.892

Total Incoming Call Lengths 0.006 0.045 0.892

Total Outgoing Text Lengths 0.007 0.060 0.909

Total Outgoing Call Lengths −0.003 0.039 0.935
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