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Abstract

Schizophrenia (SCZ) is a chronic debilitating neuropsychiatric disorder with multiple risk factors 

involving numerous complex genetic influences. We examined and updated a master list of 

clinically relevant and susceptibility genes associated with SCZ reported in the literature and 

genomic databases dedicated to gene discovery for characterization of SCZ genes. We used the 

commercially available GeneAnalytics computer-based gene analysis program and integrated 

genomic databases to create a molecular profile of the updated list of 608 SCZ genes to model 

their impact in select categories (tissues and cells, diseases, pathways, biological processes, 

molecular functions, phenotypes and compounds) using specialized GeneAnalytics algorithms. 

Genes for schizophrenia were predominantly expressed in the cerebellum, cerebral cortex, medulla 

oblongata, thalamus and hypothalamus. Psychiatric/behavioral disorders incorporating SCZ genes 

included ADHD, bipolar disorder, autism spectrum disorder and alcohol dependence as well as 

cancer, Alzheimer's and Parkinson's disease, sleep disturbances and inflammation. Function based 

analysis of major biological pathways and mechanisms associated with SCZ genes identified 

glutaminergic receptors (e.g., GRIA1, GRIN2, GRIK4, GRM5), serotonergic receptors (e.g., 

HTR2A, HTR2C), GABAergic receptors (e.g., GABRA1, GABRB2), dopaminergic receptors 

(e.g., DRD1, DRD2), calcium-related channels (e.g., CACNA1H, CACNA1B), solute transporters 

(e.g., SLC1A1, SLC6A2) and for neurodevelopment (e.g., ADCY1, MEF2C, NOTCH2, 
SHANK3). Biological mechanisms involving synaptic transmission, regulation of membrane 

potential and transmembrane ion transport were identified as leading molecular functions 

associated with SCZ genes. Our approach to interrogate SCZ genes and their interactions at 

various levels has increased our knowledge and insight into the disease process possibly opening 

new avenues for therapeutic intervention.
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1. Introduction

Schizophrenia (SCZ) is a complex debilitating psychiatric disorder affecting approximately 

7 in 1000 people in their lifetime (McGrath et al., 2008) and ranked as one of the top 15 

leading causes of disability worldwide (Steel, 2016). The symptoms of schizophrenia can be 

broadly divided into positive symptoms (delusion, hallucination, disorganized thought and 

behavior), negative symptoms (blunt affect, anhedonia, avolition, alogia and alexithymia) 

and cognitive symptoms (poor executive functioning, poor working memory and attention 

problems) (https://www.nimh.nih.gov/health/publications/schizophrenia-booklet-12-2015/

index.shtml). These symptoms appear abruptly or may develop progressively usually in late 

adolescence or early adulthood but typically evolve into remitting and relapsing cycles 

throughout life. Affected individuals are at increased risk for psychiatric comorbidities 

including substance abuse and suicide (Mueser et al., 1995; Hor and Taylor, 2010). Medical 

comorbidities such as diabetes mellitus, metabolic syndrome, coronary heart disease and 

chronic obstructive pulmonary disease are increasingly found in patients with SCZ when 

compared with the general population (Oud and Meyboom-de Jong, 2009). Adults with SCZ 

are also at increased risk of premature death and their life span reduced by 15–25 years 

compared with the general population (Olfson et al., 2015). Given the debilitating nature of 

this disease many studies have been conducted to understand the etiopathogenesis of SCZ 

and to devise effective patient care and management.

SCZ is a neuropsychiatric disorder with a heritability estimate of 65–80% showing a non-

Mendelian inheritance pattern (Sullivan et al., 2003; Lichtenstein et al., 2009). Various 

genetic studies during the past two decades have identified risk loci and genes associated 

with SCZ (International Schizophrenia Consortium, 2009; Stefansson et al., 2009; 

Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium, 2011; 

Ripke et al., 2013; Giusti-Rodríguez and Sullivan, 2013; Mowry and Gratten, 2013). Large 

genome-wide association studies to date have identified 108 significant regions with 

increased risk for SCZ (Ripke et al., 2014). Not all variants in and around the genes 

identified have a direct causal relationship (Need and Goldstein, 2014). SCZ is a polygenic 

disorder with 560 genes currently recognized in the literature or proposed in SCZ 

etiopathogenesis (Butler et al., 2016b). Examination of these genes individually and mapped 

into biological pathways will advance understanding of the disease mechanism associated 

with SCZ. Further, the information learned may facilitate the development of new 

therapeutic options for the management of SCZ. Genes can be linked to biological pathways 

in various online sources (e.g. Reactome, KEGG, PharnGKB, Wikipathways, Pathcards). 

One such source ‘Pathcards’ (http://pathcards.genecards.org) has consolidated various 

pathways into ‘superpaths’ by linking their gene content decreasing pathway redundancy 

and improving gene-related pathway information (Belinky et al., 2015). Evaluation of 

interpathway connectivity will advance understand the gene-gene interaction related to the 

disease process of schizophrenia and its associated comorbidities.

The aim of the current study was to update and interrogate a master list of clinically 

recognized or susceptibility genes associated with SCZ and conduct a genome-wide pathway 

and functional analysis using the GeneAnalytics computer-based program and integrated 

genomic databases. This approach was undertaken to identify and describe gene interactions 
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and disturbed pathways and related functions to gain a better understanding of causation 

leading to potentially new ther apeutic directions for this psychiatric disorder.

2. Materials and methods

We used PubMed database to search for combined keywords such as schizophrenia, human 

genes, genetics, gene variants and mutations as similarly undertaken by Butler et al. (2016b) 

to update the master list of 560 genes considered to be clinically relevant or susceptibility 

genes for SCZ in the original report based upon their proposed role in causation, pathology 

or course of illness or with possible impact upon treatment (Butler et al., 2016b). Genetic 

data, functional analysis and SNP level information obtained through this comprehensive 

literature review identified genes predicted to have ‘clinically relevant’ impact on outcomes 

in individuals with schizophrenia pertaining to susceptibility, course and response to 

treatment. We restricted our current search to articles published since 2015 and our search 

results were frozen on October 10, 2016. Inclusion criteria were: 1) experimental or clinical 

studies on human genes, 2) articles in English language, 3) review and meta-analysis data 

included and searched for primary articles. Exclusion criteria included: 1) experimental or 

animal models and 2) articles on noncoding genes/mitochondrial DNA. Genes extracted 

from research articles were checked for aliases and overlap using previously published SCZ 

genes master list (Butler et al., 2016b) and online databases OMIM and GeneCards. We also 

included a compilation of SCZ genes updated from a reported database (www.szdb.org; Wu 

et al., 2017) in addition to the PubMed literature search. Further validation in the form of 

gene expression/human or animal studies were checked for the newly recognized or 

proposed SCZ genes. Previously, two reports and a review of the application of the 

GeneAnalytics program were published (Butler et al., 2016a, 2016b; Ben-Ari Fuchs et al., 

2016). The reports by Butler et al. (2016a, 2016b) used this approach to study genome-wide 

pathways, diseases and functional analysis of a compiled list of genes for human 

reproduction and infertility and an early version of a SCZ gene dataset.

We also obtained a random gene list of 600 genes through the free online search engine 

molbiotools (http://www.molbiotools.com/randomgenesetgenerator.html) for validating 

GeneAnalytics profiling and convergent pathway analysis.

2.1. GeneAnalytics program and integrated databases

GeneAnalytics is a novel, commercially available computer-based gene-set analytic tool 

available in the GeneCards suite developed by LifeMap Sciences (http://

www.lifemapsc.com/products/genecards-suite-premium-tools/). GeneCards suite 

incorporates integrated post-genomic databases available for researchers to explore widely 

accessible and annotated predicted human genes (Stelzer et al., 2016). The GeneAnalytics 

program leverages information from LifeMap Discovery (http://discovery.lifemapsc.com/), 

GeneCards (http://www.genecards.org/) and MalaCards (http://www.malacards.org/) for the 

query of human gene-sets for subscribers. The GeneAnalytics program uses select tailored 

and proprietary algorithms correlating factors such as specificity, abundance and function 

with normalized genetic influences on matching scores based on the cumulative binomial 

distribution. The results are categorized into tissues and cells, diseases, pathways, biological 
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processes, molecular functions, phenotypes and compounds (Ben-Ari Fuchs et al., 2016). 

Matching scores for query genes are generated based on the similarities between query 

genes and the associated entity and divided into high, medium and low score categories. 

Genetic and SNP level information obtained through our literature review were utilized to 

identify genes predicted to be clinically relevant and impacting clinical outcomes in 

individuals with schizophrenia. We profiled the function of these genes, collectively, in order 

to identify biological pathways of greatest importance to clinical outcomes. The 

GeneAnalytics algorithms utilized do not assess the influence of individual SNPs or copy 

number changes. The GeneAnalytics program was able to recognize 597 of our list of 600 

random genes yielding a molecular profile containing three high score matches under the 

Diseases category (colorectal cancer, breast cancer and neuroblastoma). No high score 

matches were identified for any of the remaining six GeneAnalytics categories. The 

following profile of GeneAnalytics categories was generated for our list of genes with 

clinical relevance to schizophrenia.

2.2. Tissues and cells

Detailed information on normal cells, anatomical compartments (specific regions within an 

organ/tissue), organs, tissues and high-throughput experiments are matched to the query 

gene lists as specific entities (cells, tissues, organs, anatomical compartments) and large 

scale data samples from combined data from human, mouse and also to a lesser extent from 

chicken, rat or pig genes. This analysis is based on gene expression data available in the 

LifeMap Discovery database (http://discovery.lifemapsc.com/; Edgar et al., 2013).

2.3. Diseases

The information on associated diseases is available in the MalaCards database (http://

www.malacards.org/; Rappaport et al., 2013) and GeneCards database is utilized to analyze 

gene – disease relationship. Each gene in a disease category is scored based on their 

relationship to that disease.

2.4. Superpaths/pathways

The PathCards unifies multiple pathway sources available in GeneCards to form 

‘Superpaths’. Integrated pathways are drawn from various sources using an algorithm and 

unified into ‘Superpaths’ based on the gene content reducing redundancy for improved 

pathway inferences and enrichment. The matching algorithm used is based on GeneDecks 

Set Distiller Tool (Stelzer et al., 2009) with normalized genetic influences on matching score 

based on the cumulative binomial distribution. Significant results have a p value < 1/total 

number of potential matches in the category. The scores are equal to the −log2 of the 

resulting p value.

2.5. GO-biological processes and GO-molecular functions

The functional role of query genes in terms of biological and molecular functions are 

integrated based into the GeneCards database from the Gene Ontology Project (Gene 

Ontology Consortium, 2008). According to gene ontology consortium, ‘biological process is 

a series of events accomplished by one or more organized assembly of molecular function’ 
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involving more than one step with a defined beginning and end relevant to living cells, 

tissues, organs or organisms. A molecular function is defined as ‘the elemental activities of a 

gene product at the molecular level’ (http://geneontology.org/page/ontology-documentation).

2.6. Phenotypes

The GeneCards database gene-phenotype analysis incorporates data information from 

Mouse Genome Informatics (http://www.informatics.jax.org/) and Human Phenotype 

Ontology project (http://human-phenotype-ontology.github.io/).The phenotype- gene link is 

based on phenotypes of a particular syndrome and the corresponding genes related to that 

disorder.

2.7. Compounds

GeneCards database integrates information from various sources for compound and drug 

associations including DrugBank (https://www.drugbank.ca/), ApexBio (http://

www.apexbt.com/), Drug Gene Interaction Database (http://dgidb.genome.wustl.edu/), FDA 

Approved Drugs (http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm), 

ClinicalTrials.gov (https://www.clinicaltrials.gov/), PharmGKB (https://

www.pharmgkb.org/), International Union of Basic and Clinical Pharmacology(http://

www.guidetopharmacology.org/) Novo seek, Human Metabolome Database (http://

www.hmdb.ca/), BitterDB (http://bitterdb.agri.huji.ac.il/dbbitter.php) and Tocris Biosciences 

(https://www.tocris.com/).

3. Results

Our new search for SCZ genes found 52 additional genes associated with SCZ (see Table 1), 

and when combined with the updated original list of genes reported by Butler et al. (2016b), 

a total of 608 genes were reported. A complete list of updated SCZ genes with references 

can be found in Supplementary Table 1 including evidence based on GWAS, linkage and 

association studies; gene expression, function or methylation status and copy number 

variant, cytogenetic anomaly, noncoding (miRNA) targets or single gene variant analyses. 

The majority of evidence was reported with GWAS, linkage or association studies indicating 

a specific gene contributed to SCZ (see Supplementary Table 1). The results from the 

GeneAnalytics program analysis were grouped into seven categories (tissues and cells, 

diseases, pathways/superpaths, GO-biological processes, GO-molecular functions, 

phenotypes and compounds.

3.1. Tissues and cells

The results from the study of tissues and cells showed that 577 SCZ genes were matched to 

16,311 entities and of these 1181 were matched as in vivo and 450 were matched as in vitro. 

The matched entities represented 632 cells, 131 anatomical compartments, 37 organs/tissues 

and 8318 from high-throughput experiments. There were 1113 genes from prenatal samples 

and 962 genes were expressed in postnatal samples. Five anatomical brain compartments 

included the cerebellum, cerebral cortex, medulla oblongata, thalamus and hypothalamus 

with the highest match scores ranging from 34.6 to 26.6 (see Table 2 and Supplementary 

Table 2). There were nine medium score matches (range: 24.6 to 12.7) and 1617 low score 
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matches (range: 12.1 to 0.02). A total of 96 genes were found to overlap in all five high 

match anatomical brain compartments.

3.2. Diseases

The top ten high scoring associated diseases using the compiled list of SCZ genes with the 

GeneAnalytics program and integrated genomic databases and the list of matched genes are 

given in Supplementary Table 3. Of the total 608 analyzed SCZ genes, 5535 matched to 

3821 disease entities. There were 74 high score matches (range: 144 to 13.3), 712 medium 

score matches (range: 13.2 to 4.3) and 3035 low score matches (range: 4.3 to 0.0). Not 

surprisingly, schizophrenia had the highest score (score: 144) followed by ADHD (score: 

43.6). The percentage of the matched genes in each disease category is given in Table 3. The 

BDNF gene was found in nine of the top ten diseases in the Diseases category.

3.3. Superpaths/pathways

Of the analyzed list of 608 SCZ genes, 482 genes were matched to 289 Superpath entities. 

There were 193 high scoring entities (range: 166 and 13.4), 96 medium score matches 

(range: 13.2 to 10.0) and no low score matches. Top ten superpathways and the number of 

matched genes are given in Table 4 (see Supplementary Table 4 for the list of individual 

matched genes). Circadian entrainment, neuroscience and transmission across chemical 

synapses were the top three pathways in the Superpaths category with matching scores 166, 

164 and 137, respectively. The gene GRIN1 was present in nine of the top ten pathways in 

the Superpaths category excluding the monoamine GPCRs (G-protein coupled receptors) 

superpathway.

3.4. GO-biological processes and GO-molecular functions

A total of 488 of the compiled list of SCZ genes matched to 252 biological processes with 

the top ten high scoring entities and their matched genes shown in Supplementary Table 5. 

There were 182 high score matches (range: 138 to 13.3), 70 medium score matches (range: 

13.1 to 11.8) and no low score matches. Chemical synaptic transmission had the highest 

score of 138 with 69 matched genes (see Table 5). No common genes were found 

representing the top ten GO-biological processes. In the GO-Molecular Function category, 

508 genes of the 608 SCZ genes were matched to 87 entities. The top ten molecular function 

and matched genes are given in Supplementary Table 6. There were 54 high scoring matches 

(range: 70.361.6 to 13.4), 33 medium score matches (range: 13.2 to 9.9) and no low score 

matches. Ion channel activity, extracellular ligand gated ion channel activity, inotropic 

glutamate receptor activity and extracellular glutamate gated ion channel activity scored > 

50.0. The ‘protein binding’ entity (score: 26.4) was ranked 17th in the high scoring match 

list with 339 genes of our total compiled list of genes but was by far the category with the 

largest number of total genes grouped in this category (n = 8919 genes). No genes were 

found in common representing the top ten GO-molecular function listed in Table 6.

3.5. Phenotypes

This category had 3563 of the 6085 compiled genes matched to 288 phenotypes. There were 

226 high score matches (range: 101 to 13.4) of which only top ten phenotypes were reported 
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in Supplementary Table 7. There were 62 medium score matches (range: 13.2 to 11.8). The 

hyperactivity phenotype had the highest matching score of 101 with 59 matched genes. The 

SHANK3 gene was found in common representing the top ten high scoring phenotypes 

except for the abnormal serotonin level category (see Table 7).

3.6. Compounds

From our total 608 SCZ gene list, 430 genes matched to 1457 compounds. There were 1457 

high score matches (range: 166 to 13.4) of which the top ten compounds are given in Table 

8. There were no medium score matches and no low score matches. Glutamate, dopamine, 

NMDA, GABA, norepinephrine, clozapine and olanzapine all had the highest matching 

score of 166 followed by acetylcholine with a score of 155. Three genes (BDNF, DRD1 and 

CNR1) were present in each representing the top ten high scoring compounds (see 

Supplementary Table 8).

4. Discussion

Butler et al. (2016b) reported using the GeneAnalytics computer-based gene analysis 

program on the initial collection of 560 clinically relevant or susceptible SCZ genes and 

found significant associations with anatomical structures such as cerebellum, cerebral 

cortex, medulla, thalamus, hypothalamus, pons and amygdala. Apart from SCZ, the original 

560 SCZ related genes reported by Butler et al. (2016b) also overlapped with obesity (score: 

32.3), breast cancer (score: 32.2) and other disease states such as rheumatoid arthritis, 

malaria, bipolar disorder, lung cancer, colorectal cancer and OCD. The genes were 

associated with 20 molecular functions, 69 biological processes and 95 Superpaths. The 

genes matched in the pathways included those in ion channels (e.g. CANA1B, CACNA1C, 
CACNA1H), metabolic enzymes (e.g. CYP1A2, CYP2C19), brain development (e.g. NRG1, 
RELN), signaling (e.g. PIK3CA, PIK4CA), immune function (e.g. HLA-A, HLA-DRB1) 

and interleukins (e.g. ILIA, IL10). They also reported that the genes involved in the 

neurotransmitter function of dopamine, GABA, serotonin were directly tied to glutamate 

processing and signaling. In the present study, we report a detailed analysis of the updated 

master list of 608 SCZ genes using the GeneAnalytics program to interrogate the most 

recent genomic databases available to subscribers.

4.1. Tissues and cells

The cerebellum was at the top of gene expression analysis in the tissues and cells category. 

The sole function of the cerebellum was thought to be limited to planning and execution of 

motor activities; however, its extensive connection to the higher level cortical areas provide 

it with non-motor functions, mainly cognition (Strick et al., 2009; Bostan et al., 2013; 

Buckner, 2013). The cognitive dysmetria model of SCZ by Andreasen and Pierson 

hypothesized that the multiple symptoms in SCZ are due to the disconnections in cortico-

cerebellar-thalamic-cortical circuits (Andreasen and Pierson, 2008). In tissues and cells 

analyzed using the GeneAnalytics program with genes from our compiled master list of SCZ 

genes occupied 6.7% of the total genes in the cerebellum, 5.4% of total genes in the cerebral 

cortex and 10.5%, 10.4% of total genes in the thalamus and hypothalamus, respectively. In 

addition, a recent postmortem study of structural alterations in the pulvinar of the posterior 
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thalamus could impair various thalamic inputs to the frontal and parietal lobes and 

contribute to thalamocortical dysfunction (Dorph-Petersen and Lewis, 2017). Further 

evidence from imaging studies broadly supports the wide array of clinical and cognitive 

symptoms observed in SCZ due to thalamocortical dysfunction (Pergola et al., 2017; 

Andreasen and Pierson, 2008).

A total of 96 clinically relevant SCZ genes from our compiled list were found overlapping in 

all five high matching brain tissue regions. Most of these genes encode neurotransmitter 

receptors (e.g. DRD1, CHRNA3, CHRM1, GABBR1, GABRG1, HTR1A, GRIA1, GRM2, 
ADRA2A, HRH2, CNR1) and developmental genes (e.g. RELN, MECP2, ADCY1, BDNF, 
PLP1, N0TCH2, DCDC2, RTN4, FGF1). There were also other genes that could be grouped 

into cell cycle and cell regulation (e.g. PCNT, CDK6, S100B, ARVF, YWHAFT), 

neurotransmitter synthesis and metabolism (e.g. ABAT, DDC, GLS, MAOB), solute carriers 

(e.g. SLC1A2, SLC6A2). Any disruption of this gene network at any region might affect 

gene activity in other regions and functional connectivity deficits in patients with SCZ.

4.2. Diseases

The results from disease-genes analysis showed that the matched genes constituted 94.8% of 

the total genes in psychotic disorders, 70.0% of total genes in SCZ, 62.3% of total genes in 

ADHD, 61.6% of total genes in disease of mental health and followed by 59.7%in alcohol 

dependence, 33.6%in autism spectrum disorder and 33.3% in Parkinson's disease late onset. 

Some of the common comorbidities seen in SCZ patients are depression (Majadas et al., 

2012; Siris, 1994), anxiety (Temmingh and Stein, 2015), substance abuse (Blanchard et al., 

2000; Toftdahl et al., 2016), sleep disorder (Klingaman et al., 2015), cardio metabolic 

syndrome (Oud and Meyboom-de Jong, 2009), stroke (Tsai et al., 2012), epilepsy (Matsuura 

et al., 2003) and cognitive impairment. It is interesting to note the overlap of SCZ genes in 

Alzheimer's disease (e.g. BDNF, RELN, GRIN2A, MAOB) and late onset Parkinson's 

disease (e.g. DRD3, GDNF, HTR1A). Studies have shown that SCZ is a neurodegenerative 

disease and development of dementia later in the course of the illness. Debate persists if 

dementia is directly associated with SCZ disease progression or if it is due to comorbid 

medical/addiction problems along with life style restriction seen in SCZ patients. Based on a 

Danish population SCZ cohort study (Ribe et al., 2015), the incidence of dementia in SCZ 

patients was 1.8% at 65 years of age and increased to 7.4% at 80 years. The risk sustained 

even after adjusting for medical and addiction comorbidities.

4.3. Superpaths/pathways

Various pathways were unified into ‘Superpaths’ based on their gene content. The 

knowledge base about the role of synaptic transmission and peptide ligand binding receptors 

underlying the pathology associated with SCZ is supported by our study. The majority of 

genes in these two separate but involved pathways belong to ionotropic glutamate receptors 

(e.g. GRIA1, GRIN2C, GRIK5), GABA receptors (e.g. GABRA1, GABRG3) and nicotinic 

cholinergic receptors (e.g. CHRNA5, CHRNB2). The ‘Circadian entrainment’ Superpath 

had high matching scores with sleep disturbances common in SCZ and reported in both 

medicated and non-medicated treated SCZ patients (Monti et al., 2013; Chouinard et al., 

2004). The role of circadian genes (e.g. CLOCK, PER3) are also implicated in metabolic 

Sundararajan et al. Page 8

Gene. Author manuscript; available in PMC 2019 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



syndrome with disrupted co-ordination between central clock and peripheral clock genes in 

different organs and different brain nuclei impacting energy utilization and metabolic 

dysfunction (Barandas et al., 2015).

Human and animal model studies have found direct and indirect effects of circadian genes in 

neuroendocrine function, thus affecting fertility and mood dysregulation (Barandas et al., 

2015; Kloss et al., 2015). Similarly cognitive impairment is associated with circadian cycle 

dysfunction (Benca et al., 2009; Zelinski et al., 2014). Although there is reported evidence 

of comorbid conditions associated with SCZ, no studies have linked a direct relationship of 

the circadian genes in SCZ pathology. Since circadian entrainment has the highest matching 

score in the pathway category, its role in SCZ cannot be neglected and future studies should 

focus on interconnections between SCZ and circadian genes in the disease pathogenesis. It is 

noted in our analysis that 72.5%of the nicotine addiction Superpath contained our compiled 

list of SCZ genes and 40.2% of amphetamine addiction Superpath also included SCZ genes.

4.4. GO-biological processes and GO-molecular functions

The genes in the biological processes analysis included solute carriers (e.g. SLC6A2, 
SLC6A3, SLC6A4), glutamate receptor NMDA type (e.g. GRIN2C, GRIN2D), glutamate 

receptor AMPA type (e.g. GRIA1, GRIA2), glutamate receptor kainate type (e.g. GRIK1, 
GRIK2), glutamate metabotropic receptor (e.g. GRM2, GRM4), serotonin receptors (e.g. 

HTR1B, HTR2A), ion channels (e.g. CACNA1B, CACNB2, KCNB1, KCNN3), dopamine 

receptors (e.g. DRD2, DRD4), developmental genes (e.g. DLG1, DLG2, CAMK2B, 
ADCY1, ADCY9), neurotransmitter related genes (e.g. ABAT, ACHE, COMT, CHAT, 
MAOA, GAD1, GLS, GLUE, SNAP25) and cell surface synaptic transmission (e.g. 

NRXN1, NRXN2). The biological processes highly matched to the SCZ gene list for 

synaptic transmission. Research has focused on synapses and SCZ genes associated with 

synaptic transmission (Kirov et al., 2012; Kenny et al., 2014; Fromer et al., 2014).

Synaptopathy mainly involves glutaminergic transmission (Hayashi-Takagi, 2017) while 

other processes considered in the SCZ disease mechanism are ion transmembrane transport 

(46 out of 598 genes) and regulation of membrane potential (33 out of 598 genes). 

According to a cellular model, alterations in membrane NA/K ATPase pump activity are 

responsible for an altered neuronal excitation seen in bipolar disorder (El-Mallakh and 

Wyatt, 1995). Evidence for allelic association of ATP1A3 gene and bipolar disorder was 

further reported in a study conducted in 85 Irish bipolar patients (Mynett-Johnson et al., 

1998), since many of the genes associated with SCZ are also found in bipolar disorder (e.g. 

ATP2A2, HTR2A, DISCI, RELN).

The extracellular ligand gated ion channel activity in our study had 46.8% of genes found in 

our compiled SCZ gene list. Most of the genes linked to this molecular function were 

neurotransmitter receptor genes such as GABA, serotonin and nicotinic cholinergic 

receptors. CNS channelopathy has also been implicated in various neuropsychiatric 

disorders such as seizures, ataxia, Timothy syndrome with autism and SCZ (Gargus, 2006). 

Further research on membrane potential and transmembrane ions should provide potential 

targets for therapeutic management of SCZ.
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4.5. Phenotypes

The phenotypes to which the SCZ genes are associated can be broadly classified as 

behavioral/cognitive symptoms- hyperactivity, anxiety related response, impaired 

coordination, hypoactivity, decreased vertical activity, abnormal spatial learning and social 

investigation; abnormal neurophysiology- abnormal serotonin activity, reduced long term 

potentiation; body metabolism- decreased body weight. SHANK3 gene involvement has 

been found to impact the above behavioral/cognitive symptoms. This gene encodes a 

scaffolding protein found in postsynaptic densities of excitatory synapses. Disruption of the 

SHANK3 gene is found in Phelan-McDermid syndrome which is characterized by neonatal 

hypotonia, global developmental delay, growth deficit, severely delayed speech, autistic-like 

behavior and dysmorphic features (Durand et al., 2007). Recently, cumulative gene analysis 

in subjects with autism spectrum disorder revealed various SHANK3 mutations related to 

neuropathology (Uchino and Waga, 2015). Further evidence supports SHANK3 mutations 

linked to SCZ and overexpression in manic- like behaviors (Gauthier et al., 2010; Han et al., 

2013). A recent study by Yi et al. (2016), also found impaired dendritic branching, massive 

input resistance to increased excitability and decreased synaptic transmission in human 

embryonic stem cells with SHANK3 gene deletions. Increased input resistance was 

consistent with Ih- channel dysfunction implying that HCN channel related Ih current 

impairment as the major pathogenetic factor of SHANK3 mutations in autism spectrum 

disorders and Phelan-McDermid syndrome.

4.6. Compounds

Neurotransmitters were predominant in the top ten positions of compounds in our study and 

associated or related to SCZ genes. These compounds included glutamate, dopamine, 

NMDA, GABA, norepinephrine and acetylcholine. It is interesting to note that CNR1, 
GDNF, PDYN, SLC18A2, SLC6A, TH, ADCYAP1, BDNF, DRD1, DRD2, NOS1, 
CACNA1B, HTR2C, AD0RA2A, NPY, GABBR1, SRC and NTF3 genes are consistently 

present in all six neurotransmitters in the compounds category and probably related to 

interconnecting genes or gene network. The common gene groups in clozapine and 

olanzapine were also related to neuroreceptors such as dopamine receptor (DRD1, DRD2, 
DRD4, DRD5), serotonin receptor (HTR1B, HTR1D, HTR2C, HTR3A, HTR5A, HTR6, 
HTR7), adrenergic receptor (ADRA1A, ADRA2A, ADRA2C, ADRAB3), cholinergic 

muscarinic receptor (CHRM1, CHRM2, CFIRM5) and histamine receptor (HRH1). The 

common genes associated with drug metabolism were the cytochrome family (CYP2D6, 
CYP3A4, CYP2C19, CYP3A5, CYP1A2). Many of the top drugs selected for treating 

patients with schizophrenia are metabolized by several cytochrome enzymes coded by CYP 

genes implying their clinically relevant status. For example, atypical anti-psychotic 

medications, aripiprazole and risperidone are metabolized by CYP3A4, CYP3A5 and 

CYP2D6 affecting their efficacy in treating patients.

BDNF plays a major role in neurogenesis, neuroplasticity, cognition and modulation of 

major neurotransmitter systems such as dopaminergic, serotonergic and glutamatergic 

system (Tyler et al., 2002; Gratacos et al., 2007). BDNF gene polymorphisms are reported in 

various psychiatric disorders and have been linked to response to anti-psychotics and 

antipsychotic induced weight gain (Hong et al., 2003; Zai et al., 2012; Perkovic et al., 2014). 
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The other compounds include cocaine and kainate (kainic acid). Kainate is an excitatory 

amino acid associated with ionotropic glutamate receptor, kainate type (Bloss and Hunter, 

2010).

5. Summary

The most common gene families among the 608 genes associated with schizophrenia and 

found in the GeneAnalytics program and integrated genomic databases that were analyzed 

included glutamate receptors, solute carriers, GABA receptors, dopamine receptors, 

serotonin receptors, calcium and potassium ion channels and neurodevelopmental genes. A 

simple representation of the involved SCZ gene network include alterations at the molecular 

function such as ion channel activity, ligand binding, receptor activity and a series of 

molecular functions impacting synaptic transmission, transmembrane potential and ion 

transport which collectively contribute to pathways leading to phenotypes or symptoms 

associated with SCZ, including response to drugs. There was no single gene that was 

overlapped in all categories indicating heterogeneity and complexity in the genetic causation 

of SCZ. The susceptibility to SCZ is due to the combined effects of ostensibly many genes 

in a given background creating a complex network increasing the probability of developing 

SCZ. It is important to note that genes from our SCZ master gene list were also found 

associated with other psychiatric and non-psychiatric disorders such as ADHD, autism, 

Alzheimer’s disease, late-onset Parkinson's disease, neuroblastoma and colorectal cancer. 

Even though sleep disturbances and inflammation did not occupy top positions in the disease 

category, they did occupy the top positions in the pathway categories reflecting their strong 

underpinning in the etiology and pathogenesis of schizophrenia requiring further studies 

leading to potential treatment modalities. Additionally, our gene list and the molecular 

profiling algorithms utilized by GeneAnalytics provide a gene level analysis of molecular 

pathways based upon cumulative findings from a full range of methods and genetic evidence 

including structural (copy number) and genomic (single nucleotide polymorphisms, SNPs). 

The analysis does not consider differential effects of select SNPs on individual pathways.

Our interpretation of SCZ gene analysis utilizing the GeneAnalytics and integrated 

databases was limited to the top ten of highly scored matched entities in each category 

characterized by this approach. Our compiled list of SCZ genes interrogated only human 

tissues leveraged by the GeneAnalytics program and information from animal studies 

including the categories for tissues, cells and phenotypes. Of the compiled 608 clinically 

relevant SCZ genes in the GeneAnalytics program 166 genes were matched to the 

schizophrenia gene entity in which there were 237 genes in that category. It is plausible that 

the GeneAnalytics program may have different inclusion criteria for data integration and it is 

also likely that many of the sources from which the information is gathered might not have 

been updated during the past year or our list of SCZ genes is too extensive.

The GeneAnalytics algorithms provide a statistical measure of the interrelationship between 

genes within a given list, offering a molecular profile of the system overlap. However, it 

does not presently provide a means to directly compare statistically different lists. Molecular 

profiling of our list of 600 random genes provides validating evidence of the reliability and 

specificity of GeneAnalytics algorithms and the findings of our primary analysis of genes 
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related to schizophrenia. The high score matches for three highly studied cancers are likely 

to result from a combination of cancer-intensive research bias as well as functional overlap 

of genes related to cellular growth and development. These disease states were identified in 

our analyses likely reflect a nonspecific genetic signature. We have also published several 

studies utilizing GeneAnalytics mapping and investigated psychiatric and non-psychiatric 

disease states (e.g., Butler et al., 2016a) that can be used to support the validity of our 

analysis such as genes related to infertility with limited relationship to schizophrenia to 

assess random overlap. When examining the 366 genes related to infertility and the top ten 

categories that overlap between the list of genes for schizophrenia and infertility for the 

seven GeneAnalytics categories, we found no overlap in Tissues and Cells, Superpathways, 

GO-biological processes, GO-molecular functions, Phenotypes or Compounds. We found 

one overlap (obesity) in the Disease category. Therefore, it is reasonable to conclude that the 

GeneAnalytics gene profiling program was successful in separating random genes and genes 

contributing to infertility from genes contributing to schizophrenia in our study adding to the 

relevance of this gene profile program in the study of genes and genetic patterns.

In conclusion, we compiled an updated master gene list of clinically relevant or proposed 

genes in SCZ from the medical literature. A total of 608 genes were identified by the 

GeneAnalytics computer-based program and these genes were studied in various categories 

such as tissue expression, disease association, superpathways, biological processes and 

molecular functions, phenotypes and compounds associated with the genes. Common genes 

associated with each of the categories were then discussed. Our approach to interrogate SCZ 

genes and their interactions at various levels contributing to disease and pathogenesis should 

increase our knowledge and possibly open new avenues for research and therapeutic 

intervention.
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Abbreviations:

ADHD Attention-Deficit/Hyperactivity Disorder

CNS central nervous system

CNVs copy number variants

GABA gamma-aminobutyric acid

GO Gene Ontology

HLA human leukocyte antigen

IL interleukin
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KEGG Kyoto Encyclopedia of Genes and Genomes

NMDA N-methyl-D-aspartate

OMIM Online Mendelian Inheritance in Man

SCZ schizophrenia

SNPs single nucleotide polymorphisms
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Table 8

Top ten categories of compounds associated with clinically relevant and known genes for schizophrenia.

GeneAnalytics
score

Compounds Total number of
genes identified in
compounds from
integrated
databases

Number of matched
genes from
schizophrenia master
list (%)

166.10 Glutamate 814 149 (24.5)

166.10 Dopamine 447 121 (19.9)

166.10 NMDA 287 102 (16.7)

166.10 GABA 223 88 (14.4)

166.10 Norepinephrine 312 84 (13.8)

166.10 Clozapine 112 61 (10.0)

166.10 Olanzapine 107 61 (10.0)

155.72 Acetylcholine 311 80 (13.1)

149.76 Kainate 106 53 (8.7)

137.44 Cocaine 140 55 (9.0)
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