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Abstract

A curious feature of organ and organoid morphogenesis is that in certain cases, spatial oscillations 

in the thickness of the growing “film” are out of phase with the deformation of the slower-growing 

“substrate,” while in other cases, the oscillations are in phase. The former cannot be explained by 

elastic bilayer instability, and contradict the notion that there is a universal mechanism by which 

brains, intestines, teeth, and other organs develop surface wrinkles and folds. Inspired by the 

microstructure of the embryonic cerebellum, we develop a new model of 2D morphogenesis in 

which system-spanning elastic fibers endow the organ with a preferred radius, while a separate 

fiber network resides in the otherwise fluidlike film at the outer edge of the organ and resists 

thickness gradients thereof. The tendency of the film to uniformly thicken or thin is described via a 

“growth potential.” Several features of cerebellum, +blebbistatin organoid, and retinal fovea 

morphogenesis, including out-of-phase behavior and a film thickness amplitude that is comparable 

to the radius amplitude, are readily explained by our simple analytical model, as may be an 

observed scale invariance in the number of folds in the cerebellum. We also study a nonlinear 

variant of the model, propose further biological and bioinspired applications, and address how our 

model is and is not unique to the developing nervous system.

I. INTRODUCTION

An elastic instability, driven by differential growth, is thought to be broadly responsible for 

many of the motifs seen in organ morphogenesis [1]. Indeed, this mechanism has been 

studied in the context of brain folds [2–10], intestinal crypts and villi [11,12], airway mucus 

wrinkles [13,14], tooth ridges [15], and hair-follicle patterns [16,17], among others. 

Wrinkling or buckling provides a means for these organs’ shapes to emerge reliably from 

their respective starting geometries, without appealing to spatial variation in gene expression 

or other biochemical prepatterning of folds. Apart from geometry, all that is required is a 

competition between the bending energy of a uniformly growing film (cortex, mucus, or 
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epithelium) and the energy to stretch and compress a slower-growing substrate (subcortex, 

submucus, or mesenchyme).

Biological tests of wrinkling predictions have largely focused on pattern formation and 

wavelength, the latter scaling with film thickness and power 1/3, 1/4, or 1/6 of the stiffness 

contrast, depending on the substrate model [18]. (Stiffness contrast is defined as Young’s 

modulus of the film divided by that of the substrate.) The wavelength test is typically not a 

conclusive test for two reasons. First, measuring the stiffness contrast in vivo, at the 

appropriate developmental period, and on the timescale relevant to morphogenesis, is 

technically challenging. To our knowledge it has not been done, and the best available data 

come from ex vivo measurements on freshly harvested embryonic organs [12,19]. Second, 

the weak dependence of wavelength on stiffness contrast exacerbates the uncertainty of the 

latter: a large range of stiffness contrasts might be said to “agree” with an observed 

wavelength. Considering these difficulties, it is surprising that other wave properties 

predicted by wrinkling theory have not been given more attention. In particular, the phase 

and amplitude behaviors associated with elastic wrinkling are qualitatively distinct and 

constitute a stringent pass-or-fail test with regard to experimental biology observations. Let 

us see how this works.

In simple wrinkling analyses, e.g., Euler buckling of a film adhered to a bed of springs 

which yields the power 1/4 mentioned earlier, the film thickness is typically assumed to be 

spatially uniform. In reality, the film thickness is modulated by the substrate deformation. A 

crude consideration of the forces acting on the quasistatic interface indicates the film 

thickness oscillations should be in phase with the substrate deformation. That is, thick spots 

in the film (regions of the film under internal tension) should be matched up with thick spots 

in the substrate (regions of the substrate under internal tension), and thin spots with thin 

spots. Finite element simulations confirm the essential correctness of this argument for 

wrinkling in planar geometry, and also circular geometry, provided the film is thin compared 

to the substrate radius and the stiffness contrast is not too large (see Fig. 1). In general, 

however, simulations reveal two film thickness minima per wrinkle: one coincides with the 

wrinkle valley, and the other coincides with the wrinkle crest, as can be seen in the lower 

panels of Fig. 1. The latter has small depth and width compared to the former (i.e., the 

thickness profile is overall in phase) except when the modulus ratio is large and/or the film 

thickness is a significant fraction of the substrate radius. Generically, the amplitude of 

thickness oscillations is much smaller than the wrinkling amplitude. The large thickness 

limit that one might expect to yield comparable amplitudes tends not to undergo wrinkling, 

but rather a global buckling mode [20]. Full details of these simulations, as well as 

additional examples (one of which shows a wrinkling + global buckling mixed mode), are 

given in the Appendix.

The simple quasistatics argument for in-phase behavior straightforwardly extends to growth 

and elastic-modulus profiles (as a function of radius) that are more complicated than a 

simple bilayer profile, including even the possibility of nonmonotonicity. First notice that 

any smooth, continuous growth and/or modulus profile can be represented by many discrete 

layers. Specializing to those layers having thicknesses that are small compared to their radii, 

we observe that any two adjacent such elastic layers must exert equal and opposite normal 
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forces at every point along their shared interface. As before, normal tension and normal 

compression correspond to thicker than average, and thinner than average, respectively, 

assuming initial axisymmetry. Thus, where any one layer is thicker than its average 

thickness, all the other layers must be relatively thick, and any arbitrary contiguous grouping 

must be relatively thick. This generalization serves to emphasize that in-phase thickness 

behavior is a generic consequence of differentially growing elastic multilayers (assuming 

near-planar geometry), and is independent of the precise details of the growth and/or 

modulus profiles.

So while elastic instabilities driven by differential growth exhibit a number of interesting 

features, it follows that if a differentially growing biological system were found with 

quasistatic out-of-phase behavior (film thickness maxima coinciding with substrate valleys, 

and thickness minima with hills), elastic wrinkling could potentially be ruled out as the 

mechanism of shape change. Moreover, a thickness amplitude that is not small compared to 

the surface height amplitude would be at odds with elastic wrinkling. And yet it is these very 

“antiwrinkling” behaviors that show up in several motifs in organ morphogenesis: the 

cerebellum, certain brainlike organoids grown in vitro, and the retinal fovea [see Figs. 2(a)–

2(c)]. Note that all three examples are pertinent to nervous-system development. The first 

two of these have been previously considered as elastic wrinkling problems [9,10], as has 

brain folding more generally [2–8]. Fovea formation has not previously been credited to 

elastic instability, as far as we know, but there does appear to be differential growth between 

the constituent layers of the retina in the vicinity of the developing fovea, e.g., Fig. 2 in Ref. 

[21]. In effect, the first two of these biological systems, and tentatively the third about which 

less is known, are counterexamples to the elastic instability paradigm for morphogenesis. 

They call for a new paradigm.

In constructing this new paradigm for shape change in developing organs, we go beyond 

modeling the constituent layers as elastic materials with different elastic constants. If one 

looks at microstructures within the developing nervous system, one typically finds globular 

cells, such as granular cell precursors in the cerebellum or neural precursors in the cerebrum, 

and fiberlike cells, such as radial glial. At some length scale both types of cells, if they are 

interconnected enough, can presumably be modeled as an elastic continuum. But at what 

length scale and degree of interconnectedness is such modeling justified? The microstructure 

of the developing organ hands us a clue as to when such an approximation breaks down and 

so we should look to it in developing this new paradigm. Moreover, it has recently been 

shown that in a model for confluent cell tissue, the introduction of cell division drives the 

tissue from an elastic solid to a fluid [25]. As with any developing mammalian organ, cell 

division is tantamount to the process, so perhaps we must further relax the notion that the 

different components involved are all elastic and begin to consider that at least some of the 

components are fluidlike.

Because the new paradigm is rooted in the micro-structure of a developing organ, we adopt 

the embryonic day 16.5–18.5 mouse cerebellum, with its fast-growing outer cortex (more 

precisely, the external granular layer) and slow-growing inner core, as our prototype system. 

One of us previously documented the out-of-phase, “antiwrinkling” character of this system 

[26], and it is the subject of further investigations parallel to this work [27]. In the two-day 
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window just mentioned, the mouse cerebellum transitions from having a featureless convex 

surface, to developing smooth, sinusoidal radius oscillations, to then forming cusped 

invaginations, termed “anchoring centers.” The anchoring centers delineate smooth outward 

protuberances called lobules [22]. Later in development, some of the first-generation lobules 

subdivide into second-generation lobules [28]. (Human cerebella appear to have several 

generations of subdivisions.) In the following, we will exploit the quasi-2D nature of the 

cerebellum (its rows of parallel folds indicate that most of the biomechanical action is in the 

parasaggital plane), which makes it a simpler system to analyze than the cerebrum with its 

3D folds. We note that earlier work on modeling the cerebral cortex as a smectic liquid 

crystal (as opposed to a purely elastic solid), being pulled on by axonal tension, is a first step 

in the direction of incorporating more of the microstructure into cerebral development [5].

As for additional applications of the model, a recent in vitro experiment demonstrates shape 

change in a human embryonic stem-cell-derived aggregate inserted into a quasi-2D 

microfabricated compartment filled with hydrogel [10]. After several days, elongated 

fiberlike cells are present along the periphery of the aggregate, while globularlike cells 

remain in the interior. The former are representative of a cortex and the latter, an inner core. 

During its second week in development, the surface of the organoid invaginates in a manner 

reminiscent of brain folds. The introduction of blebbistatin, a myosin inhibitor, produces 

qualitatively different shape changes as compared to the untreated case. We will apply our 

prototype model to the +blebbistatin organoid, as opposed to the untreated case, since the 

developing shapes in +blebbistatin organoid more closely resemble the shapes obtained in 

the model. We will discuss the untreated case as a potentially more sophisticated model.

Finally, we consider retinal development as a third possible application of (a variant of) our 

prototype model. The developing retina is encased in a rigid shell, with several distinct 

layers of cells supported by the inner part of the shell, followed by vitreous, a clear gel, 

filling the space between these layers and the lens of the eye [23]. Müller glial fibers span 

some of the layers in the macular region, where the center of the field of vision is focused. A 

depression known as the foveal pit begins to form in this region around human gestational 

week 25, and develops over a timescale comparable to that of brain folding [21].

II. MODEL

Let us model the growing cerebellar cortex as a 2D annuluslike region having outer radius r 
and thickness t, which are scalar functions of an angular coordinate 6. In other words, t is 

defined to be measured in the radial direction (see Fig. 3). This simple parametrization is 

valid only for weak deviations from an annulus. Consider, e.g., that a deep or overhanging 

surface fold could generate multivalued r(θ), as well as lead to a t(θ) that violates one’s 

sensibilities around the usual notion of thickness. Under this restriction, we introduce the 

quasistatic energy functional

E r, t, dt
dθ = ∫ dθ kr r − r0

2 − kt t − t0
2 + β dt

dθ
2

, (1)
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to be minimized subject to a constraint on the area of the nongrowing subcortex, i.e.,

1
2∫ dθ(r − t)2 = A0 = constant . (2)

The variational problem at hand is thus

δ E − μ∫ dθ(r − t)2 = 0, (3)

where μ is a Lagrange multiplier whose value will be determined upon simultaneous 

solution of Eqs. (2) and (3).

In Eq. (1), kr, kt, and β are all positive constants. The first term encodes a preferred radius r0, 

or more generally, a preferred shape r0 (θ). Because of its negative contribution, the second 

term favors thickening (or thinning) of the annulus with respect to a reference thickness t0, 

and for simplicity, we will take t0 to be a constant. Thus, while kr is a modulus, kt can be 

regarded as a “growth potential,” and the corresponding terms compete with one another 

because of the subcortex incompressibility. This competition tends to drive the system away 

from its preferred shape. The third term in Eq. (1) penalizes spatial variations in thickness—

it is not a bending term as its appearance may suggest to some. (A bending term would 

involve a squared second derivative of the film deflection.) In fact, the absence of a cortex 

bending modulus is a key feature of the present model that distinguishes it from elastic 

bilayer models of brain folding. Here, the cortex resembles a mixture of fluid + fibrous 

scaffolding held inside a container. Both container and scaffolding are flexible in bending, 

but the scaffolding resists gradients in the container’s thickness. As for the physical nature of 

this scaffolding in an actual cerebellum, we suggest its main component is the cortex-

spanning Bergmann glia, depicted schematically in Fig. 3. The nongrowing subcortex, in 

contrast, is treated as an elastic solid. Together with radially oriented fibers that span the 

system (radial glia), this is the origin of the preferred radius term in Eq. (1). We suggest that 

radial glia “tether” the surface to the subcortex, using their washerlike pial end feet to 

distribute the load over the flexible surface, while their other ends remain securely anchored 

in the solid subcortex. Implicit in this anchoring mechanism is the subcortex’s finite shear 

modulus, however, the actual shear deformation energy of the subcortex is neglected.

So that we may make progress analytically, let us take the preferred shape to be an ellipse 

having semimajor axis a and (small) eccentricity e, i.e.,

r0(θ) = a 1 − e2

2 sin2θ . (4)

With this choice, decoupling the Euler-Lagrange equations results in an unconventionally 

driven oscillator equation for the thickness

Engstrom et al. Page 5

Phys Rev X. Author manuscript; available in PMC 2019 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



t″(θ) + q2t(θ) = f 0 − f 1sin2θ, (5)

where q2 = (kt/β) {1 + ∊c/(1 – ∊)}, f0 = (kt/β){t0 + ∊ca/(1 – ∊)}, f1 = (kt/β){∊ca/(1–∊)}(e2/2), 

∊ = μ/kr, and c = kr/kt are all constants (within the quasistatic description). In the regions of 

the ∊ – c plane where q is real (see Fig. 4), Eq. (5) has the general solution

t(θ) = Tsin(qθ + ϕ) +
(1 − ϵ)t0 + ϵca

1 − ϵ + ϵc + ϵ
1 − ϵ

krae2

2β
2 − q2sin2θ

2 − q2 2 − 4
, (6)

in terms of which the radius is

r(θ) = 1
1 − ϵ r0(θ) − ϵ

1 − ϵ t(θ) . (7)

Combining Eqs. (2), (6), and (7), we find the thickness amplitude is given by

T = 2(1 − ϵ)
A0
π −

a − t0
1 − ϵ + ϵc

2
1 − a

a − t0
e2

2 + 𝒪 e4 , (8)

and evidently we must impose a lower bound on A0 to ensure this amplitude is real valued:

A0 >
π a − t0

2

(1 − ϵ + ϵc)2 1 − a
a − t0

e2

2 + 𝒪 e4 . (9)

The physical significance of the Lagrange multiplier’s sign is illuminated by a relationship 

between angle-averaged quantities

t − t0 = ϵc r − t , (10)

which is exact to all orders in e. Since physically viable solutions require r – t > 0 for all θ, 

Eq. (10) says that ∊ > 0 corresponds to growth of the cortex while ∊ < 0 corresponds to 

shrinkage (not in a dynamical sense, necessarily, but with respect to the quasistatic value of 

t0). Note 〈r – t〉 > 0 also implies that oscillatory solutions having ∊ > 1 are presumably 

unphysical in the sense a — t0 < 0. Consequently, we will restrict our focus to ∊ < 1.

Apart from its sign, the Lagrange multiplier may be thought of as a pressurelike quantity, or 

a “chemical potential” for changing the core area by a unit amount (the symbol μ was 

deliberately chosen to suggest this analogy). It can also be argued that ∊ should set the 

Engstrom et al. Page 6

Phys Rev X. Author manuscript; available in PMC 2019 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



amplitude T. Consider that as ∊ → 0, the competition between preferred radius and film 

growth disappears, as nothing prevents the film from growing uniformly inward and 

consuming the core. Absent this competition, there is no driving force for film thickness 

oscillations, one might argue. The simplest way to make the model consistent with this 

argument would be to set T ~ ∊, i.e., make the film thickness amplitude linearly go to zero as 

∊ goes to zero (the radius amplitude would go to zero quadratically). This assignment would 

also establish ∊ as the key parameter governing all phase and amplitude aspects of shape 

change. Endowing ∊ with time dependence would therefore be a natural (and minimal) 

starting point for dynamical morphogenesis problems, within the current modeling 

framework. For the remainder of this paper, however, we shall mostly confine ourselves to a 

statics approach, as well as regard T and ∊ as independent fitting parameters. Time 

dependence of the model parameters is further investigated elsewhere [27].

The simplicity of the above-described model belies its novelty, in that several of the 

predicted behaviors are opposite those predicted by differentially growing, elastic bilayer 

models. For example, t and r – t oscillations are always out of phase when ∊ < 1 (compare τ 
and rs oscillations, respectively, in Fig. 1), while t and r oscillations can be either in phase, or 

out of phase, depending upon the position in the ∊ — c plane (see Fig. 4). Likewise, the 

amplitude of t oscillations can be either greater than, or less than, the amplitude of r 
oscillations (for ∊ < 1/2 and ∊ > 1/2, respectively). As another example, notice that as e ∊ → 
0, the wave number q depends only on a ratio of energy scales associated with microscopic 

mechanisms, i.e., kt/β. In contrast, elastic wrinkling predicts that the number of waves 

depends on a ratio of length scales, roughly equivalent to our a/t0, which may or may not be 

scale invariant.

In Figs. 2(d) and 2(e), we compare plots of r and r – t with images of an embryonic mouse 

cerebellum and a brainlike organoid treated with blebbistatin. (The region in between the 

two plotted curves, representing the cortex, is filled with dark purple and dark green, 

respectively.) Some comments specific to the organoid application are now in order. As 

previously noted, the inner core of this structure consists of globularlike cells, while the 

periphery consists of fibrous cells as well as motile cells that divide and move along the 

fibrous cells in such a way that the periphery grows faster than the core. The fibrous cells 

and motile cells are reminiscent of Bergmann glia and granular precursor cells in the 

cerebellum, respectively. There are assumed to be radial glial cells or some other means of 

transmitting radial tension throughout the organoid, such as that discussed in Ref. [27]. From 

this description, one could argue that the model at hand may be applicable to the untreated 

organoid. However, the model does not take into account the active contractility of the core, 

due to the myosin that is present there. This activity is likely to be mechanosensitive such 

that assumptions beyond those we have already made would be required. While this is an 

interesting avenue to pursue, we will restrict our application of the model to the blebbistatin 

treated organoid with a less active core.

Clearly, two of the fit parameters in Figs. 2(d) and 2(e) are associated with an elliptical 

preferred shape (e and ϕ). That leaves five dimensionless parameters for a circular preferred 

shape: ∊, c, kt/β, T/a, and t0/a. [It is convenient to regard T/a, rather than A0/a, as a fitting 
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parameter, as one may then guarantee Eq. (9) is satisfied.] The first of these five is 

constrained by an experimental image from which one can measure (or at least estimate) the 

ratio of the t and r amplitudes. One can also measure T and 〈t〉 in units of 〈r〉, as well as 

count the number of invaginations q. In general, then, there are four independent constraints 

on these five model parameters. Suppose, however, the first measurement yields ∊ ≪ 1, such 

as appears to be the case at the onset of shape change (around embryonic day 16.5 in mice 

[22]). In this limit, neither the leading-order AC terms nor leading-order DC offsets involve 

c, because it only appears in Eqs. (6) and (7) as a product with ∊. Absent c, the remaining 

model parameters are all directly measurable: kt/β ≈ q2, T/a ≈ T/〈r〉, t0/a ≈ 〈t〉/〈r〉.

The scaling behavior q kt /β can be understood in a simple way, as follows. As ∊ → 0, the 

mechanical constraints on the outer surface of the fluid layer become relatively severe 

compared to those on the inner surface, because either the system-spanning radial springs 

are being turned into rigid rods (kr → ∞), or the core area constraint is being removed (μ 
→ 0). Thus, the degrees of freedom representing different configurations of the outer 

surface are effectively frozen out of the inner surface problem. Only two terms now 

contribute significantly to the energy: the growth term, which scales as Egrow ~ −ktT2, and 

the gradient term, which scales as Egrad ~ βT2r2/λ2. Here, λ is the wavelength of film 

thickness oscillations. Comparing these two energy scales yields λ r β/kt. Again, this 

scaling of the wavelength with system size is in contrast to elastic bilayer wrinkling, where 

the wavelength scales with film thickness. Higher-order growth instabilities lead to different 

scaling behavior just as different substrate models generate different scaling behavior in 

elastic bilayer wrinkling [18]. A lower order, hence linear, growth instability leads to 

unphysical results in the small e limit, which is why we did not implement it here.

III. CONCAVE VARIANT

Suppose, instead of the convex bilayer depicted in Fig. 3, the system of interest is a concave 

bilayer contained within a rigid circular boundary having radius R. The substrate with 

conserved area A0 is in contact with the boundary wall, and the growing (or shrinking) film 

is interior to that. Both layers are annular in shape, with thicknesses r – t and t, respectively. 

Such a geometry has been used in prior work on morphogenesis of the gut [11,12], airways 

[13,14], and other tubular structures [29]. The sole difference in our formulation of this 

variant is that the variational principle involves an extra term with respect to the convex 

problem: δ{E – μ ∫ dθ[(r – t)2 – 2R(r – t)]} = 0. One finds, in this case, that R appears only 

in the DC offset terms of the solution

t(θ) = Tsin(qθ + ϕ) +
(1 − ϵ)t0 + ϵc(a − R)

1 − ϵ + ϵc + ϵ
1 − ϵ

krae2

2β
2 − q2sin2θ

2 − q2 2 − 4
, (11)

and
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r(θ) = 1
1 − ϵ r0(θ) − ϵ

1 − ϵ [R + t(θ)] . (12)

Thus, the phase diagram is the same as before, save for which regions correspond to growth 

and shrinkage. This latter difference is because

t − t0
r − t = ϵc

r0 − t0 − R
r0 − t0 + ϵ(c − 1)R , (13)

which reduces to Eq. (10) only on the phase boundary c = 1 – ∊−1. Note also that as R → 
∞, growth and shrinkage correspond to c < 1 and c > 1, respectively. The thickness 

amplitude is given by

T = 2(1 − ϵ) −
A0
π + ρ(2R − ρ) − a(R − ρ)

1 − ϵ + ϵc
e2

2 + 𝒪 e4 , (14)

where ρ = [a – t0 + ∊(c– 1)R]/(1 – ∊ + ∊c), which implies an upper bound on A0.

In Fig. 2(f), we plot a solution of this concave variant next to the image of the retinal fovea, 

as its (presumably differentially growing) layered structure is enclosed by a nongrowing 

rigid shell on one side and vitreous gel on the other, while fibrous cells effectively span its 

“cortex.” The parameters used (see the Fig. 2 caption) are consistent with 〈t – t0〉 > 0, i.e., 

growth of the ganglion cell layer, despite the fact that ∊ is negative, which is a qualitative 

difference from the convex model.

One may point out that our modeling of foveal pit morphogenesis is unrealistic because 

many pits are generated instead of one or two. But just as localized growth leads to localized 

buckling in elastic bilayer models, we can potentially resolve the discrepancy at hand by 

introducing a spatially inhomogeneous growth potential kt = kt(θ). Two analytic cases are 

deserving of mention. For the first case, suppose kt(θ) is a piecewise periodic function, 

having a constant value in an arbitrarily small interval [θ1, θ2] and a different constant value 

everywhere else. In the variational problem, we are free to take the bounds of integration as 

θ1 and θ2 (because there are no long-range interactions in the circumferential direction) and 

solve two independent problems: one for each growth potential region. Both solutions are, of 

course, given by Eqs. (11) and (12), and it remains to apply matching boundary conditions. 

Unfortunately, taking kt → 0 regionally leads to unphysical behavior in the analytic limits 

of the DC offsets (the same is true of the convex variant), so one must settle for a small but 

nonzero value of kt. Alternatively, one might be interested in a slowly varying growth 

potential, and in this case, we expect a local density approximation to be valid. For small ∊, 

this would read q(θ) ≈ kt(θ)/β. These possibilities for localized buckling also apply to the 

convex variant.

Engstrom et al. Page 9

Phys Rev X. Author manuscript; available in PMC 2019 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Finally, we suggest that it would also be interesting to apply this concave variant to the gut, 

e.g., if the out-ofphase motif were discovered at the appropriate time of development.

IV. NORMAL THICKNESS VARIANT

When there are strong deviations from circularity, the “radial thickness” t is no longer a 

good measure of film thickness. A more natural measure is the “normal thick-ness” 

τ = t(r ⋅ n), where r = cos(θ)x + sin(θ)y is the unit where N and M are shorthand for the 

components of r  in the direction of the surface normal and surface tangent, respectively, and 

M/N = (tan ϕ + cot θ)/(1 – tan ϕ cot θ). After simultaneously solving Eqs. (18) and (19), the 

radial thickness may be recovered per its definition, t = τ/N.

Though complicated and nonlinear, Eqs. (18) and (19) are readily converted into a system of 

first-order difference equations, and solved numerically. We use multidimensional Newton-

Raphson iteration on a periodic grid, with Krylov approximation of the Jacobian. The 

analytic solution of the corresponding linear problem provides a convenient initial guess for 

relaxation. While these numerical solutions show some sensitivity to the number of grid 

points used, we find that 10 000 grid points gives rapid convergence and reproduces the 

linear model’s behavior at small e, i.e., where the radial thickness and normal thickness 

definitions coincide. Furthermore, at radial vector and n = − sin(ϕ)x + cos(ϕ)y is the unit 

surface normal vector, with

ϕ θ, r, r′ = tan−1 rcosθ + r′sinθ
r′cosθ − rsinθ . (15)

We now modify the variational problem [Eqs. (1) and (3))], by replacing t with τ in the last 

two terms of the energy functional

E* r, τ, τ′ = ∫ dθ kr r − r0
2 − kt τ − t0

2 + β dτ
dθ

2
, (16)

but leaving the variational principle otherwise unaltered,

δ E* − μ∫ dθ r − τ
r ⋅ n

2
= 0. (17)

Choosing r and τ as the independent variables, as we have done here, reduces the order of 

the Euler-Lagrange (EL) equations. Had we chosen instead to keep r and t as the 

independent variables, a higher derivative r″ would be introduced into the energy functional 

by the (dτ/dθ)2 term, and fourth-order EL equations would result (see, e.g., Ref. [30]). The 

reduced-order EL equations are given by
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τ′′ = −
ϵkr
Nβ

τ
N − r −

kt
β τ − t0 , (18)

And

r′′ = r′ 2

r + r2 + r′ 2

r

N
τ r2 + r′ 2 1

ϵ

r0
r − 1 − 1

r
τ
N − r + M

N
2τ′
N − r′ − τ′r

τ

τ
N 1 + 3M2

N2 − r 1 + 2M2

N2 + 2Mr′
Nr

τ
N − r

, (19)

modest values of e and c, the observed deviation of the shapes from those of the linear 

model can be rationalized as follows. A sharp bend in a film having uniform normal 

thickness incurs no penalty from a (dτ/dθ)2 term, but it does incur a penalty from a (dt/dθ)2 

term (although not in the same sense as that for bending an elastic film). Therefore, we 

might expect the normal thickness variant to exploit the extra degrees of freedom afforded 

by these low-energy, sharp bends in negotiating the competition between growth or 

shrinkage and the preferred radius. Figure 5 shows these sharp bends occur preferentially 

where the film is thin. One interesting consequence of this behavior is that additional 

minima in the substrate radius can be introduced, e.g., in the right panel of Fig. 5. In 

contrast, where the film is thick, its shape is not significantly distorted from that in the 

corresponding linear model.

V. DISCUSSION

We have demonstrated that the out-of-phase behavior observed in certain morphogenesis 

contexts is not only at odds with an elastic bilayer wrinkling mechanism, but indicative that 

microstructural details affect morphogenesis in heretofore unappreciated ways. Simply 

treating the problem as one of differential growth between two homogeneous elastic 

materials appears insufficient to capture the unique shapes of the developing cerebellum, 

+blebbistatin organoid, and the retinal fovea. We have constructed a minimal model that 

captures these shapes (at least qualitatively), and in our model radially oriented fibers play a 

key role.

It is reassuring, then, to notice that all three of the above-mentioned biological systems 

contain one or more types of radial fibers. One is, therefore, led to speculate whether our 

model is solely applicable to the central nervous system, where requisite fibers such as glia 

are present during development of all regions, and certain of whose organs exhibit the 

telltale out-of-phase behavior. At the time of writing, we are not aware of definitive out-of-

phase behavior in other morphogenesis contexts, but we are actively searching. The 

developing cerebrum is a natural place to look, but interestingly, in adult humans, the 

cerebral cortex thickness appears to be in phase with its surface height (see Fig. 1 in the 

Supplemental Material of Ref. [31]). Another place to look is where there is smooth muscle. 

If the smooth muscle tissue is very thin and minimally connected, presumably the fibrous 
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nature of the cells making up the tissue call for a microscale mechanical description like the 

one we have developed here. A novel modeling description for such a system could lead to 

additional novel shape-changing mechanisms for developing organs.

Application of the model to other developing organs may also potentially call for an 

extension into the third dimension. One can then define a spherical inner core and a 

spherical outer shell of proliferating cells as well as fibrous cells radially extending 

themselves throughout the system. The developing undulations along the perimeter of the 

shape in two dimensions now becomes developing undulations over a surface and one can 

ask whether or not the undulations on the outer surface are in phase or out of phase with the 

inner surface, depending on the parameters. Since the key new aspects of the model are all 

contained within the two-dimensional version, we focus on its results for now.

The possibility of constructing a synthetic device that embodies the Hamiltonian given by 

Eqs. (1) and (2) is an intriguing one. Such a device would consist of (1) an incompressible 

core, (2) a growing film that has the curious combination of flexibility in bending and 

stiffness against thickness gradients, and (3) system-spanning, radially oriented, elastic 

fibers. (See the discussion in Ref. [27] for an alternative, potentially simpler way to realize 

the ~kr term.) The film component would likely have to be some sort of fiber-matrix 

composite material, as it also appears to be in the cerebellum. The nontrivial mechanical 

properties of this film component could perhaps be reverse engineered by trying different 

composite formulations and watching for out-of-phase behavior.

Potential applications of the model outside of molecular and tissue-scale biology may also 

be worth investigating. Morphogenesis of large cities, e.g., shares several of the key 

ingredients of our model (at least in a qualitative sense). Cities are 2D structures, and there is 

in certain cases an “incompressible” urban core, surrounded by a growing suburban belt. The 

preferred radius concept is also not unreasonable: people relocating to or within the city 

might be expected to strike a balance between commuting time to the city center and 

housing prices, which tend to fall off with distance from the center. Chengdu, the capital of 

China’s Sichuan province, is one example of a large and rapidly growing city that is free of 

significant geological constraints on its shape changes (as evidenced by its nearly circular 

shape). It would be interesting to try and interpret Chengdu’s shape changes within the past 

few decades [32] from within a differential growth framework.

Model variants beyond the two described here are, of course, possible, as well as numerous. 

Already mentioned was the notion of putting spatial dependence into one or more 

parameters. One could also, e.g., introduce a curvature-dependent growth potential, kt = kt(r
″), which might be expected to control the degree of cuspiness of the invaginations. An 

anharmonic correction to the preferred radius term, or a tight-packing constraint, might 

generate self-contacting folds by squashing or squeezing the lobules (i.e., wrinkle crests) 

together. Neither the linear model nor the normal thickness variant that we have investigated 

here appear capable of producing cusped invaginations or self-contacting folds, such as 

those that occur in mouse cerebellum development after about 18 embryonic days [22]. 

Extending the model beyond just the onset of shape changes, to the large growth and 
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deformation regimes, will open up the possibility of new kinds of tests, including whether or 

not it can capture subdivision of lobules.

The preferred radius r0 naturally suggests a mechanism for subdivisions, and as previously 

mentioned, subdivisions occur in the mammalian cerebellum during later development. Time 

dependence could be introduced into our quasistatic model or one of its variants in such a 

way that lobules are dynamically growing in area. When a lobule’s area reaches a value r0
2, 

the lobule may in fact constitute a subsystem that resembles the full system at an earlier 

point in time. Shape change of the subsystem would be akin to a folding hierarchy, and one 

might imagine this going on for several generations. An implementation in which 

subdivisions emerge spontaneously, as opposed to being put in “by hand,” is a very 

interesting direction for future work.

Finally, we point out that an apparent scale invariance in the wave number q, found here in 

the limit ∊ → 0, is reminiscent of “Larsell’s criterion for the vermis” [28]. Adult 

mammalian cerebella span 2 orders of magnitude in size, ranging from ~1 mm in mouse to 

~10 cm in humans, and Larsell observed and argued that these can all be considered as 

having an underlying ten fold motif. In his book, Larsell notes that other researchers before 

him including Bradley, Bolk, and Riley conducted comparative anatomy studies of the 

cerebellum (an embryological study spanning six species in the case of Bradley) and drew 

similar conclusions about its scale invariance [33]. While Larsell’s criterion is not 

universally accepted by biologists, the fact remains that the cerebellum of all mammal 

species is highly folded, whereas the cerebrum is unfolded (i.e., lissencephalic) in the 

smallest mammals, thus there is at least a hint of scale invariance in cerebellar 

morphogenesis, which our model may capture.

VI. BIOLOGICAL PERSPECTIVE

A biologist might naturally ask, if buckling is a mechanical phenomenon that requires no 

genetic prepatterning, then why does the specific buckling mechanism (with versus without 
bending) matter for biological contexts? What can I infer about the biology of a tissue from 

the phase and amplitude behavior of its wrinkles?

In our view, these kinds of questions target the notion of emergent behavior in bulk material 

systems. To use a classic example, some bulk materials superconduct at low temperatures 

while others do not—these differences in emergent behavior can teach us something about 

the basic atomic building blocks of the materials and the way those blocks are arranged via, 

e.g., the electron-phonon inter-action. This is “backwards” from the reductionist view-point, 

that would have us start from the basic atomic building blocks to try to understand 

superconductivity.

Likewise, in organ morphogenesis, the macroscopic phase, amplitude, and wavelength 

behaviors are associated with the emergent phenomenon of buckling instability, and they can 

teach us something about the microbiological building blocks. In-phase behavior (and other 

behavior consistent with the rightmost column of Table I) teaches us the building blocks are 

effectively homogeneous, elastic materials. In other words, if there are multiple cell types 
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present, they should be mixed together on a fine length scale in every direction. 

Furthermore, there must be little to no stress-relieving rearrangements and neighbor 

exchanges of cells (i.e., fluidlike behavior) on the approximately 12-h timescale of shape 

changes; all significant stress reduction happens over the much larger length scale of the 

wrinkles. Out-of-phase behavior teaches us that certain types of fiberlike cells are present 

and span relatively long length scales, and further suggests what will happen when we add 

or remove these fibers genetically (see the consequences of tuning kr and β summarized in 

Table I). It also provides some clues as to what is happening to the fibers as the organ grows 

over time (see our experimental companion paper, Ref. [27], which further tests both models 

against mouse cerebellum development, including predictions beyond those listed in Table 

I). Finally, and perhaps most importantly, out-of-phase behavior is indicative of fluidlike 

rearrangements and neighbor exchanges of at least one cell type in the film component, 

presumably as a result of both cell divisions and cell motility. Such lessons from emergence 

may ultimately help us understand and correct what is going wrong, microbiologically, in 

brain-folding-related diseases such as lissencephaly and polymicrogyria, and in certain 

malformations of the retina such as the bifoveality shown in Fig. 2(c).
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APPENDIX:: FIN ITE ELEM ENT SIMULATIONS

We perform finite element (FE) simulations for wrinkling in planar and circular bilayered 

structures (i.e., a thin film bonded on a substrate) to investigate the thickness variation in the 

buckled film. The bilayer structures are assumed to be under 2D plane strain deformation. 

The elastic properties of both film and substrate are described by the incompressible neo-

Hookean model, whose strain energy can be expressed as

U = 1
2G I1 − 3 , (a1)

where G is the shear modulus and l1 represents the first invariant of the right Cauchy-Green 

deformation tensor. All of the FE simulations are performed with ABAQUS standard solver. 

The bilayered structures are discretized with CPE6MH element with the smallest mesh size 

less than 10% of the film thickness. To simulate the buckling behaviors due to differential 

growth in the film and substrate, an isotropic growth deformation is applied to the film 

through the “expansion” function in ABAQUS. A random perturbation (white Gaussian noise 

with mean magnitude equal to 0.1% of the initial film thickness) is applied to the nodal 

positions at the top surface to trigger the wrinkle instability. The film thickness in the 

wrinkled state is approximated as the shortest distance between the FE nodes at the inner 
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and outer surface of the film, as shown in Fig. 6. We observe some noise in these thickness 

data, which can be attributed to the finite size of the FE mesh. However, this noise is a 

second-order perturbation and will not change the overall thickness variation of the film. The 

film thickness variation is compared to the substrate deformation in Fig. 7.
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FIG. 1. 
Elastic bilayer wrinkling generates film thickness oscillations that are overall in phase with 

the substrate deformation when the film is thin. Top row: maximum in-plane principal stress 

(normalized to half of the substrate’s shear modulus) for two different circular wrinkling 

problems. rs
0/τ0 is the initial substrate radius in units of the initial film thickness, and Ef /Es 

is the stiffness contrast. Insets plot the sign of the stress-tensor component srr, with yellow 

indicating positive values (tension) and purple indicating negative values (compression). 

Bottom row: substrate radius (blue) and film thickness (red), normalized to their average 

values, for the same two wrinkling problems. Note the different scales on left and right axes.
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FIG. 2. 
Certain morphogenesis problems exhibit out-of-phase thickness oscillations, at odds with an 

elastic wrinkling mechanism. (a) Midsaggital section of a mouse cerebellum at 17.5 

embryonic days, reprinted from Fig. 5 in Ref. [22] with permission from Springer Nature. 

Arrows are from the original image and mark positions of developing invaginations. (b) 

+Blebbistatin organoid, reprinted from Fig. 4(a) in Ref. [10] with permission from Springer 

Nature. (c) Cross-section of the foveal pit in a human retina, reprinted from Fig. 13(b) in 

Ref. [23] with permission from Webvision and the author. The green and blue layers are the 

ganglion cell and photoreceptor layers, respectively. The inset shows a rare double fovea in a 

human retina (double foveas are typical in some bird species), reprinted from Ref. [24] with 

permission from the American Medical Association. (d) Polar plot of r(θ) and r(θ) – t(θ) 

from Eqs. (6) and (7) with ∊ = 0.6, c = T/a = t0/a = 0.1, kt/β = 31.3, ϕ = π, e = 0.5. (e) Same 

as (d) but with ∊ = 0.9, c = 0.067, T/a = 0.05, t0/a = 0.7, kt/β = 15.6, ϕ = e = 0. (f) Polar plot 
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of r(θ) and r(θ) – t(θ) from Eqs. (11) and (12) with ∊ = −0.2, c =0.3, T/a = t0/a = 1, R/a = 20, 

kt/β = 1770, ϕ = e = 0.
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FIG. 3. 
Idealized, parasaggital section of an embryonic cerebellum. The cortex is modeled as a 

growing fluidlike “film.” Bergmann glia fibers span this film, while radial glia fibers span 

the structure. Periodic boundary conditions are likely not relevant to a real cerebellum, 

whose cortex is discontinuous owing to a ventricular zone and attachment to the brain stem, 

but they will be adopted here for simplicity.
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FIG. 4. 
Phase diagram of behavioral regimes, where ∈ = μ/kr and c = kr/kt. Phase boundaries are 

represented by solid black lines; those that are curved obey c = 1 – ∊−1. Blue and orange 

shaded regions may pertain to morphogenesis. Dark blue dots labeled C, O, and F indicate 

parameter values used to make the cerebellum, organoid, and fovea plots, respectively, in 

Fig. 2. The red dashed line (given by c = 0.06/∊) indicates one possible trajectory of 

cerebellar and organoid morphogenesis, associated with kr decreasing over time.
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FIG. 5. 
Numerical solutions of the nonlinear, normal thickness variant for selected cases of film 

growth (left panel) and film shrinkage (right panel). Dashed lines show r – t and solid lines 

show r; colors indicate iterations. The zeroth iteration, shown in blue, is a solution of the 

linear model [Eqs. (6) and (7)] with parameters as follows: ∊ = 0.6 (left panel) −0.6 (right 

panel), c = T/a = 0.1, t0/a = 0.2, q = 6, ϕ = e = 0.
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FIG. 6. 
Detail of normal thickness (τ) measurement. Color represents the von Mises stress.
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FIG. 7. 
Additional bilayer wrinkling simulations, similar to those shown in Fig. 1, but with different 

geometries and modulus ratios. Top row: maximum in-plane principal stress normalized to 

half of the substrate’s shear modulus. Insets show the sign of the stress-tensor component in 

the direction of the surface normal, with yellow indicating positive values (tension) and 

purple indicating negative values (compression). Bottom row: substrate height (blue) and 

film thickness (red), normalized to their average values. The rightmost case with a relatively 

thick film shows a rotational symmetry breaking that may be indicative of global buckling.
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