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Abstract

Photoreceptors are polarized neurons, with very specific subcellular compartmentalization and 

unique requirements for protein expression and trafficking. Each photoreceptor contains an outer 

segment, the site of photon capture that initiates vision, an inner segment that houses the 

biosynthetic machinery and a synaptic terminal for signal transmission to downstream neurons. 

Outer segments and inner segments are connected by a connecting cilium (CC), the equivalent of a 

transition zone (TZ) of primary cilia. The connecting cilium is part of the basal body/axoneme 

backbone that stabilizes the outer segment. This report will update the reader on late developments 

in photoreceptor ciliogenesis and transition zone formation, specifically in mouse photoreceptors, 

focusing on early events in photoreceptor ciliogenesis. The connecting cilium, an elongated and 

narrow structure through which all outer segment proteins and membrane components must traffic, 

functions as a gate that controls access to the outer segment. Here we will review genes and their 

protein products essential for basal body maturation and for CC/TZ genesis, sorted by phenotype. 

Emphasis is given to naturally occurring mouse mutants and gene knockouts that interfere with 

CC/TZ formation and ciliogenesis.

Keywords

Centrosome; mother and daughter centrioles; distal and subdistal appendages; transition zone; 
pericentriolar matrix; microtubules and microtubule organization center; photoreceptors; knockout 
mouse models

1. Introduction

A cilium serves as a cellular ‘antenna’ to sample a broad range of extracellular signals in 

olfaction, vision, taste and mechanosensation (Satir and Christensen, 2007; Scholey, 2013; 

Singla and Reiter, 2006). Primary cilia are transductive, axoneme-stabilized protrusions that 

elongate from the basal body of most vertebrate cell types. Primary cilia of kidney epithelia 

are mechanosensitive, detecting fluid flow through the tubule (Praetorius and Spring, 2003). 

Cilia of olfactory epithelia distinguish a large number of odorants (Kaupp, 2010), and 
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photoreceptors are able to detect light of different wavelengths and initiate vision, with 

single photon sensitivity (Baylor et al., 1979).

The light-sensitive rod and cone photoreceptor outer segments are regarded as modified 

primary cilia (Sorokin, 1968; Satir et al., 2010; Goetz and Anderson, 2010) containing 

massive amounts of the light sensors, rhodopsin and cone pigments, distributed over 

hundreds of disc membranes. Exquisitely polarized, each photoreceptor consists of an outer 

segment (OS), an inner segment (IS), a cell body containing the nucleus and a synaptic 

terminal (Fig. 1A). Inner and outer segments are connected by a narrow filament, classically 

termed connecting cilium (CC), approximately equivalent to the transition zone (TZ) of 

primary cilia (Roehlich, 1975). Rod and cone outer segments are supported by a 

microtubule-based axoneme backbone in which the axoneme emanates from the basal body/

transition zone complex (Fig. 1B). In mouse, the axoneme consists proximally of doublet 

and distally mostly of singlet microtubules that extend far into the outer segment. The CC is 

located at the axoneme base, distal to the basal body, stabilized by doublet microtubules. 

The basal body is a barrel-shaped structure composed of microtubule triplets and decorated 

with distal and subdistal appendages. Major differences of photoreceptor sensory cilia 

compared to primary cilia are the very large outer segment packed with disc membranes 

(Fig. 1C), an extended TZ to support the outer segment, its function as a light sensor, with 

phagocytic renewal of the entire structure in mouse every ten days. Several comprehensive 

reviews on photoreceptor outer segment architecture, structural organization, disc 

morphogenesis and protein trafficking have been published within the last ten years (Wensel 

et al., 2016; Goldberg et al., 2016; Hoon et al., 2014; Pearring et al., 2013; Sung and 

Chuang, 2010; Nickell et al., 2007; Molday and Moritz, 2015; May-Simera et al., 2017) and 

the reader is invited to consult these excellent reviews for details.

This report addresses early events in photoreceptor ciliogenesis, specifically, docking of 

basal bodies to the inner segment cell membrane and axoneme/CC genesis. The CC is an 

essential structure serving as a gate that controls access to the OS. We will provide a short 

introduction on centrosome genesis, basal body architecture, its role as a microtubule 

organizing center (MTOC), and discuss details of axoneme/CC formation. Further, we will 

review genes and their protein products involved in formation of the centrosome, basal body 

and CC. The gene collection is necessarily incomplete, as the numerous genes associated 

with the photosensory cilium and basal body axoneme backbone have been discovered in 

recent years. Emphasis is given to naturally occurring mouse mutants and gene knockouts 

that interfere with axoneme/CC genesis and early outer segment formation, thereby 

providing clues as to function.

2. Mother centriole, ciliogenesis and ciliopathies.

2.1 The centrosome.

Much of our current knowledge regarding centrosomes, the basal body and ciliogenesis 

derives from observations of ciliated cells in-vitro, e.g., immortalized retinal pigment 

epithelial (hTert-RPE cells), Inner Medullar Collecting Duct (IMCD3) or HEK293 cells. 

Many interacting proteins of the centrosome-primary cilium interface have been identified 

by affinity proteomics coupled with mass spectroscopy analysis (Boldt et al., 2016), by 

Baehr et al. Page 2

Prog Retin Eye Res. Author manuscript; available in PMC 2019 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



proximity-dependent biotinylation (Gupta et al., 2015) or by siRNA-based knockdown 

screens (Wheway et al., 2015). Primary cilia developed by these cells are small and serve 

very different purposes. By contrast, each mouse photoreceptor has an extended TZ, i.e., a 

connecting cilium that can be partitioned into proximal and distal regions (Dharmat et al., 

2018). The CC stabilizes a very large primary cilium, the outer segment, dedicated entirely 

to light reception with generation and amplification (phototransduction) of an electrical 

impulse to be sent to its second-order neurons (Fu and Yau, 2007). The very different 

content of the photosensitive cilium predicts the requirement of modified protein sets for 

intraflagellar transport (IFT) and maintenance, while the basic principles of docking, 

axoneme extension and CC formation have been conserved.

The life of a basal body starts with centrosome formation during the cell cycle of a 

proliferating cell. The centrosome consists of mother and daughter centrioles; both are 

highly conserved, microtubule-based, barrel-shaped structures. The mother centriole is also 

called the microtubule organization center (MTOC) (Satir et al., 2008). The centrosome is 

not membrane-associated, its structure and assembly relies entirely on interactions of several 

hundred proteins. The mother centriole is surrounded by the pericentriolar matrix (PCM), 

thought to be an amorphous structure, but superresolution microscopy discovered distinct 

radial layers (Nigg and Holland, 2018) where PCM proteins surround the MC wall, and 

proteins involved in microtubule nucleation are in the outer layers (Luders, 2012). At the 

PCM periphery exist structures, called centriolar satellites, consisting of multiple proteins 

thought to be important in centrosome maintenance and ciliogenesis (Tollenaere et al., 2015; 

Hori and Toda, 2017; Kubo et al., 1999). At least five major PCM components (rootletin; 

PCM1; CEP215; MACF1; centriolin; pericentrin) have been identified, all of which contain 

multiple coiled-coil domains for protein interaction. Rootletin, the main component of the 

striated rootlet (Yang et al., 2006; Yang et al., 2002), is responsible for centrosome cohesion 

together with the centriolar proteins, CEP215 and CEP68 (Graser et al., 2007b). CEP215 

and pericentrin are main components of the PCM and participate in microtubule nucleation 

and anchoring. MACF1, a member of the spectraplakin gene family, is a gigantic protein 

interacting with pericentrin (May-Simera et al., 2016) (see below).

Formation and maturation of both mother and daughter centrioles follow a templated 

pathway in which an “old” centriole serves as template for formation of a new one (Avidor-

Reiss and Gopalakrishnan, 2013; Werner et al., 2017). Asymmetric inheritance of the 

centrosome determines if a daughter centriole stays in stem cell status (Wang et al., 2009b) 

and directs earlier primary ciliogenesis after cell division due to its association with 

remaining ciliary membrane endocytosed before entering mitosis (Paridaen et al., 2013). 

During S-phase, a cartwheel with nine-fold symmetry is generated from both the mother 

(old mother) and daughter (new mother) centriole that elongates to form a barrel in which 

the nine triplet MTs form the wall (procentriole assembly). In G2 and S-phases, the 

procentriole elongates and the new mother centriole separates from the “old” mother and 

acquires distal and subdistal appendages. The two centrosomes then recruit pericentriolar 

matrix components and undergo mitosis. Several key proteins are involved in centrosome 

biogenesis (Nigg and Holland, 2018; Banterle and Gonczy, 2017). A module consisting 

mainly of three proteins (polo like kinase 4 or PLK4, a centriolar assembly protein encoded 

by the STIL gene, and a spindle assembly-related protein encoded by the SAS6 gene) 
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appears to be the core component initiating procentriole assembly (Arquint and Nigg, 2016). 

Self-association of nine dimers of SAS6 provides the scaffold of the nine-fold symmetry of 

the cartwheel. SAS6, together with CEP135, CENPJ and γ-tubulin, form the seed of 

centriole growth. Microtubules nucleate from the seed followed by centriole elongation and 

maturation, which involves key proteins such as CP110 and CEP97 located at centriolar 

distal ends (Fig. 2). For more detail on centrosome genesis and maturation the reader is 

referred to several excellent reviews (Avidor-Reiss and Gopalakrishnan, 2013; Bettencourt-

Dias et al., 2011; Bettencourt-Dias and Carvalho-Santos, 2008; Barker et al., 2014; Hoyer-

Fender, 2010; Werner et al., 2017).

2.2 Basal Body.

When a cell exits the cell cycle and becomes quiescent, its mother centriole docks to the cell 

membrane to initiate TZ and primary cilium formation (Fig. 3). The basal body remains 

associated with the daughter centriole through filamentous bundles (Garcia, III and Reiter, 

2016). Only the mother centriole contains distal and subdistal appendages and is capable of 

ciliogenesis in G1/G0 phase. Distal appendages contain multiple polypeptides, at least five 

of which have been identified (CEP89; CEP164; CEP83; ODF2 and SCLT1) (Tanos et al., 

2013; Yang et al., 2018). These proteins contain multiple coiled-coil domains. In fact, 

CEP89 consists entirely of coiled–coil domains. Proteins identified to be present in subdistal 

appendages are CEP170 (FAM68a), NIN (ninein) and TUBE1 (ε-tubulin) (see below). 

Ultrastructural cross-sectional analysis reveals a symmetrical array of nine microtubules in a 

triplet arrangement (abbreviated as 9(3)+0 where 0 indicates the lack of a central 

microtubule filament) of A, B, and C tubules with A the most internal. C tubules are specific 

for the basal body, whereas A and B tubules extend into the TZ; barrel dimensions are ~400 

nm in length and 200 nm wide (Li et al., 2012).

2.3 Transition zone.

The photoreceptor CC is an elongated tube of ~1.5 μm length (0.25 μm in primary cilia) 

(Gilliam et al., 2012; Wensel et al., 2016; May-Simera et al., 2017) through which all outer 

segment proteins and membrane components must traffic either by diffusion of soluble 

protein complexes (Peet et al., 2004; Slepak and Hurley, 2008), by IFT with molecular 

motors (Pooranachandran and Malicki, 2016; Sedmak and Wolfrum, 2011; Luby-Phelps et 

al., 2008; Rosenbaum and Witman, 2002), or directly by diffusion of integral membrane 

proteins in the periciliary plasma membrane (Nachury et al., 2010; Nachury et al., 2007). 

Nine-fold symmetry of the axoneme doublet structure is generated by extension of the basal 

body A- and B-tubules (Fig. 3) (Garcia, III and Reiter, 2016). In photoreceptors, the distal 

axoneme is made of MT singlets, the precise extension of which in mouse rods is unknown. 

In Xenopus laevis, the axoneme extends from the basal body into the OS to about half-

length in the rod and to the cone tip (Eckmiller and Toman, 1998). The CC architecture at 

the base of the axoneme is characterized by Y-links connecting the MT doublet with the 

ciliary membrane, forming a gate and diffusion barrier. Many transition proteins have been 

identified, mostly belonging to two complexes, the nephrocystin (NPHP) and Meckel (MKS) 

complexes. The NPHP complex consists of >20 proteins, including NPHP1, NPHP3, 

NPHP4, IQCB1/NPHP5, CEP290/NPHP6 and RPGRIP1L (Shi et al., 2017; Sang et al., 

2011; Williams et al., 2011). The MKS complex includes B9 domain proteins, Tectonics, 
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CC2D2A, AHI1, and several TMEM proteins localizing to the transition zone (Williams et 

al., 2011; Li et al., 2016a; Goncalves and Pelletier, 2017). Most of these proteins form large, 

interconnected complexes (Boldt et al., 2016). Interestingly, three CC proteins (SPATA7, 

RPGR, RPGRIP1) appear to be photoreceptor-specific and cause nonsyndromic ciliopathy 

when mutated. These proteins distribute to other primary cilia (Dharmat et al., 2018). Details 

of domain structure and possible function of these proteins in mouse photoreceptors are 

discussed below.

2.4 Syndromic ciliopathies

Mutations in genes encoding PCM, distal/subdistal appendages or basal body-associated 

proteins cause complex syndromic ciliopathies, often associated with rod/cone dystrophies 

such as retinitis pigmentosa (RP) or Leber congenital amaurosis (LCA). Syndromic 

ciliopathies affect multiple organs including kidney, liver, retina, brain or spermatozoa 

(Mockel et al., 2011). The most prominent syndromic ciliopathies affecting the retina are 

Joubert Syndrome (JS) (Juric-Sekhar et al., 2012), Bardet-Biedl syndrome (BBS) (Blacque 

and Leroux, 2006) and Senior Løken syndrome (SLS) (Ronquillo et al., 2012; Helou et al., 

2007). JS is characterized by brain malfunction with molar tooth sign, kidney and liver 

disease, skeletal abnormalities, and including eye abnormalities. Major features of Bardet-

Biedl syndrome are obesity, polydactyly, hypogonadism, renal failure and retinal 

degeneration (Forsythe and Beales, 2013). SLS is an autosomal recessive retina-renal 

ciliopathy characterized by progressive RP (Hartong et al., 2006) or LCA (den Hollander et 

al., 2008) with nephronophthisis (NPHP) (Otto et al., 2005; Wolf and Hildebrandt, 2011).

2.5 Photoreceptor ciliogenesis.

Most details concerning ciliogenesis in mouse photoreceptors have been derived from high 

resolution TEM imaging and confocal immunohistochemistry, but molecular details are far 

from understood. Ciliogenesis begins during pre- and postnatal photoreceptor development. 

Cone precursors are born during embryonic development with peak at E15 (Morrow et al., 

1998; Swaroop et al., 2010), while rod progenitors are born postnatally with peak at birth. 

Postnatal precursors become rod photoreceptors due to the expression of NRL, a rod-

specific transcription factor (Mears et al., 2001). Docking of the basal body to the cell 

cortex, with generation and extension of the rod axoneme, occurs in several unsynchronized 

postnatal steps (Sedmak and Wolfrum, 2011), as outlined in Fig. 4. Soon after birth, the 

distal end of the MC acquires a Golgi-derived ciliary vesicle that mediates docking to the 

cell membrane (Sorokin, 1962). Docking of the ciliary vesicle to the mother centriole is 

dependent on C2CD3, a distal appendage protein (Ye et al., 2014), and MACF1 (May-

Simera et al. 2016). According to cell culture experiments, docking of the vesicle requires 

degradation of CP110 and CEP97, centrosomal proteins that act as negative regulators of 

ciliogenesis bound to the distal MC end (Spektor et al., 2007) (Fig. 2) (see par. 4.1, CP110). 

This in-vitro result however conflicts with in-vivo experiments which show that CP110 

promotes cilia formation, acting as a positive regulator of ciliogenesis, and is required for 

anchoring of basal bodies to the membrane (Yadav et al., 2016), suggesting significant 

differences between primary cilia and photoreceptors.
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The distal MC is decorated with appendages that enable membrane anchoring (Yang et al., 

2018). Germline knockouts of distal appendage proteins (CEP164, C2CD3) in which basal 

bodies were unable to dock to cell membranes, generated syndromic ciliopathies (Siller et 

al., 2017; Ye et al., 2014). Further experiments are needed to verify effects of conditional 

DAP knockouts (CEP83, CEP89) in photoreceptors. After basal body docking to the cell 

membrane, A and B tubules emanate from the basal body forming the proximal axoneme 

which matures into the CC. Anterograde IFT of tubulin subunits by kinesin-2 extends the 

axoneme further (Scholey, 2013). Based on gene knockouts in mouse, a number of proteins 

have been identified that are essential for elongation of A and B tubules, including KIF3a, 

the obligatory subunit of kinesin-2 (Jiang et al., 2015b), IQCB1/NPHP5 (Ronquillo et al., 

2016), ARL3-GTP (Hanke-Gogokhia et al., 2016) and ARL13b (Hanke-Gogokhia et al., 

2017) (see par. 4.2). Deletion of genes encoding any of these proteins does not prevent basal 

body docking, but does prevent formation of an axoneme. Around P9, the first stacks of 

discs are assembled by evagination of the ciliary membrane (disc morphogenesis) (Ding et 

al., 2015; Burgoyne et al., 2015). By P21, the outer segment structure is mature.

3. Centriole and PCM components

Proteomic analysis indicates that the centrosome consists of >100 distinct proteins, most of 

which have unknown function (Jakobsen et al., 2011; Andersen et al., 2003). These highly 

interacting proteins can be subdivided into pericentriolar matrix, centrosomal, distal and 

subdistal appendage and CC/TZ resident proteins (Fig. 5). The corresponding genes have 

outstanding importance for human disease (centrosome abnormalities, cancer, syndromic 

ciliopathies, including retina dystrophies) (Nigg and Holland, 2018; Mockel et al., 2011). 

Animal models mimicking human disease based on mutations in ciliary genes (Norris and 

Grimes, 2012) are invaluable tools to devise strategies for gene replacement and 

pharmacological therapy. Below, we summarize selected proteins associated with the PCM, 

distal and subdistal appendages and centrioles, highlighting human retina disease when 

known.

3.1 Centrins (caltractins)

Centrins are small, acidic proteins that belong to the Ca2+ binding EF-hand protein family 

(50% identity with calmodulin). Also known as eukaryotic signature proteins, they are found 

in all eukaryotic cells from unicellular organisms (Zhang and He, 2011; Hartman and 

Fedorov, 2002) to mammals (Wolfrum et al., 2002). Centrins were initially identified in 

unicellular green algae (such as C. reinhardtii) as major components of several basal body-

associated contractile fibers (nuclear-BB connector and distal striated fibers), and later found 

commonly associated with centrosomes of higher organisms and in spindle pole bodies 

(centrosome analog) of yeast (Salisbury, 1995; Geimer and Melkonian, 2005). Centrins are 

thought to play conserved roles in basal body duplication and positioning in lower 

eukaryotes but their function in vertebrates is largely unknown. Recessive mutations of 

centrin 2 cause syndromic ciliopathy in mouse (see below), but mutations causing human 

disease have not been identified.
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Mice express four isoforms, CETN1–4, while the human genome contains only three 

isoform genes (CETN1–3) (Friedberg, 2006). All four mouse isoforms are expressed in the 

photoreceptor connecting cilium and basal body (Wolfrum and Salisbury, 1998; Trojan et al., 

2008; Giessl et al., 2004). CETN1 was originally cloned from a human testis expression 

library (Errabolu et al., 1994) and shown to be expressed in mouse testes from the second 

week postnatally (Hart et al., 1999). CETN2 and CETN3 are expressed in all somatic cells 

and are associated with the centrosome and pericentriolar matrix (Giessl et al., 2004; 

Laoukili et al., 2000; Salisbury et al., 2002; Gavet et al., 2003). All centrins feature four EF-

hand high-affinity Ca2+ binding motifs (Trojan et al., 2008; Giessl et al., 2006; Dantas et al., 

2012).

CETN1 (Centrin 1)—Centrin 1 is expressed strongly in male germ cells, in addition to 

other ciliated cells. Crystallography of murine CETN1 reveals a dimeric structure in which 

EF-hands 1/2 at the N-terminal and EF-hands 3/4 at the C-terminal are connected by a large 

α-helical structure, and all four EF-hand loops are occupied by Ca2+ (Kim et al., 2017) (Fig. 

6A). In linear view, the four EF-hands are evenly distributed (Fig. 6B). In mouse, CETN1 

expression is restricted to the centrioles of ciliated cells, e.g., centrioles associated with the 

photoreceptor connecting cilium, and is strongly expressed in sperm (Trojan et al., 2008) 

(Fig. 6C). The Cetn1 gene consists of a coding exon 1 and a noncoding exon 2. Although 

exon 1 deletion of murine Cetn1 produced a germline knockout (Fig. 6C and D, right 

panels), the deletion had no consequence on photoreceptor ciliogenesis or function, and 

failed to affect trafficking of OS membrane proteins (Avasthi et al., 2013). However, CETN1 

deletion produced non-syndromic male infertility (the Cetn1 gene is located on the X 

chromosome). Cetn1y/- spermatids lacked tails suggesting severe spermatogenesis defects at 

the late maturation phase of spermatozoa; the Cetn1y/- mouse revealed no other recognizable 

phenotype (Avasthi et al., 2013). Male infertility has been observed in other cilia-related 

genes that display flagellar abnormalities (Escalier, 2006).

CETN2 (Centrin 2)—Centrin 2 is expressed in ciliated cells, including retina neurons, and 

present at both the photoreceptor CC and centrioles (Trojan et al., 2008). CETN2 binds to 

the centrosomal protein SFI1 (SFI1 centrin-binding protein), a large protein participating in 

cell cycle progression and assembly of the mitotic spindle (Martinez-Sanz et al., 2006). 

Transgenically expressed EGFP-CETN2 fusion protein specifically labels both mother and 

daughter centrioles and CC, thus providing an excellent marker (Fig. 7) (Higginbotham et 

al., 2004). A germline CETN2 knockout (KO) mouse revealed syndromic ciliopathy, 

including dysosmia and hydrocephalus. Dysosmia resulted from olfactory cilia loss, 

impaired ciliary trafficking of olfactory signaling proteins, adenylate cyclase III (ACIII) and 

cyclic nucleotide-gated channel (CNGA2), as well as disrupted basal body apical migration 

in postnatal olfactory sensory neurons (OSNs). Hydrocephalus occurs due to impaired CSF 

flow which, in turn, results from the disrupted planar polarity of mutant ependymal cilia; 

transgenic expression of GFP-CETN2 rescued the Cetn2-deficiency phenotype (Ying et al., 

2014). Only about 30% of mutants develop hydrocephalus and die within 1.5 months. 

However, photoreceptor ciliogenesis and function were unaffected, a phenotype that may be 

explained by centrin redundancy. Germline Cetn2−/− pups were born healthy and of normal 

size, suggesting that CETN2 is nonessential for mouse centrosome duplication or mitotic 
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cell division during embryonic stages. Formations of both primary cilia (renal tubule 

epithelia, photoreceptors) and motile cilia (multiciliated respiratory and ependymal 

epithelia) occurred normally in the Cetn2 mutants.

Our in-vivo result contradicts an in-vitro study using hTERT-RPE1 cells in a serum 

starvation-induced ciliogenesis assay (cell proliferaion is unaffected) which showed that 

CRISPR/CAS9 disuption of Cetn2 leads to dramatically reduced ciliogenesis due to 

impaired removal of CP110, the ciliation inhibitor located at the basal body distal end cap 

(Prosser and Morrison, 2015). The discrepency between in-vivo and in-vitro data may reflect 

the importantance of cell-cell, cell-enviroment interaction in ciliogesis regulation. In view of 

CETN2’s ubiquitous expression among adult tissues (Hart et al., 2001), it is unexpected that 

germline deletion of mouse CETN2 affects predominantly cilia of olfactory and ependymal 

epithelia. Cetn2 mutants share significant phenotypic similarity with a mouse pericentrin 

(Pctn, a core PCM component) hypomorphic mutant (Pctn ocd/ocd) displaying OE-specific 

olfactory ciliary loss.

CETN3 (Centrin 3)—CETN3 is an abundant homologue of yeast CDC31 which plays a 

role in centrosome duplication and separation in yeast (Middendorp et al., 2000). By RPKM 

(Reads Per Kilobase of transcript per Million mapped reads), CETN3 and CETN4 are most 

strongly expressed in mouse testes. Although CETN3 localizes to the photoreceptor CC, BB 

and DC, single knockout of mouse Centrin3 does not produce a detectable phenotype in 

retina or other tissues (GY and WB, unpublished). Notably, CETN3 overexpression can 

inhibit CETN2 incorporation into centrioles during S-phase procentriole assembly in 

mammalian cells, probably by inhibiting activity of MPS1, a kinase for both CETN2 and 3 

(Sawant et al., 2015), and suggesting possible isoform interaction.

CETN4 (Centrin 4)—Cetn4 mRNA is detected in mouse brain, kidney, lung, and ovary 

(Gavet et al., 2003). In brain, CETN4 is more closely related to CETN2 and is expressed 

exclusively in ependymal and choroidal ciliated cells where it localizes to basal bodies 

(Gavet et al., 2003). In human, CETN4 is a pseudogene and a functional gene product is not 

expressed (Zhang et al., 2010). Thus, the functions of centrin 3 and 4 in mouse 

photoreceptors are unknown (Trojan et al., 2008; Giessl et al., 2006).

Summary centrins:  Centrin proteins are found in the centriolar lumen, pericentriolar 

matrix, transition zone (TZ) of primary cilia and the photoreceptor CC, but are not known to 

be associated with human retina disease. Single knockouts of mouse CETN1 (male 

infertility) and CETN2 (dysosmia) produce specific phenotypes without impairing 

photoreceptor ciliogenesis; even a CETN1/CETN2 double knockout has no photoreceptor 

phenotype. While a mouse CETN3 single knockout again produces no recognizable 

phenotype, the CETN2/CETN3 double knockouts display a slowly progressing rod and cone 

degeneration and more severe olfactory and ependymal cilia defects than Cetn2−/− mice 

(Ying, Frederick and Baehr, unpublished results). The results suggest both CETN2/CETN3 

redundancy and isoform interaction in photoreceptors and other tissues. Interestingly, 

CETN/CETN3 double knockout mice were born in a non-Mendelian ratio, indicating that 

some Cetn2−/Y;Cetn3GT/GT male embryos fail to survive prenatal development.
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3.2 Pericentriolar Matrix components

The Pericentriolar Matrix (PCM) surrounds both centrioles as an amorphous “cloud,” but 

recent examination by high resolution microscopy reveals the PCM as an ordered structure. 

Key PCM proteins are CEP135, CP110, CEPP192, CEP152, NEDD1, Cap350, CEP215, γ-

tubulin, CPAP (CENPJ) and CEP215. CEPs constitute a large family of >30 centrosomal 

proteins, named from CEP19 to CEP350 (Kumar et al., 2013) where the numbers indicate 

approximate kDa. PCM proteins surround centrioles in concentric structures (Sonnen et al., 

2012) with the exception of pericentrin, which spans the PCM with its C-terminal near the 

centrioles and N-terminal extending peripherally. While γ-tubulin forms the γ-tubulin ring 

complex (γTuRC) involved in microtubule nucleation (see TUBG1 paragraph), PCM1 is 

present in centriolar satellites (CS), i.e., electron-dense granules seemingly scattered around 

centrioles (Barenz et al., 2011). Rootletin, a large striated cytoskeleton-like structure, 

originates from the basal body and is partially located in the PCM but is not part of the 

“cloud” (Yang and Li, 2006). Pericentrin, rootletin, PCM1 and Cep215 are briefly 

summarized below.

PCNT (Pericentrin) (Kendrin)—Pericentrin (isoform a, 2916 amino acids), the homolog 

of yeast Spc110p, is a protein of unknown function locating to the basal body complex of 

mouse photoreceptors (Muhlhans and Giessl, 2012; Muhlhans et al., 2011). PCNT is an 

integral component of the centrosome with numerous coiled-coil motifs (Fig. 8A) and 

suggested to participate in microtubule nucleation and anchoring during the cell cycle. 

PCNT interacts with numerous proteins including the γ-tubulin ring complex, cytoplasmic 

dynein, protein kinase A and PCM1 (Jurczyk et al., 2004) and CEP215 (Graser et al., 

2007b). PCNT-RNA interference inhibits cilia formation by serum starvation in RPE cells 

(Graser et al., 2007a). Knockdown of Pcnt in the retina ex-vivo and in-vivo using a virus-

based RNA interference approach impaired development of the photoreceptor connecting 

cilium and outer segment, and caused a nuclear migration defect (Falk et al., 2018).

Mutations in the human PCNT gene have been linked to Down syndrome (DS), primordial 

dwarfism and syndromic ciliopathies such as Seckel syndrome (Delaval and Doxsey, 2010; 

Rauch et al., 2008). Germline Pcnt knockout phenotype in mouse was associated with 

spindle misorientation, misdirected ventricular septal growth in the heart, microcephaly and 

decreased proliferative symmetric divisions in brain neural progenitors (Chen et al., 2014). 

Ninein, CEP215, and centriolin were undetectable in Pcnt −/− mice. A hypomorphic mutant 

of Pcnt exhibited defective assembly of olfactory sensory neurons (Miyoshi et al., 2009). A 

frameshift mutation in the mouse pericentrin gene caused abnormal interneuron migration to 

the olfactory bulb (Endoh-Yamagami et al., 2010).

CROCC (ciliary rootlet coiled-coil) (Rootletin)—The photoreceptor ciliary rootlet 

originates at the basal body and extends to the synaptic terminal. It is composed of rootletin 

(2009 amino acids, isoform 1), a 220-kD protein with multiple coiled-coil domains 

identified first in retina (Fig. 8B) (Yang and Li, 2006; Yang et al., 2002). Rootlets are 

homopolymeric rootletin protofilaments bundled into variably-shaped thick filaments that 

connect the basal body and daughter centriole and support the slender photoreceptor cell 

body (Yang et al., 2002). In Crocc knockout mutants, ciliated cells are devoid of rootlets, but 
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photoreceptors develop normally and phototransduction is unaffected. However, 

photoreceptors degenerate over time (Yang and Li, 2006). The CROCC gene is not known 

thus far to be associated with human disease, and it is unclear whether rootletin participates 

in intracellular trafficking. The closest relative by sequence is C-Nap1 (CEP250), a 

centrosomal protein involved in centriolar cohesion. Rootletin interacts with C-Nap1 and 

this interaction is supported by coimmunoprecipitation from cell lysate and colocalization at 

the basal body/centrioles (Yang et al., 2006).

Rootletin, C-Nap1 and CEP68 were shown by STED nanoscopy to connect the two 

centrioles during cellular interphase to form the MTOC (Vlijm et al., 2018). STED 

microscopy showed that the centrosome linker complex of RPE1 cells consists of repeating 

rootletin units in a vast network with a C-Nap1 ring at centrioles as organizer and CEP68 as 

filament modulator. This coupling is important for cell migration, cilia formation and timing 

of mitotic spindle formation (Vlijm et al., 2018).

PCM1 (Pericentriolar Material 1)—The longest PCM1 transcript in human encodes a 

protein of molecular mass of ~230 kDa (human 2024 amino acids, mouse 2025). PCM1 has 

multiple coiled-coil domains in the N-terminal half (Fig. 8C), interacts with numerous 

proteins and participates in microtubule nucleation. PCM-1 is a component of centriolar 

satellites, characterized as electron-dense granules scattered around centrosomes (Kubo et 

al., 1999). PCM1 granules are distinct from pericentrin-containing granules (Kubo and 

Tsukita, 2003). Pcm1+/− mice manifest neuroanatomical phenotypes with behavioral 

abnormalities and show significant reduction in brain volume (Zoubovsky et al., 2015). 

Presence of a retina phenotype was not investigated.

CDK5RAP2 (CDK5 Regulatory Subunit Associated Protein 2) (CEP215)—
CEP215 (longest transcript in mouse, 1822 amino acids) is expressed widely in many tissues 

and localizes predominantly at the centrosome during mitosis (Ching et al., 2000). CEP215 

and ninein are important for microtubule anchoring in the PCM during centrosome 

duplication (Chen et al., 2014). Centrosomes are held together by intercentrosomal linkers 

(see paragraph on rootletin, above) and dissociate during mitosis; dissociation is essential for 

centriole duplication. CEP215 forms a complex with CEP68 and pericentrin (PCNT) which 

are intercentrosomal linkers involved in centriole engagement (Pagan et al., 2015). CEP215 

holds an N-terminal microtubule-association domain and multiple coiled-coil domains 

(Graser et al., 2007b) (Fig. 8D). CEP215 regulates mitotic spindle orientation by interacting 

with Cdk5 activator CDK5R1 (Ching et al., 2000). CEP215 was also found to interact with 

CEP152 and HSET, the minus end-directed microtubule motor protein (Firat-Karalar et al., 

2014). These interactions have been shown to be essential for centrosome localization and 

cohesion, respectively (Chavali et al., 2016). Knockdown of CEP215 reduced centrosome 

cohesion and led to centrosome splitting in cultured cells suggesting that CEP215 is 

essential for centriole interaction and cohesion (Graser et al., 2007b). Autosomal recessive 

mutations of CEP215 are primarily associated with microcephaly-3, a congenital disorder 

identified by a substantial reduction in brain size (Sukumaran et al., 2017). A mouse model 

of mutant CEP215 with an in-frame deletion of exon 4 (Hertwig’s anemia (an) mutant) 
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showed abnormal mitotic spindle orientation, and impaired centrosomal function among 

neuronal progenitors (Lizarraga et al., 2010).

Summary PCM proteins:  The PCM assembles in the vicinity of centrioles during mitosis 

and expands during centrosome maturation. Providing a platform for nucleating 

microtubules either directly through subdistal appendages or through the γTuRC complex, 

PCM functions in cilia formation/disassembly and as a docking station to distribute protein 

assemblies through MT transport by molecular motors (Mennella et al., 2014). Progress 

concerning PCM structure and visualization of PCM proteins was provided by 3D-SIM 

(structural illumination microscopy) (Mennella et al., 2014; Sonnen et al., 2012). The 

concentric structure of PCM proteins is reminiscent of the structure of the distal appendage 

proteins (see below). Pcnt germline knockout produced serious consequences associated 

with spindle misorientation and microcephaly (Chen et al., 2014) and a mouse model of 

mutant CEP215 showed impaired centrosomal function in neuronal progenitors (Lizarraga et 

al., 2010). Very little is known about the consequence of germline deletions of PCM proteins 

in retina. Knockdown of Pcnt in the retina ex-vivo and in-vivo via RNA interference 

impaired the development of the photoreceptor CC and the outer segment (Falk et al., 2018). 

By contrast, deletion of rootletin does not affect photoreceptor development and function, 

but weakens the ciliary base which eventually causes retinal degeneration (Yang et al., 

2005).

3.3 Subdistal appendage proteins

Subdistal appendages (SDA) are associated with 2–3 triplet microtubules of the mother 

centriole, but their numbers can vary (Uzbekov and Alieva, 2018). SDAs assume a conical 

structure ending in a rounded head and project orthogonally from the basal body (Huang et 

al., 2017). Identified SDA components are ODF2/cenexin, ninein (NIN), ninein-like protein 

(NINL), CEP170, CEP128, centriolin (CNTRL), CCDC68, CCDC120, CC2D2A, γ-tubulin 

and ε-tubulin (reviewed in (Uzbekov and Alieva, 2018). CC2D2A is discussed in the 

paragraph “Gene deletions that prevent basal body docking,” whereas γ- and ε-tubulins are 

detailed in the paragraph entitled, “Microtubules.” CEP170, ninein, ninein-like protein and 

ODF2 are summarized briefly below.

CEP170 (centrioloar protein 170) (FAM68A)—CEP170 protein consists of 1584 

amino acids with a few isolated coiled-coil domains and a forkhead-associated domain (Fig. 

8E), and localizes to the subdistal appendages of mature mother centrioles. During mitosis, 

CEP170 associates with spindle microtubules near the centrosomes. CEP170 interacts with 

ninein, binds microtubules at the MC subdistal appendages, is phosphorylated by polo-like 

kinase 1, and functions in maintaining microtubule organization and cell morphology 

(Guarguaglini et al., 2005).

CNTRL (Centriolin) (CEP110, FAN, CEP1)—Centriolin (2333 amino acids in mouse) is 

a centrosome-associated protein required for centrosome maturation. Centriolin consists 

nearly entirely of coiled-coil domains (Fig. 8F); it has several leucine-, glutamine- and 

proline-rich regions and interacts with pericentrin. Centriolin functions in mitotic cell cycle 
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progression (Sun et al., 2017). Depletion of centriolin by siRNA silencing leads to G1/G0 

arrest and cytokinesis errors (Gromley et al., 2003).

NIN (Ninein) (SCKL7)—Ninein is a centrosome-specific protein consisting of two splice 

variants. Isoform A (2113 amino acids) has coiled-coil domains, an EF-hand, a GTP-binding 

site, 4 leucine-zipper domains (Fig. 8G) and localizes to the PCM (Bouckson-Castaing et al., 

1996). Ninein associates with MC subdistal appendages and colocalizes with γ-tubulin 

(Wang et al., 2009b). Ninein is important for positioning and anchoring the microtubules 

minus-ends to the basal body. Localization of this protein to the basal body requires three 

leucine-zipper motifs in the central coiled-coil domain. Morpholino knockdown of ninein in 

zebrafish caused defects in the anterior neuroectoderm (Dauber et al., 2012). Compound 

heterozygosity for missense mutations in the NIN gene is associated with Seckel syndrome 7 

(SCKL7) (Dauber et al., 2012).

NINL (Ninein-like protein) (NLP)—NINL (1394 amino acids), a Ca2+-binding protein 

with two EF-hands (Fig. 8H), is an oncogenic protein with two large CC domains. There are 

multiple isoforms. Isoform B is part of the Usher complex and colocalizes with USH2A and 

lebercilin (van Wijk E. et al., 2009). NINL colocalizes with CC2D2A at the ciliary base and 

ninl knockdown in zebrafish leads to photoreceptor outer segment loss, similar to Cc2d2a−/− 

phenotypes (Bachmann-Gagescu et al., 2015). The primary function of NINL is to promote 

MT nucleation that contributes to centrosome maturation. Transgenic mice overexpressing 

NINL display spontaneous tumors (Li and Zhan, 2011). DZANK1 (Double Zink Ribbon and 

Ankyrin Repeat domain protein 1) and NINL interact to provide proper assembly of the 

cytoplasmic dynein 1 complex. Because knockdown of NINL and DZANK1 leads to vesicle 

accumulation in zebrafish photoreceptors, NINL and DZANK1 are thought to be required 

for inner segment vesicle transport (Dona et al., 2015). NLP was shown to interact with the 

γ-tubulin ring complex and to stimulate microtubule nucleation (Casenghi et al., 2003).

ODF2 (outer dense fiber of sperm tails 2) (cenexin)—ODF2 (longest variant, 825 

amino acids) consists of multiple coiled-coil domains (Fig. 8I) and is the major protein of 

the sperm tail cytoskeleton (Schweizer and Hoyer-Fender, 2009). The mouse Odf2 gene 

produces multiple splice variants, isoform 9 is called cenexin (Chang et al., 2013). Cenexin 

localizes to basal bodies of cultured mammalian cells, while ODF2 localizes along the 

axoneme of primary cilia. Cenexin, but not ODF2, was essential for inducing primary cilia 

in cell culture (Chang et al., 2013). ODF2 is located in MC subdistal appendages of somatic 

cells. In ODF2-deficient cells, basal bodies form neither distal appendages nor primary cilia 

(Ishikawa et al., 2005). The Odf2 knockout mouse (gene trap inserted in exon 9 of the Odf2 
gene) display embryonic lethality establishing that ODF2 is required for normal embryonic 

development (Salmon 2006). In another line (deletion of exons 6 and 7), ciliogenesis occurs 

but the basal foot is missing from the basal body in multiciliated epithelial cells (and 

embryonic fibroblast cells), causing uncoordinated ciliary beating and primary cilium 

dyskinesia (Kunimoto et al., 2012). ODF2 protein localizes to photoreceptor primary cilia, 

and to basal bodies of ciliated cells of respiratory and kidney epithelia (Schweizer and 

Hoyer-Fender, 2009).
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Summary of SDA proteins (SDAPs).: Together with PCM components, SDAPs are 

essential for MT nucleation of the mother centriole. SDAs essentially form miniature centers 

for MT nucleation, but their role in ciliary function is unclear (Monnich et al., 2018). 

However, SDAPs are involved in regulation of vesicular trafficking arriving from the TGN, a 

function consolidated in several animal models. Knockdown of NINL and its interactant 

DZANK1 leads to vesicle accumulation in zebrafish photoreceptors suggesting that NINL 

and DZANK1 may be required for inner segment vesicular transport of membrane proteins 

(Dona et al., 2015). The recently identified SDA protein CEP128 regulates vesicular 

trafficking and targeting of Rab11 to the primary cilium (Monnich et al., 2018). In a cc2d2a 

zebrafish mutant (sentinel carrying W628X), mutant rods and cones formed cilia but outer 

segments were shortened and rhodopsin and cone pigments mislocalized. Rab8-coated 

vesicles accumulated at the apical inner segments suggesting CC2D2A is important for 

membrane protein trafficking in zebrafish (Bachmann-Gagescu et al., 2012; Mougou-Zerelli 

et al., 2009). Ojeda Naharros, et al., showed recently that CC2D2A plays a role in the 

docking of opsin-laden vesicles at the periciliary membrane (Ojeda Naharros et al., 2017). 

By contrast, the Cc2d2a −/− mouse recapitulates features of Meckel syndrome with 

multiorgan defects (Veleri et al., 2014). Loss of CC2D2A leads to embryonic lethality; 

embryos did not survive past E18, often showing polydactyly, exencephaly (brain outside of 

skull) and situs inversus. Cilia are absent in Cc2d2a−/− embryonic node and other somatic 

tissues.

3.4 Distal appendage proteins

Distal appendages, required for basal body docking and ciliogenesis, are described as nine-

bladed pinwheel-like structures protruding from the distal end of the BB (Tanos et al., 2013). 

Quantitative centrosome proteomics (Tanos et al., 2013) identified five DAP components: 

CEP164, CEP89, CEP83, SCLT1 and FBF1 containing multiple coiled-coil domains. An 

additional DAP-associated protein is C2CD3 which occupies a compact region in the 

centriole lumen. Proteins recruited to DAPs are TTBK2 (Tau tubulin kinase 2), recyling 

endosome components (Rab8, Rab11), chibby (CBY1), CEP162, CP110 and CEP290 (Yang 

et al., 2018). In a beautiful study using direct stochastic optical reconstruction microscopy 

(dSTORM), DAPs were shown to form a cone-shaped architecture within a 3-dimensional 

megacomplex large enough to function as a gate for TM proteins (Yang et al., 2018). Core 

proteins of the distal appendage blades (DABs) are CEP164, SCLT1, CEP89 and CEP83, 

with CEP164 the outermost and CEP83 the innermost component. FBF1 locates to a space 

called distal appendage matrix (DAM) between DAP blades (Yang et al., 2018).

CEP164 (centrosomal protein 164) (NPHP15)—CEP164 is a centrosomal protein 

(1333 amino acids in mouse) with multiple coiled-coil domains involved in microtubule 

organization and centrosome segregation (Fig. 9A). CEP164 is required for assembly of 

primary cilia and localizes to the distal appendages of mature centrioles in RPE cells (Graser 

et al., 2007a). STED (Stimulated Emission Depletion) microscopy with a resolution of 60 

nm demonstrated that CEP164 localizes to distal appendages in nine clusters spaced around 

a ring of ∼300 nm in diameter (Lau et al., 2012). In the DAP megacomplex, CEP164 forms 

the outermost of several concentric rings surrounding the MC distal end (Yang et al., 2018). 

A major function of CEP164 is to recruit TTBK2 (Tau tubulin kinase 2) to the MC distal 
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end, which subsequently removes the CP110 plug to facilitate ciliogenesis. TTBK2 can also 

function downstream of CEP164 by increasing CEP164 (and other DA proteins) levels at 

distal appendages, and promote distal appendage assembly even at daughter centrioles 

(Cajanek and Nigg, 2014). Disruption of CEP164 in hTert-RPE1 cells blocked primary 

cilium formation (Daly et al., 2016; Cajanek and Nigg, 2014). CEP164 interacts with Rabin8 

to activate Rab8 and may provide a molecular link between the mother centriole and the 

membrane biogenesis machinery that initiates cilia formation (Schmidt et al., 2012).

Recessive mutations of CEP164 are associated with nephronophthisis (NPHP15), and often 

with retinal degeneration (Chaki et al., 2012). CEP164 was shown to form a complex with 

PDEδ, encoded by the Pde6d gene, and ARL13B, the GEF of ARL3, to traffic prenylated 

INPP5E to cilia of zebrafish and in cell culture, thus identifying a distinct functional 

network linked to JBTS and NPHP (Humbert et al., 2012). Knockdown of CEP164 in 

zebrafish resulted in syndromic ciliopathy with ventral body axis curvature, cell death, 

abnormal heart looping, pronephric tubule cysts, hydrocephalus and retinal dysplasia (Chaki 

et al., 2012; Slaats et al., 2014). In a conditional mouse model that lacks CEP164 in 

multiciliated tissues and the testis, a profound loss of airway, ependymal, and oviduct 

multicilia was observed, and the mutant mouse developed hydrocephalus and male infertility 

(Siller et al., 2017). Using tracheal multiciliated cell cultures of this mouse model, CEP164 

was shown to be critical for multiciliogenesis and regulation of small vesicle recruitment, 

ciliary vesicle formation and basal body docking (Siller et al., 2017).

CEP83 (centrosomal protein 63) (CCDC41, NPHP18)—CEP83 (human 701, mouse 

692 amino acids) localizes to the distal appendages of the mother centriole, together with 

CEP89 [CCDC123] and CEP164. The protein consists entirely of coiled-coil motifs, and has 

a large stretch of sequence rich in glutamic acid (E) (Fig. 9B). Loss of CEP83 specifically 

blocks centriole-to-membrane docking (Tanos et al., 2013). In addition, CEP83 colocalizes 

with IFT20 at the Golgi of RPE1 cells (Joo et al., 2013). Knockdown of CEP83 inhibits the 

recruitment of IFT20 to the centrosome, and depletion of CCDC41 or IFT20 inhibits 

ciliogenesis at the ciliary vesicle docking step (Joo et al., 2013). The results suggest that 

CEP83 collaborates with IFT20 to support the vesicle-centriole association at the onset of 

ciliogenesis. Mutations in CEP83 are causative of infantile nephronophthisis associated with 

central nervous system abnormalities (e.g., hydrocephalus) in half of the examined 

individuals (Failler et al., 2014). A retina degeneration phenotype was seen in several 

individuals.

CEP89 (centrosomal protein 89) (CCDC123, CEP123)—CEP89 (791 amino acids in 

mouse) consists mostly of coiled-coil domains and is one of several distal appendage 

proteins anchoring the mother centriole to membranes (Tanos et al., 2013). The CEP89 N-

terminus carries a proline-rich region (Fig. 9G). CEP89 interacts with PCM-1, OFD1 and 

CEP290 and is required for primary ciliogenesis (Sillibourne et al., 2013). In the absence of 

CEP89 a ciliary vesicle fails to form at the distal end of the mother centriole (Sillibourne et 

al., 2013). Loss of CEP89 blocks centriole-to-membrane docking (Tanos et al., 2013).

SCLT1 (sodium channel and clathrin linker 1)—SCLT1 is an adaptor protein (688 

amino acids in human and mouse) consisting of multiple coiled-coil domains (Fig. 9C). 
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Studies of a related gene in rat suggest that the encoded protein functions to link clathrin to 

the sodium channel protein type 10 subunit alpha protein (Liu et al., 2005). SCLT1 has also 

been identified as a component of centriolar distal appendages that mediates ciliogenesis 

(Tanos et al., 2013). Truncation mutation in SCLT1 causes a severe ciliopathy consistent 

with oro-facio-digital syndrome type IX (OFD9); the OFD phenotype features midline cleft, 

microcephaly and colobomatous microphathalmia/ anophthalmia (Adly et al., 2014).

FBF1 (Fas binding factor 1)—FBF1 was identified as a CD95-interacting protein in 

human cells. Fbf-1 consists of 1173 amino acids (calc. molecular weight of 130 kDa) with 

multiple coiled-coil domains in the C-terminal half (Fig. 9D). Expressed in a wide variety of 

tissues, FBF1 protein localizes in the cytoplasm (Schmidt et al., 2000). FBF1 (dyf-19 is the 

Caenorhabditis elegans homologue of human FBF1) is a highly-conserved transition fiber 

protein and is required for the ciliary import of assembled IFT particles at the ciliary base in 

C. elegans (Wei et al., 2013). Human FBF1 shares conserved localization and function with 

dyf-19. FBF1 formed a ring-like structure around the mother centriole or at the ciliary base 

in IMCD3 cells. FBF1 colocalized with the DAP marker, CEP164, on mother centrioles and 

localized above the sub-DAP marker, ODF2 (Wei et al., 2013).

C2CD3 (C2 Ca2+-dependent domain containing 3) (OFD14)—C2CD3 (longest 

variant, 2323 amino acids in mouse) locates to the lumen of distal end centrioles (Yang et 

al., 2018). C2CD3 has no coiled-coil domains and appears to interact indirectly with other 

DAPs. It carries a nuclear localization signal at its N-terminus and contains two C2-domains 

in the protein’s C-terminal half (Fig. 9F). C2-domains interact with membranes or proteins 

in a Ca2+-dependent manner, and are composed a β-sandwich structure consisting of a pair 

of four-stranded β-sheets (Pinheiro et al., 2016; Sudhof and Rizo, 1996). Hoover, et al. 
proposed that C2CD3 functions as a Ca2+-dependent lipid binding protein that mediates 

recruitment of proteins during ciliogenesis (Hoover et al., 2008). In cell culture, C2CD3 

functions as a regulator of centriole elongation (Thauvin-Robinet et al., 2014). Mutations in 

the human C2CD3 gene cause ciliopathy oro-facio-digital syndrome type XIV (OFD14) 

(Thauvin-Robinet et al., 2014). A family with novel compound heterozygous C2CD3 
mutations presented with skeletal dysplasia with no microcephaly (Cortes et al., 2016).

C2CD3 was found defective in the hearty (hty) mouse model which carries a splice site 

mutation in the C2cd3 gene (Hoover et al., 2008). The hty mouse displays a syndromic 

ciliopathy with multiple defects, including neural tube defects, abnormal dorsal/ventral 

patterning of the spinal cord and severe polydactyly (up to nine digits). A gene-trapped 

C2cd3 mouse model has a similar but stronger phenotype. Loss of C2CD3 results in 

shortened centrioles without appendages. C2CD3 associates with OFD1, the deletion of 

which results in centriole hyper-elongation (Thauvin-Robinet et al., 2014). Loss of C2CD3 

results in failure of CP110 removal from the ciliary mother centriole, a critical step in 

initiating ciliogenesis. C2CD3 is also required for recruiting IFT88 and IFT52 to the mother 

centriole (Ye et al., 2014). Consistent with a role in distal appendage assembly, C2CD3 is 

essential for ciliary vesicle docking to the mother centriole. C2CD3 regulates cilium 

biogenesis by promoting the assembly of centriolar distal appendages critical for docking 

ciliary vesicles and recruiting other essential ciliogenic proteins (Ye et al., 2014).
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Summary of distal appendages.: Distal appendages form a megacomplex consisting of 

nine conical-shaped blades (DABs) (Yang et al., 2018). The DABs are essential for docking 

of the mother centriole and cilia initiation. The DA matrix (DAM) contains FBF1 and IFT 

particles (IFT88). Germline deletion of DAP genes prevents ciliogenesis and is causative of 

embryonic lethality (CEP164, C2CD3), A conditional knockout of CEP164 in multiciliated 

tissues generated hydrocephalus and loss of multicilia (Siller et al., 2017). Distal appendage-

associated proteins CP110, CEP290 (Gene deletions that prevent basal body docking) and 

KIF3a, ARL3, ARL13b (Gene deletions that prevent CC formation in photoreceptors) are 

discussed below.

3.5 Microtubules

TUBA, TUBB (α- and β-tubulins).—Microtubules are highly-conserved, cytoskeletal 

~24 nm thick filaments consisting of α- and β-tubulin. Retina photoreceptors have two 

separate populations of microtubules: axonemal microtubules of the outer segment and 

cytoplasmic microtubules of the cell body (Fig. 10). Axonemal microtubules extend from 

the basal body distally to the outer segment. The axonemal microtubule (−) end is anchored 

by subdistal appendages of the basal body (Delgehyr et al., 2005) and by binding to the γ-

tubulin ring complex (γ-TuRC) of the pericentriolar matrix (Doxsey et al., 1994). 

Microtubules comprising the rod and cone axoneme are acetylated, a posttranslational 

modification that provides stability (Troutt et al., 1990) and prevents breakage (Xu et al., 

2017; Portran et al., 2017). Acetylated tubulin overlaps with RP1, a microtubule-associated 

protein (Liu et al., 2004; Hanke-Gogokhia et al., 2017). Alternatively, cytoplasmic 

microtubules are organized and nucleated by the basal body, oriented with (−) ends (α-

tubulin) at the basal body and the (+) ends (β-tubulin) reaching toward synaptic terminals.

Photoreceptor microtubule organization serves two main purposes--to maintain the structure 

of the polarized cell, and provide tracks for motorized trafficking of membrane proteins. 

Vesicles charged with membrane proteins emerge from the trans-Golgi network (TGN) to 

traffic towards the PCM, and cargo is assembled for IFT through the cilium (Rosenbaum and 

Witman, 2002). Anterograde IFT is thought to be powered by heterotrimeric kinesin-2, a 

microtubule-based and plus-end oriented molecular motor (Cole et al., 1992; Scholey, 2008) 

associated with IFT-B particles (Pazour et al., 2002; Baker et al., 2003). Photoreceptor 

retrograde IFT, which recycles IFT particles back to the proximal CC, is powered by 

dynein-2 motors, but its need in mouse photoreceptors has not been demonstrated as the 

entire photosensitive cilium is replaced every ten days. IFT is important for axoneme 

biogenesis and maintenance. A role for kinesin-2-enabled IFT in trafficking rhodopsin 

through the CC has been proposed (Marszalek et al., 2000; Jimeno et al., 2006) and 

contested (Avasthi et al., 2009).

TUBG1 (γ-tubulin)—TUBG1 is one of two human genes encoding γ-tubulin. TUBG1 
mutations (Leu387Pro; Tyr92Cys) cause malformations of cortical development, 

microcephaly and other brain malfunctions (Poirier et al., 2013). γ-tubulin is required for 

MT nucleation and locates to the MC of centrosomes. Antibodies directed against TUBG1 

are excellent basal body markers. TUBG1 exists as an oligomer within the γ-tubulin ring 

complex (γ-TuRC) of higher eukaryotes, a large complex consisting of several proteins 
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(Aldaz et al., 2005). Laterally associated γ-tubulins in the γ-TuRC might promote 

microtubule nucleation by providing a template that enhances the intrinsically weak lateral 

interaction between α,β-tubulin heterodimers. Knockdown of Tubg1 in mouse embryos 

altered cortical radial neuronal migration (Poirier et al., 2013). Tubg1 knockout mice 

(Tubg1−/−) revealed arrested development of embryos at the morula/blastocyst stages due to 

a characteristic mitotic arrest (Yuba-Kubo et al., 2005).

TUBD1 (δ-tubulin)—In C. reinhardtii, δ-tubulin is essential for the production of flagella 

and the production of triplet microtubules in the basal body (Garcia, III and Reiter, 2016). 

The precise function of δ-tubulin in mouse is unclear; it was shown to be highly expressed in 

testis (Smrzka et al., 2000). In somatic cell lines, mammalian δ-tubulin was both 

cytoplasmic and nuclear and did not colocalize with microtubules. The protein was enriched 

at the spindle poles during mitosis. γ-tubulin coimmunoprecipitated with δ-tubulin (Smrzka 

et al., 2000). δ-tubulin and ε-tubulin localize to the centrosome with distinct localization 

patterns (Chang and Stearns, 2000).

TUBE1 (ε-tubulin)—ε-Tubulin localizes to the PCM but is not part of the γ-tubulin ring 

complex. ε-Tubulin exhibits a cell cycle-specific pattern of localization, first associating 

with only the older centrosomes in a newly duplicated pair and later associating with both 

centrosomes (Chang et al., 2003; Chang and Stearns, 2000). ε-Tubulin localizes to the 

centriolar sub-distal appendages and plays a central role in microtubule organization during 

centriole duplication. In C. reinhardtii, ε-tubulin is required for the formation of both basal 

body doublet and triplet microtubules (Dutcher et al., 2002).

4. Sorting ciliopathy genes by mouse knockout phenotype

Proteins involved in basal body docking, MC maturation, CC formation and axoneme 

extension are usually sorted by data gleaned from immunolocalization, proteomics, 

bioinformatics and interacting partners (Liu et al., 2007; Sang et al., 2011; Gupta et al., 

2015; Boldt et al., 2016). Jackson and collaborators used a LAP (Localization and Affinity 

Purification) tag strategy in which a EGFP-TEV-S-peptide construct was fused to the N-

terminal of NPHP1–6, NPHP8, Jouberin and MKS1, and expressed in immortalized cell 

lines (NIH 3T3, IMCD3). Complexes with interacting protein were purified by affinity 

chromatography, and interactants identified by mass spectrometry. This technique allowed 

the identification of a NPHP-JBTS-MKS interaction network of numerous interacting 

partners and revealed an astonishing complexity of interactions. Subsequent analysis 

allowed a subclassification of the NPHP-JBTS-MKS proteins into three connected modules: 

NPHP1–4-8 localizing to cell-cell contacts and the CC (Apical Organization Module), 

NPHP5–6 localizing to the basal body (Cilia Integrity Module), and MKS1 linked to 

hedgehog signaling (Sang et al., 2011). LAP-NPHP5 and LAP-NPHP6 colocalize with the 

centrosomal marker pericentrin in IMCD3 cells, and LAP-NPHP5 colocalizes with NPHP6. 

LAP-NPHP5 co-purified with SEC3, a subunit of the exocyst, a multisubunit protein 

complex implicated in membrane trafficking and ciliogenesis (Sang et al., 2011).

In the following, we will attempt to group genes based upon their knockout phenotypes in 

photoreceptors or retina, and independent of interactions. We are aware that this grouping is 
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subjective as phenotypes of germline, retina- or photoreceptor-specific gene knockouts are 

complex, are dependent on genetic background and produce additional phenotypes in other 

primary cilia. We also included closely related genes that do not produce a photoreceptor 

phenotype (e.g., molecular motor KIF17, closely related to KIF3a). The first group describes 

proteins involved in basal body docking arrest, the second group discusses proteins involved 

in axoneme extension and CC formation. A third group involves proteins that allow CC 

formation but form unstable outer segments.

4.1 Gene deletions that prevent basal body docking and outer segment formation

Deletion of one of several outer segment proteins (rhodopsin, PDE6B, PRPH2) results in 

basal body docking to the apical inner segment cortex, elaboration of an axoneme, yet 

inability to form an outer segment. The genes encoding these proteins are not ciliary genes 

per se, i.e., their products are not constituents of the basal body or CC. In this paragraph, 

only genes associated with connecting cilium and axoneme formation or stability are 

discussed. Among the selected important ciliary proteins of this category are CP110, CEP97, 

CEP290 and CC2D2A. CP110 (centriolar coiled-coil protein 110) is recruited by CEP97 to 

the distal end of both centrioles, only to be removed from the distal MC as a cilium 

develops. CEP290 (alias NPHP6, centrosomal protein 290) is one of best characterized 

CEPs and interacts with numerous proteins; mutant human CEP290 is associated with 

ciliopathies JS, NPHP, MKS and LCA. MACF1 (microtubule-actin crosslinking factor 1) is 

one of the most abundant proteins of the photoreceptor proteome and associates with 

Parkinson’s disease and cancer. CC2D2A (coiled-coil and C2-domain containing 2A) is a 

subdistal appendage protein (SDAP). Mutations in the human CC2D2A gene are causative 

of MKS, and mental retardation with RP and JS. Although germline or conditional 

knockouts of these genes exist, revealing many details of function, our interest focuses 

specifically on consequences for retina morphology, photoreceptor function and retina 

disease.

CP110 (centriolar coiled-coil protein 110) (CP110, CEP110)—The mouse Ccp110 
gene encodes CP110 which contains 1002 amino acids with N- and C-terminal coiled-coil 

(CC) domains and CaM-interacting sites (Fig. 11A). Gene expression was shown to be 

induced during centrosome duplication, and RNAi-mediated knockdown of CP110 

suggested that CP110 plays an essential role in this process (Chen et al., 2002). Native 

CP110 forms large complexes with calmodulin and centrins (Tsang et al., 2006). Centrin 2 

was shown recently to regulate CP100 levels and ciliogenesis in chicken lymphocytes and 

RPE1 cells (Prosser and Morrison, 2015). However, mouse Cetn2 germline knockouts do not 

affect mouse photoreceptor and olfactory sensory neuron ciliogenesis (Ying et al., 2014).

Cell culture.: The current model of CP110 function derives from cultured cells (Tsang and 

Dynlacht, 2013). CEP97 recruits CP110 to the distal part of centrioles, acting as a 

chaperone; CP110 degradation coincides with cilia formation (Spektor et al., 2007). CP110 

caps the distal end of both centrioles in non-ciliated cells. As cells begin to develop a cilium, 

CP110 is removed from the distal MC and degraded. CP110 binds to and antagonizes the 

function of CEP290, a positive regulator of ciliogenesis (Tsang et al., 2008). Loss of CEP97 

and CP110 promotes primary cilia formation in growing cells, suggesting that CP110 is a 
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negative regulator of ciliogenesis (its presence prevents cilia formation; its absence induces 

cilia formation) (Spektor et al., 2007; Tsang and Dynlacht, 2013; Tsang et al., 2008). 

Further, CEP290 and CP110 interact with Rab8a, a small GTPase required for cilia assembly 

in cell culture (Tsang et al., 2008). Additional important CP110 interactors are KIF24 

(Kobayashi et al., 2011) and Talpid3 (JBTS23) (Kobayashi et al., 2014). KIF24 regulates 

cilia assembly by remodeling of centriolar MT, and Talpid3 assembles a ring-like structure 

at the distal end of centrioles. Ablation of Talpid3 affects distribution of centriolar satellites 

which regulate protein trafficking to the centrosome.

In-vivo.: Germline Ccp110 knockout mice die shortly after birth owing to syndromic 

ciliopathy defects (Yadav et al., 2016). Shh signaling is impaired in Ccp110 null embryos 

and primary cilia are reduced in multiple tissues. In contrast to cell culture, CP110 promotes 

cilia formation in-vivo, and acts as a positive regulator. CP110 is required for anchoring of 

basal bodies to the membrane during cilia formation. CP110 loss resulted in an abnormal 

distribution of subdistal appendage core components (ninein, Odf2, CC2D2A), thus 

implicating CP110 in SDA assembly and ciliary vesicle docking, two requisite early steps in 

ciliogenesis (Yadav et al., 2016). In Ccp110−/− MEFs, SDAs and DAs are not visible in the 

majority of basal bodies or are poorly developed and connecting cilia are compromised. The 

knockout phenotype is reminiscent of human short rib-polydactyly syndrome, a form of 

ciliopathy with a strong skeletal defect (Yadav et al., 2016).

CEP97 (centrosomal protein 97) (LRRIQ2).—CEP97 is a Ca2+-binding protein with a 

central IQ calmodulin binding motif, several small coiled-coil domains and a leucine-rich 

region at the N-terminal (Fig. 11B). CEP97 interacts directly with CP110 as evidenced by 

coimmunoprecipitation (Spektor et al., 2007). CEP97 has sequence similarity with centriolin 

throughout its coding sequence (Spektor et al., 2007), particularly at the N-terminal half of 

centriolin (23% identity by Clustal Omega alignment).

CEP290 (centrosomal protein 290) (Nphp6, BBS14, JBTS5, LCA10, MKS4, 
POC3, SLSN6, rd16).—CEP290 is a well-characterized centrosomal protein (Chang et al., 

2006; Moradi et al., 2011; Drivas and Bennett, 2014; Rachel et al., 2012). CEP290 (in 

mouse 2,479 amino acids) participates in centrosomal and microtubule-associated protein 

complexes (Kim et al., 2008; Loktev et al., 2008). The protein has multiple domains, 

including CC domains, an ATP/GTP binding loop, and a C-terminal myosin-tail homology 

domain among other motifs (Chang et al., 2006; Moradi et al., 2011) (Fig. 11C). CEP290 

binds to the cell membrane through its N-terminal domain and to MT through a domain 

located in the myosin-tail domain (Drivas et al., 2013). An in-frame deletion in the myosin-

tail domain in mouse (rd16 mouse, see below) produces retina degeneration. CEP290 was 

shown to interact with RPGR-interacting protein (RPGRIP1), dynactin subunits, kinesin-2 

subunits KIF3A and KAP3, centrin-1, periciliary membrane protein 1 (PCM1) (Chang et al., 

2006), ninein, RPGR, RPGRIP1, IQCB1/NPHP5 (Barbelanne et al., 2013), CP110 (Tsang et 

al., 2008), CC2D2A and others (Drivas et al., 2013).

While CEP290 localizes to the centrosome of dividing cells, it distributes to the CC and 

distal MC of postmitotic photoreceptors. Ultrastructural investigations in C. reinhardtii 
located CEP290 to the Y-shaped linkers anchoring the MT doublets to the cell membrane 
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(Craige et al., 2010). In CEP290-depleted cells, Y-linkers are mostly absent, suggesting that 

CEP290 may function as a gate keeper controlling protein traffic to the OS. In humans, loss-

of-function mutations in the CEP290 gene have been associated with Joubert syndrome 

(Sayer et al., 2006; Valente et al., 2006), nephronophthisis (medullary cystic kidney disease) 

and Meckel syndrome (Baala et al., 2007), whereas hypomorphic mutations are associated 

with LCA (den Hollander et al., 2006). A compilation of CEP290 mutations can be found at 

the CEP290base (Coppieters et al., 2010). Interestingly, LCA is associated with mutations 

throughout CEP290, while Joubert syndrome mutations are located in the C-terminal half, 

and Meckel syndrome mutations are in the N-terminal half (Rachel et al., 2015).

Knockout mouse models.: Several Cep290 germline mutations have been generated 

(Rachel et al., 2015; Hynes et al., 2014). Cep290 germline knockouts with deletions of 

exons 1–4 died before weaning due to the development of ciliopathy and hydrocephalus 

(Rachel et al., 2015). The phenotype of surviving mice was compatible with Joubert 

syndrome. Cep290−/− photoreceptor basal bodies formed but failed to dock to the apical cell 

membrane, and therefore lacked a CC. A gene-trapped Cep290 mouse line expressing the 

first 25 exons (gene trap placed in intron 25) produced Meckel syndrome, with most pups 

dying between E12–14 (Rachel et al., 2015). A second gene-trapped mouse with a gene trap 

in intron 23 were fertile and viable beyond one year (Hynes et al., 2014), possibly because 

of a partially ineffective or ‘leaky’ gene trap. The homozygous mutants exhibit a JBTS/

ciliopathy phenotype, including retinal degeneration, cerebral abnormalities and progressive 

cystic kidney disease consistent with the human phenotype.

The rd16 mouse is a spontaneous Cep290 mutant with an in-frame deletion of 299 amino 

acids (exons 35–39) (Fig. 11C) causing a rapidly progressing degeneration. Homozygous 

rd16 mice formed CC and outer segments but these structures were unstable and 

disintegrated. A rd16;Nrl−/− model (cone-only retina) showed a relatively slow ONL decline 

with ∼80% nuclei remaining at 3 months (Cideciyan et al., 2011; Boye et al., 2014). rd16 
mice are dysosmic and show abnormal transport of Gαolf (GNAL) and Gγ13 (GNG13), the 

subunits of the olfactory G protein (McEwen et al., 2007). Zhang, et al. developed a 

miniCEP290 gene (miniCEP290(580–1180)) that delayed retinal degeneration when 

injected into the subretinal space of neonatal rd16 mice. (Zhang et al., 2017).

Cep290 gene therapy.: The most frequent genetic cause of LCA is an intronic mutation in 

CEP290 (c.2991þ1655A>G) (den Hollander et al., 2006; Garanto et al., 2013). The mutation 

creates a splice donor site in intron 26 producing the insertion of a pseudoexon (exon X) into 

CEP290 mRNA. A lentiviral vector containing CMV-driven human full-length CEP290 

expressed in fibroblast cultures from CEP290-associated LCA patients carrying the exon X 

mutation rescued the ciliogenesis defect (Burnight et al., 2014). In an elegant study, Garanto 

et al. showed that naked antisense oligonucleotides (AONs) restored Cep290 pre-mRNA 

splicing, rescued a ciliary phenotype present in patient-derived fibroblast cells, and reduced 

exon X expression in a humanized mutant Cep290 mouse model (Collin and Garanto, 2017; 

Garanto et al., 2016). Similarly, treating optic cups from iPSCs with this common CEP290 

mutation with an antisense morpholino effectively blocked aberrant splicing, permitted 
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expression of full-length CEP290, and restored normal cilia-based protein trafficking (Parfitt 

et al., 2016).

MACF1 (microtubule actin crosslinking factor 1)—MACF1 is a gigantic protein 

(5430 amino acids in human, 7355 amino acids in mouse, >500 kDa) expressed in multiple 

isoforms. MCAF1 is a member of the spectraplakin gene family. Spectraplakins are 

cytoskeletal crosslinkers with ability of interacting with all three types of cytoskeletal 

filaments, i.e., F-actin, microtubules and intermediate filaments (Hu et al., 2016). Whereas 

MACF1 assumes a key role in maintaining normal functions of many tissues (Hu et al., 

2016), mutant MACF1 has been associated with Parkinson’s disease (Wang et al., 2016) and 

cancer (Miao et al., 2017). Loss-of-function studies using knockout mouse models showed 

that MACF1 participates in embryo development, neurogenesis, bone formation and colonic 

paracellular permeability (Hu et al., 2017).

MACF1 contains numerous coiled-coil domains, several spectrin and plectin domains, and 

two adjacent C-terminal Ca2+-binding EF hands. The actin- and tubulin- interaction sites 

occur on either end of MACF1 (Fig. 11D). MACF1 is one of the most abundant proteins of 

the photoreceptor ciliary proteome (Liu et al., 2007; May-Simera et al., 2016). The 

predominant Macf1a RNA in rods peaked ~P3 when ciliogenesis initiates, and by P5, 

MACF1 was present at the sclerad edge of the ONL. In adult retina, MACF1 colocalizes 

with pericentrin at the PCM and basal bodies. Germline ablation of Macf1 is embryonically 

lethal (Chen et al., 2006). Six3Cre-driven excision of Macf1 during mouse retina 

development affected mostly photoreceptors; retina lamination appears disrupted at P5, and 

ciliary rootlets appear misaligned without outer segments at P10. Ultrastructural 

examination revealed that basal bodies failed to acquire the ciliary vesicle necessary for 

docking to the cell membrane--resulting in loss of BB docking, abolished ciliogenesis and 

disruption of photoreceptor polarity (May-Simera et al., 2016). In mutant photoreceptors, 

rhodopsin and cone pigments were expressed but mislocalized in the ONL as outer segments 

were absent. Deletion of MACF1 in adult photoreceptors by viral expression of Cre caused 

reversal of basal body docking and disruption of MT anchoring surrounding the basal body 

(May-Simera et al., 2016).

CC2D2A (coiled-coil and C2-domain containing 2A) (JBTS9, MKS6)—CC2D2A 

(1643 amino acids in mouse, 1620 in human) is a subdistal appendage protein with C2 Ca2+ 

binding sites and N-terminal coiled-coil domains (Fig. 11E). In human patients, CC2D2A is 

associated with Meckel syndrome (MKS) (Tallila et al., 2008), mental retardation with RP 

(Noor et al., 2008) and Joubert syndrome (Gorden et al., 2008). CC2D2A can physically 

interact with NPHP6/CEP290 and Tectonic1 (TCTN1) (Veleri et al., 2014). These proteins 

localize within the CC and act as a barrier that prevents diffusion of transmembrane proteins 

between the cilia and plasma membranes. A zebrafish mutant, sentinel (W628X), exhibited a 

cystic fibrosis phenotype which was enhanced by knockdown of Cep290 (Bachmann-

Gagescu et al., 2012; Mougou-Zerelli et al., 2009). Mutant rods and cones formed cilia but 

outer segments were shortened and rhodopsin and cone pigments mislocalized. The stop 

codon truncates zebrafish CC2D2A at residue 628, but the sentinel mutants did not express 

truncated CC2D2A; therefore, the sentinel mutant is a CC2D2A null mutant. Rab8-coated 
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vesicles accumulated at the apical inner segments suggesting CC2D2A is important for 

membrane protein trafficking in zebrafish. In a recent paper, Ojeda Naharros, et al. show that 

CC2D2A plays a role in docking of opsin-carrying vesicles at the periciliary membrane 

(Ojeda Naharros et al., 2017).

By contrast, the Cc2d2a −/− mouse (replacement of exons 6–8 by a lacZ/Neo cassette) 

recapitulates features of Meckel syndrome with multiorgan defects (Veleri et al., 2014). Loss 

of CC2D2A leads to embryonic lethality; embryos did not survive past E18, often showing 

polydactyly, exencephaly (brain outside of skull) and situs inversus. Cilia are absent in 

Cc2d2a embryonic node and other somatic tissues. Disruption of cilia-dependent sonic 

hedgehog (Shh) signaling appears to underlie exencephaly in mutant embryos. In control 

MEFs, CC2D2A localizes to subdistal appendages. In Cc2d2a−/− MEFs, cilia were absent 

and assembly of SDAs at the mother centriole was impaired. The conclusion of the mouse 

CC2D2A knockout was that CC2D2A is essential for the assembly of subdistal appendages, 

which anchor cytoplasmic microtubules and prime the mother centriole for axoneme 

biogenesis (Veleri et al., 2014). The Cc2d2a −/− mouse retina of a rare survivor shows 

absence of ERG responses and severe disruption of the outer nuclear layer, with poorly 

developed inner and outer segment structure.

Summary of gene deletions that prevent basal body docking.—CP110 caps the 

distal end of both centrioles and must be removed to initiate ciliogenesis. Its function as a 

negative regulator (in cell culture) or positive regulator of ciliogenesis is unresolved or 

simply represents different functions in different cells. Germline deletion of Cp110 results in 

abnormal distribution of SDAPs implicating CP110 in SDA assembly and basal body 

docking. Germline knockouts of Cep290 have serious consequences; mutant mice develop 

hydrocephalus, JS and MKS, as basal bodies failed to dock. By contrast, the rd16 mouse 

with an in-frame deletion of 299 amino acids formed an unstable CC and OS, exhibiting 

LCA and dysosmia. Retina-specific knockout of Macf1 affected retina lamination and 

rootlet alignment. The main defect appeared to be that the basal body failed to acquire the 

ciliary vesicle necessary for docking. In Cc2d2a germline knockouts, cilia were absent 

leading to embryonic lethality with a MKS phenotype. The main conclusion was that 

CC2D2A is essential for SDA assembly.

4.2 Gene deletions that prevent axoneme extension

This ensemble discusses KIF3a, the obligatory subunit of heterotrimeric kinesin-2; ARL3 

and ARL13b, where ARL13b functions as the ARL3 GEF; IQCB1/NPHP5, a CEP290 

interactor; and INPP5E, an inositol polyphosphate phosphatase. Kinesin-2 is an anterograde 

molecular motor participating in ciliary IFT, a function conserved from invertebrates (C. 
elegans, C. rheinhardtii) to vertebrates, and including zebrafish, mouse and humans 

(Rosenbaum and Witman, 2002; Malicki and Avidor-Reiss, 2014; Sedmak and Wolfrum, 

2011). Kinesin-2 is cytoplasmic when in its inactive state (not functioning as motor), but 

locates to the basal body/proximal outer segment when active in IFT (Jiang et al., 2015a; 

Jiang et al., 2015b). ARL3 (Arf-like protein 3) is a cytoplasmic, small GTPase located in the 

photoreceptor inner segment in its GDP-bound form (Hanke-Gogokhia et al., 2016). 

ARL13b functions a GTPase-activating protein for ARL3 and distributes exclusively in the 
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outer segment (Hanke-Gogokhia et al., 2017). INPP5E is a phosphatidylinositol 

polyphosphate phosphatase localizing to membranes of the inner segment (Golgi) and in 

primary cilia by means of a C-terminal lipid anchor (farnesyl) (Dyson et al., 2017; Thomas 

et al., 2014; Humbert et al., 2012). As a common denominator, germline or photoreceptor-

specific deletions prevent CC formation possibly by interfering with IFT, i.e., trafficking of 

cargo from TGN to the CC, or by upsetting the function of various ciliary or centrosomal 

proteins.

KIF3A (kinesin family member 3A) (FLA-10, KLP-20)—KIF3a is the obligatory 

subunit of heterotrimeric kinesin-2 (KIF3), a molecular motor enabling anterograde IFT in 

ciliated cells. KIF3a was cloned from porcine brain (Kondo et al., 1994) and retina 

(Whitehead et al., 1999). KIF3 consists of three subunits (KIF3a, KIF3b and KAP) (Cole et 

al., 1992) and is present in a broad range of species, including C. reinhardtii (Cole et al., 

1998; Kozminski et al., 1998), C. elegans (Signor et al., 1999) and zebrafish (Wong-Riley 

and Besharse, 2012; Bader et al., 2012; Rosenbaum and Witman, 2002).

KIF3a (701 amino acids in mouse, 99% identical to human) has a motor and a tail domain 

connected by a neck region with multiple coiled-coil domains (Fig. 12A). Germline deletion 

(removal of exon 2) of KIF3a, the KIF3 obligatory subunit, is embryonically lethal 

(Marszalek et al., 1999; Takeda et al., 1999).Kif3a null mice displayed a situs inversus 
phenotype; all cells of the embryonic node lacked cilia demonstrating that KIF3a is needed 

for the formation of embryonic cilia (Morris and Scholey, 1997). Conditional deletion of 

KIF3a resulted in defective bone formation and osteopenia (Qiu et al., 2012; Temiyasathit et 

al., 2012), male infertility (Lehti et al., 2013) and polycystic kidney disease (Lin et al., 

2003). Photoreceptor-specific deletion of KIF3a with Cre drivers (cone- or rod-specific) 

expressing Cre post-ciliogenesis caused photoreceptor degeneration (Marszalek et al., 2000; 

Avasthi et al., 2009). Retina-specific deletion of KIF3a during development (Six3-Cre 

driver) resulted in failure of basal bodies to extend CCs and absence of outer segments 

(Jiang et al., 2015b). In P6 control mice, photoreceptor centrioles extended nascent CCs 

(Fig. 12B, left panel, shown by transgenic EGFP-CETN2 expression). MC/DC are present in 

knockout mice (Fig. 12B, right panel), but CCs do not form. Fully developed CCs, each 

paired with a daughter centriole, are present in P10 controls (Fig. 12C, left), while no 

similarly-labeled CCs extend from retKif3a−/− photoreceptor apical inner segments (Fig. 

12C, right).

Ultrastructure of retKif3a−/− CCs showed that basal bodies docked at the apical IS with 

normal centriole appendages, but failed to extend a CC at P6 and P10 (Jiang et al., 2015b) 

suggesting aborted ciliogenesis in retKif3a−/− photoreceptors and linking KIF3a to CC 

formation (Fig. 12E, F). Ultrastructure of synaptic terminals revealed that rod spherules and 

cone pedicles (including ribbon structures) formed normally. KIF3a depletion by tamoxifen-

induction in adult photoreceptors resulted in progressive shortening of the OS axoneme 

(Jiang et al., 2015b).

In mouse MEFs, KIF3A was found to associate specifically with the MC (Kodani et al., 

2013). Using Kif3a-deficient MEFs as a model, it was found that SDAs of MC were 

disorganized and consequently, MT anchoring, centriole cohesion and basal foot formation 
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were abrogated (Kodani et al., 2013). The dynactin subunit p150glued and ninein were absent 

and depletion of p150glued phenocopied the effects of Kif3a deletion (Kodani et al., 2013). In 

zebrafish, KIF3a is indispensable for ciliogenesis in organs and all cells, including 

photoreceptors. In Kif3a-deficient photoreceptors, basal bodies frequently did not dock to 

the cortex of the IS but associated with other membranes. Basal bodies were mispositioned 

suggesting a role for KIF3a in correct positioning of the basal body in zebrafish 

photoreceptors (Pooranachandran and Malicki, 2016).

KIF17 (kinesin family member 17) (osm-3)—Homodimeric kinesin-2 consisting of 

KIF17 (osm-3) subunits is another anterograde molecular motor involved in plus-oriented 

IFT in C. elegans and vertebrates. KIF17 transports N-methyl-D-aspartate (NMDA) receptor 

subunit-2B (NR2B) in neurons. Germline deletion of KIF17 in mice resulted in impaired 

transcription and transport of NR2B, thus regulating synaptic NR2A/2B levels, a pathway 

fundamental for learning and memory (Yin et al., 2011).

In ciliated cells, KIF17 and KIF3 are thought to cooperate during ciliogenesis in which KIF3 

builds the axoneme core and KIF17 the axoneme distal segments (Signor et al., 1999; Pan et 

al., 2006; Tabish et al., 1995). However, interaction of KIF17 with KIF3 and the contribution 

of KIF17 to vertebrate ciliogenesis or membrane protein trafficking are unclear. KIF17 

appears largely dispensable for ciliogenesis in zebrafish as Kif17 homozygous mutant 

animals are viable and display subtle morphological defects of olfactory cilia only (Zhao et 

al., 2012). However, KIF17 appeared to play a role during early photoreceptor development 

of zebrafish retina (Insinna et al., 2009; Malicki and Besharse, 2012). Recent experiments 

performed by Dr. Besharse’s group showed that zebrafish and mouse Osm-3/Kif17 mutants 

display delayed onset of OS disc morphogenesis without adversely affecting the 

development of mature and functional photoreceptors (Lewis et al., 2017). Such results 

recapitulate findings of a germline deletion of KIF17 in mouse which has no effect on 

axoneme structure or photoreceptor function for up to two years. In mouse, KIF17 

apparently is not required for anterograde IFT and CC formation (Jiang et al., 2015a).

ARL3 (ADP-ribosylation factor (Arf)-like protein 3) (RP83, JBTS35)—ARL3 is a 

soluble, small GTPase (182 amino acids in mouse) present in all ciliated organisms (Zhang 

et al., 2013). Experiments in ciliated hTert-RPE and IMCD3 cells (Wright et al., 2011), 

pulldowns (Linari et al., 1999; Kobayashi et al., 2003; Hanzal-Bayer et al., 2002) and 

crystallography (Renault et al., 2001; Veltel et al., 2008; Ismail et al., 2012; Ismail et al., 

2011) identified ARL3 and its close relative, ARL2, as interactants of PDEδ and UNC119 

(Schwarz et al., 2012; Ismail et al., 2011; Wright et al., 2011). ARL3 GTPase activity is 

regulated by the guanine nucleotide exchange factor (GEF), Arl13b (Gotthardt et al., 2015), 

and a GTPase activating protein (GAP), RP2 (Veltel et al., 2008) (Fig. 13A).

In photoreceptors, ARL3 localizes to the cell body, inner segment and connecting cilium 

(Grayson et al., 2002; Hanke-Gogokhia et al., 2016) (Fig. 13B). The active conformation of 

ARL3 is found to be both soluble and membrane-associated due to weak affinity to 

membrane (Wright et al. 2011). It appears to accumulate near the basal body, presumably in 

the GTP-bound form (Fig. 13B, right panel).
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Arl3 germline knockouts died postnatally before day P21 (Schrick et al., 2006). The mutants 

exhibited abnormal development of renal, hepatic and pancreatic epithelial tubule structures 

and retinal degeneration reminiscent of Joubert syndrome (Schrick et al., 2006). Rod-

specific knockout of ARL3 and transgenic expression of dominantly active ARL3 (ARL3-

Q71L) showed that ARL3-GTP regulates trafficking of prenylated phototransduction 

proteins consistent with a role of ARL3-GTP as a cargo displacement factor (Hanke-

Gogokhia et al., 2016; Wright et al., 2016). Retina-specific deletion of ARL3 disabled 

formation of connecting cilia and outer segments did not form (Fig. 13D, right panel, inset) 

(Hanke-Gogokhia et al., 2016). Absence of cilia in the knockout infers requirement of ARL3 

for proper ciliogenesis and IFT, as shown in C. elegans where ARL3 was suggested to 

regulate IFT through a tubulin deacetylase pathway (Zhang et al., 2013; Li et al., 2010). 

Absence of cilia in retArl3−/− photoreceptors leads to protein accumulation in the inner 

segment (Fig. 13E, right panel) and rapid degeneration (Fig. 13F, right panel). 

Ultrastructural analyses at P10 and P15 revealed normal rod photoreceptor ciliogenesis in 

control animals (Fig. 13G, H, left panels), and RPE, OS, IS, OLM and ONL are clearly 

distinguished. Basal bodies docked to the cell membrane, CCs extended and outer segment 

structures were elaborated. At P15, WT photoreceptor structure matures with nearly fully-

developed outer segments and perfectly aligned basal bodies and CCs (Fig. 13H, left panel). 

By contrast, P10 retArl3−/− photoreceptors revealed basal bodies docked to the cell 

membrane but without CCs (Fig. 13G, right panel), and similarly, P15 retArl3−/− 

photoreceptors show ‘docked’ basal bodies with distal and subdistal appendages but no CCs 

(Fig. 13H, right panel).

ARL13b (ADP-ribosylation factor-like protein 13b) (JBTS8 ARL2L1, hnn)—
ARL13b (423 amino acids in human, 427 in mouse) is a small GTPase of the Ras 

superfamily (reviewed in (Zhang et al., 2013)) that is present in cilia and photoreceptor outer 

segments (Hanke-Gogokhia et al., 2017). ARL13b has a large G-domain, several coiled-coil 

domains and a C-terminal proline-rich region (Fig. 14A). Arl13b is palmitoylated at two 

cysteines near the N-terminal (Roy et al., 2017), a modification that is necessary for 

localization and stability. ARL13b was recently shown to function as a GEF for ARL3 

(Gotthardt et al., 2015; Ivanova et al., 2017). The co-crystal structure of C. reinhardtii 
ARL13b and ARL3 G-domains (Fig. 14B) identifies a C-terminal helix and the switch II 

region (blue) as key for mediating GEF activity (Gotthardt et al., 2015).

Cilia of all mammalian tissues examined, including photoreceptors of the retina, expressed 

ARL13b (Higginbotham et al., 2013; Li et al., 2016b; Joiner et al., 2015; Kim et al., 2013). 

ARL13b mutations in the G-domain of the human ARL13b gene cause Joubert (Cantagrel et 

al., 2008; Thomas et al., 2015) and Bardet-Biedl syndromes (Fan et al., 2004). A splice-

acceptor site mutation in exon 2 of mouse Arl13b (hennin mutation, Fig. 14A) was shown to 

be associated with defects in neural tube patterning, limbs and eyes, and homozygous 

mutants did not survive beyond E14.5 (Caspary et al., 2007). A kidney-specific deletion of 

Arl13b leads to kidney fibrosis (Li et al., 2016b). Zebrafish (“scorpion”) mutant Arl13b−/− 

cilia showed truncated axonemes and defects in the sonic hedgehog signaling pathway 

suggesting a function of ARL13b in cilia formation (Sun et al., 2004; Duldulao et al., 2009; 

Seixas et al., 2016). Scorpion Arl13b mutants were shown to have shortened outer segments 
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and exhibit slowly progressing retina degeneration (Song et al., 2016). In C. elegans, 
ARL13b was implicated in the regulation of ciliary protein transport and anterograde IFT 

(Cevik et al., 2010; Li et al., 2010). In hTert-RPE cells, ARL13b was implicated in 

regulation of IFT-A mediated retrograde IFT (Nozaki et al., 2017).

In mouse photoreceptors, ARL13b is present exclusively in the outer segments (Fig. 14C), 

presumably anchored to discs by palmitoylation. In retina-specific deletions of ARL13b, rod 

and cone CCs were absent as evidenced by absence of CETN2 labeling (Fig. 14C, right 

panel). Rhodopsin was undetectable in mutant rods (Fig. 14D, b), but cone pigment 

expression persisted in the inner segments (Fig. 14D, d, f). Electron microscopy of retArl13b
−/− photoreceptors at P10 and P15 revealed docking of basal bodies to cell membranes and 

presence of distal appendages, but absence of mature CCs, axonemes and discs (Fig. 14E, b, 

d).

Tamoxifen-induction of Cre in the adult mouse led to impaired IFT and shortening of the 

axoneme, presumably by interfering with retrograde IFT (Hanke-Gogokhia et al., 2017). 

IFT88, an IFT-B particle required for anterograde IFT, is present at the tamoxifen-exposed 
tamArl13b+/+ basal bodies (Fig. 14F, left panel, arrowheads) and proximal outer segments 

(Fig. 14F, arrows). However, IFT88 was significantly reduced or absent at the periciliary 

membrane of tamArl13b−/− photoreceptors (Fig. 14F, right panel, arrowheads). Quantitative 

evaluation (n=100) indicated 2–5-fold accumulation of IFT88 in the proximal OS in the face 

of a 5-fold reduction at the basal body, suggesting that IFT is impaired in the absence of 

ARL13b or ARL3-GTP. The connection between ARL3-GTP and IFT is unclear and 

remains to be elucidated, but interference with antero- and retrograde IFT could explain 

fully the progressive OS shortening and eventual photoreceptor degeneration in tamoxifen-

induced ARL13b depletions.

IQCB1 (IQ-motif containing B1) (NPHP5, SLSN5)—IQCB1/NPHP5 (598 amino 

acids) has IQ calmodulin-binding motifs, central CC domains, BBSome interaction and a C-

terminal CEP290 binding site (Fig. 15A) (Otto et al., 2005; Barbelanne et al., 2014; 

Barbelanne et al., 2013). IQCB1/NPHP5 distributes in the photoreceptor proximal outer 

segment (Hildebrandt et al., 1997; Ronquillo et al., 2016) (Fig. 15B) and to the basal 

body/CC in primary cilia of renal epithelial cells (Barbelanne et al., 2014; Barbelanne et al., 

2013). IQCB1/NPHP5, calmodulin and RPGR co-precipitate, probably as a multiprotein 

complex (Otto et al., 2005; Murga-Zamalloa et al., 2010). IQCB1/NPHP5 interacts with 

RPGR indirectly (Anand and Khanna, 2012; Gerner et al., 2010) and with CEP290/NPHP6 

directly (Schafer et al., 2008; Sang et al., 2011). In-vitro studies showed that CEP290- 

IQCB1/NPHP5 interaction is required for ciliogenesis (Barbelanne et al., 2013). In-vivo, 

CEP290 is undetectable in the germline Iqcb1/Nphp5 knockout (Fig. 15C, right panel).

Mutations in the human IQCB1/NPHP5 gene are the most common cause of SLS (Otto et 

al., 2005; Barbelanne et al., 2013; Halbritter et al., 2013; Chaki et al., 2011). 

Nephronophthisis presents with diminished kidney size, corticomedullary cysts and 

tubulointerstitial fibrosis (Wolf and Hildebrandt, 2011). NPHP5 mutations have also been 

identified in non-syndromic LCA patients (Estrada-Cuzcano et al., 2011; Stone et al., 2011). 

The retina phenotype of IQCB1/NPHP5 -LCA is severe, as the outer nuclear layer (ONL) is 
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barely detectable in young patients (Cideciyan et al., 2011). Cone-Rod Dystrophy 2 (crd2) 

of the American Pit Bull Terrier carries a frameshift mutation in exon 10 of the canine 

Iqcb1/Nphp5 gene truncating the Iqcb1/Nphp5 gene at residue 318 (Goldstein et al., 2013). 

Crd2 photoreceptors form outer segments early but are barely functioning at 6 weeks of age. 

By 14 weeks fewer than 10% of cones possess OS and ERGs are non-recordable (Downs et 

al., 2016). Iqcb1/Nphp5 knockdown studies in-vitro show decreased numbers of primary 

cilia in hTert-RPE1 cells (Barbelanne et al., 2013; Sang et al., 2011). Morpholino-

knockdown of Iqcb1/Nphp5 in zebrafish shows development of pronephric cysts, and blocks 

trafficking of GFP tagged with a rhodopsin targeting signal but not GFP tagged with 

peripherin-2 targeting signal (Schafer et al., 2008; Zhao and Malicki, 2011). These results 

suggest that IQCB1/NPHP5, at least in immortalized cell lines, acts as an early positive 

regulator of ciliogenesis and its absence inhibits migration and/or anchoring of the basal 

body to the cell cortex (Barbelanne et al., 2013).

In germline Iqcb1/Nphp5 knockout mice, photoreceptor CCs are stunted (Fig. 15B, C, D, 

right panels) and outer segments did not form. Knockout mice were blind at eye opening 

exhibiting LCA (Ronquillo et al., 2016), recapitulating the human pathology of rapid retinal 

degeneration. Basal bodies in Iqcb1/Nphp5 −/− photoreceptors docked to the cell membrane, 

but fully developed CCs did not form and outer segments failed to develop (Fig. 15D, right 

panel). Ultrastructure of P6 and P10 Iqcb1/Nphp5 −/− photoreceptors revealed aberrant CCs 

of reduced diameter. However, Iqcb1/Nphp5 −/− embryonic fibroblast (MEFs) and Iqcb1/

Nphp5 −/− kidneys developed normal cilia (Ronquillo et al., 2016).

Iqcb1/Nphp5 −/− rod degeneration is complete at one month of age. By contrast, cone 

photoreceptor degeneration is delayed significantly, and cones survived in Iqcb1/Nphp5 
−/−;Nrl−/− double knockout mice up to six months. Iqcb1/Nphp5 −/−;Nrl−/− cones expressed 

cone pigments and other outer segment proteins persistently in inner segments but did not 

degenerate. Gene replacement therapy with an scAAV8 vector expressing full length IQCB1/

NPHP5 showed that connecting cilia and RP1-positive axonemes are re-formed and cone 

pigments and other cone outer segment proteins (cone transducin, cone PDE6) are present in 

the mutant cone outer segments, and rescued mutant cones exhibit a significant photopic b-

wave (30% of double-het control) (Hanke-Gogokhia et al., 2018).

INPP5E (inositol polyphosphate-5-phosphatase E) (JBTS1, MORMS, Pharbin)
—INPP5E (647 amino acids) is farnesylated and a peripheral membrane protein (Fig. 16A). 

It removes 5’-phosphates of phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) and 

phosphatidylinositol 3,5-bisphosphate (PI(3,4)P2) (Fig. 16B). INPP5E was shown to be 

located to the Golgi of COS-7 cells (Kong et al., 2000). INPP5E is present in cilia of hTert-

RPE cells, mouse kidneys and cerebellum (Bielas et al., 2009), and mouse embryonic 

fibroblasts (MEFs) (Jacoby et al., 2009). In IMCD3 cells, targeting of INPP5E to Golgi was 

proposed to be PDEδ/ARL3-dependent, whereas targeting to cilia was ARL13b-dependent 

(Humbert et al., 2012). A three step mechanism regulating INPP5E (as an INPP5E-EGFP 

fusion protein) trafficking to and within IMCD3 cilia (farnesylation, PDEδ-and ARL3-

dependent trafficking, and transfer to IFT cargo) has recently been postulated (Kosling et al., 

2018). Presence of ciliary INPP5E replenishes PI4P in ciliary membranes; INPP5E loss-of-

function replenishes PI(4,5)P2 in the plasma membrane (Phua et al., 2017).
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Mutations in the human INPP5E gene are associated with Joubert and MORM syndromes 

(Bielas et al., 2009; Jacoby et al., 2009; Travaglini et al., 2013). Depletion of INPP5E in the 

adult mouse by tamoxifen-induction causes rapid photoreceptor degeneration. In fact, the 

photoreceptor layer was completely absent in tamoxifen-treated mice (Jacoby et al., 2009). 

Germline deletions of INPP5E are embryonically lethal (Dyson et al., 2017; Jacoby et al., 

2009), and E15.5 embryos have no eyes. Conditional deletion of INPP5E in retina revealed 

thet cilogenesis proceeds normally to P9. After P9 mutant photoreceptors rapidly degenerate 

(Sharif, Frederick and Baehr, unpublished).

Surprisingly, INPP5E was absent in mouse photoreceptor outer segments and localized to 

the proximal inner segment and Golgi (Bielas et al., 2009; Hanke-Gogokhia et al., 2016). 

Absence of INP5E in the outer segment was verified by neonatal electroporation of an 

EGFP-INPP5E expression construct and colabeling with a Golgi marker, anti-giantin (Fig. 

16C). INPP5E distributed to the perinuclear ER and Golgi apparatus (Fig. 16C, right panel), 

and was excluded from outer segments. This is incompatible with PDEδ-mediated 

trafficking of INPP5E to the OS, a pathway suggested in patients carrying a PDE6D null 

allele (Thomas et al., 2014). Presence of INPP5E in the Golgi, and its absence in the 

photoreceptor outer segment, implies a critical role for INPP5E in regulating Golgi-vesicular 

trafficking. It should be noted that when using isolated formalin-fixed rods, INPP5E was 

detectable strongly in the IS, but also, more weakly, in OS. Preliminary results with a 

photoreceptor-specific knockout of INPP5E indicate early, rapid photoreceptor degeneration 

with outer segment vesiculation (A. Sharif, J. Frederick, and W. Baehr, unpublished results).

4.3 Ciliary gene deletions that generate CC but fail to form OS.

This group contains two nephrocystins (NPHP1 and IQCB1/NPHP5), AHI1 (jouberin) and 

LCA5 (lebercilin). NPHP1, NPHP4 and LCA5 localize to the CC, and AHI1 is associated 

with the distal appendages of the basal body. Germline knockouts of NPHP1 and a null 

allele of NPHP4 cause rapid retinal degeneration, but not nephronophthisis. Germline 

deletion of AHI1 is associated with postnatal lethality while deletions of IQCB1/NPHP5 and 

LCA5 exhibit rapid LCA-like retina phenotypes.

NPHP1 (nephrocystin 1) (JBTS4)—NPHP1 (691 amino acids in mouse) is a protein 

with N-terminal and C-terminal coiled-coil domains, and a SH3 motif (SRC Homology 3 

Domain) for protein-protein interaction (Fig. 17A). Nphp1 was the first gene associated with 

nephronophthisis, discovered 20 years ago (Hildebrandt et al., 1997). Defects in the human 

gene are associated with Joubert and Senior-Løken syndromes. NPHP1 localizes to the TZ 

of renal and respiratory epithelia cilia and in photoreceptors was found in close proximity to 

the basal body (Fliegauf et al., 2006). In cell culture (mouse tracheal epithelial cells), high 

resolution STORM microscopy revealed NPHP1 is a TZ protein, arranged in a ring around 

the microtubule axoneme proximal to Y-links (Shi et al., 2017). Together with RPGRIP1L, 

B9D1 and TMEM231, which form concentric rings of different diameters, NPHP1 appears 

to be part of the TZ gate (Shi et al., 2017). Targeted disruption of Nphp1 in the mouse did 

not produce nephronophthisis, but caused male infertility and rapid retinal degeneration 

starting at P14-P21 (Jiang et al., 2008; Jiang et al., 2009). The Nphp1−/− mice failed to 

develop normal outer segments but connecting cilia were present in the mutant 

Baehr et al. Page 28

Prog Retin Eye Res. Author manuscript; available in PMC 2019 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



photoreceptors. Rhodopsin, transducin and other phototransduction proteins destined for the 

OS were predominantly located in the IS at P14, before significant degeneration of 

photoreceptor cells began (Jiang et al., 2008). IFT particles mislocalized along the 

connecting cilium. However, myosin VIIA, RPGR, KIF3A, centrin-1 and WDR19 localized 

normally to the connecting cilium.

AHI1 (Abelson Helper Integration site 1) (JBTS3, jouberin)—Jouberin (in human 

1196 amino acids, longest transcript; in mouse, 1047 amino acids) has a weak N-terminal 

coiled-coil and a WD40 domain (Fig. 17B). AHI1 gene mutations cause Joubert syndrome 

(Cheng et al., 2012), and missense mutations in the WD40 motif are associated with 

nonsyndromic retinitis pigmentosa (Nguyen et al., 2017). The ahi1lri46 mutation in 

zebrafish resulted in shorter cone outer segments, while the CC formed normally and 

CC2D2A and CEP290 localized properly (Lessieur et al., 2017). Deletion of AHI1 in mouse 

causes severe postnatal mortality. Photoreceptors failed to generate outer segments, but CC 

and axonemes were present (Louie et al., 2010; Westfall et al., 2010). AHI1 has been 

suggested to regulate cilium formation via its interaction with Rab8a, a small GTPase (Hsiao 

et al., 2009). AHI1 specifically localizes to the mother centriole, and knockdown of Ahi1 

expression by shRNAi leads to impairments in ciliogenesis. Moreover, abnormal trafficking 

of endocytic vesicles from the plasma membrane to the Golgi were observed in Ahi1-

knockdown cells (Hsiao et al., 2009). AHI1 has also been found to interact with HAP1 and 

NPHP1 (Tuz et al., 2013). Mutations in Ahi1 are suggested to destabilize AHI1 protein and 

alter cilium-mediated signaling through HAP1 and NPHP1 (Tuz et al., 2013).

NPHP4 (nephrocystin 4) (Nephroretinin) (POC10; SLSN4)—NPHP4 is a TZ protein 

consisting of 1425 amino acids (mouse). It does not reveal any recognizable Pfam motifs, 

but carries a RPGR-binding domain (RPGR-BD) and a proline-rich segment in the N-

terminal half of the protein (Fig. 17C). In C. reinhardtii, NPHP4 is located in the distal part 

of the TZ, distal to CEP290, and is thought to regulate ciliary trafficking of membrane and 

soluble proteins (Awata et al., 2014). In mouse, NPHP4 interacts with the Retinitis GTPase 

Regulator (RPGR) and RPGR-Interacting Protein 1 (RPGRIP1) (Murga-Zamalloa et al., 

2009; Roepman et al., 2005). Mutations in either NPHP4 or RPGRIP1 abolish this 

interaction (Roepman et al., 2005). A loss-of-function naturally occurring mouse model of 

NPHP4 (Nphpnmfl92) shows severe retinal degeneration reminiscent of LCA, with 

mislocalization of rhodopsin and ROM1 to the inner segment (Won et al., 2011). Connecting 

cilia and ribbon synapses developed normally, but outer segments failed to develop and 

ribbon structures eventually degenerated. However, as in NPHP1 and NPHP6 mouse 

mutants, no renal pathology was observed in the Nphpnmfl92 mouse (Chang et al., 2006; 

Jiang et al., 2008; Won et al., 2011).

LCA5, lebercilin (C6orf152)—Lebercilin (697 amino acids in human, 694 in mouse) is a 

protein with multiple coiled-coil domains in the N-terminal half (Fig. 17D) and is associated 

with LCA (den Hollander et al., 2007). It localizes to the CC in photoreceptors and interacts 

with IFT particles. Germline knockout (Lca5gt/gt) showed that the basal body docked to the 

cell membrane and formed a CC (Boldt et al., 2011). Outer segments did not form and visual 

pigments in rods and cones mislocalized. Lebercilin interacted with proteins of the IFT-B 
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complex and IFT140 (IFT-A complex), but localization of IFT20, IFT88 and IFT 140 was 

unaffected in the mutant. To date, mutations in lebercilin are only associated with LCA 

(non-syndromic ciliopathy phenotype).

4.4 Ciliary gene deletions that generate CC and OS, but outer segments are unstable.

This group contains mouse mutants which developed CC and OS but were unable to 

maintain outer segments. The mouse models are based on mutations in proteins which are 

selectively expressed in the retina (RPGR, RPGRIP1, SPATA7, FAM161A, PCARE and 

POC1b) and associated with RP and LCA. One gene, SDCCAG8 (NPHP10), is associated 

with syndromic ciliopathy. RPGR interacts with multiple proteins; its interaction with 

RPGRIP1 is essential for trafficking of RPGR to the CC (Zhao et al., 2003). RPGR 

cocrystallized with RPGRIP1 and PDEδ (PDE6D) (Watzlich et al., 2013; Remans et al., 

2014). It likely serves as a docking station for PDEδ/lipidated protein/ARL3-GTP 

complexes, a key step in trafficking of lipidated proteins in rod and cone photoreceptors (see 

paragraph ARL3). SPATA7 interacts with NPHP4, NPHP1, AHI1, RPGR and RPGRIP1 and 

appears to be a key organizer of proteins associated with the photoreceptor-specific distal 

CC (Dharmat et al., 2018). In the absence of SPATA7, the MT structure of the distal CC 

spreads and falls apart, followed by retinal degeneration. FAM161A is strongly expressed in 

retina inner segments and the connecting cilium, and is thought to be involved in membrane 

protein trafficking from the Golgi to the CC (Karlstetter et al., 2014). PCARE is expressed 

in inner segments and the CC, its function is unknown. SDCCAG8 has been shown to 

interact with multiple proteins shown to be causative in inherited retinal degeneration, such 

as RPGRIP1, RPGR and NPHP4. However it function is controversial, as germline 

knockouts displayed multiple phenotypes ranging from embryonic and postnatal lethality to 

long-term survival (see paragraph SDCCAG8).

RPGR (retinitis pigmentosa GTPase regulator) (RP3, rd9)—RPGR is expressed as 

two major variants, the constitutive form (90 kDa) containing all exons 1–19 and the RPGR-

Orf15 variant in which exon 15 is extended due to a splice donor mutation. RPGR carries an 

RCC1 domain and a CAAX motif at the C-terminus (Fig. 17E). The CAAX motif signals 

farnesylation and membrane attachment as a peripheral membrane protein. ORF15 contains 

repetitive Q- and G-rich regions and a basic domain (BD) at the C-terminus. The 

physiological function of RPGR is still unclear. The RLD domain (residues 1–392) was 

cocrystallized with RPGR-interacting domain (RID) of RPGRIP1 (Fig. 17K) and with 

PDEδ, the chaperone of lipidated proteins in photoreceptors (Watzlich et al., 2013; Remans 

et al., 2014). Interaction of RPGR with RPGRIP1 is essential for trafficking of RPGR to the 

CC (Zhao et al., 2003). RPGR is thought to function together with RPGRIP1 and CEP290 as 

a “ciliary gate” (Megaw et al., 2015), regulating trafficking through the “gate” and CC. 

Cocrystallization of RPGR with PDEδ suggests that RPGR may function as a docking 

station for lipidated cargo bound to PDEδ (Watzlich et al., 2013).

Mutations in the N-terminal RCC1 domain and in ORF15 in human are associated with 

classical XLRP, cone dystrophy, cone-rod dystrophy, and ciliopathy, also termed “RPGR 

disease” (reviewed in (Megaw et al., 2015; Shu et al., 2007)). RPGR is located to the CC by 

binding to RPGRIP1, a photoreceptor-specific protein (Zhao et al., 2003) and has multiple 
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binding partners, including PDEδ, NPHP4, CEP290, KIF3A and ARL3 (Megaw et al., 

2015). Germline deletion of RPGR in mouse (exon 4–6 deletion) (Hong et al., 2000) and 

conditional exon 1 deletion (Huang et al., 2012) did not affect ciliogenesis. Mutant 

photoreceptors developed normally, but mutant discs are disorganized. Phototransduction 

component levels in the Hong knockout (Hong et al., 2000) are basically unaltered (Rao et 

al., 2015). A naturally occurring knockout mouse (rd9) with a 32 bp ORF15 duplication 

exhibited an even slower degeneration, starting around two months postnatally (Thompson 

et al., 2012). Rd9 M-opsin mislocalized as early as at 2M postnatally, but S-opsin and 

rhodopsin localizations were normal. Two naturally occurring dog models, XLPRA1 and 

XLPRA2, have been reported (Guyon et al., 2007; Acland et al., 1994). XLPRA1 dogs carry 

a stop codon in the RPGR exon ORF15 associated with late onset XLRP. XLPRA2 dogs 

carry a frame-shift mutation in ORF15 causing a much more severe degeneration, starting a 

few weeks after birth (Zhang et al., 2002; Beltran et al., 2012).

RPGRIP1 (RPGR-interacting protein 1)—RPGRIP1 (Boylan and Wright, 2000) is a 

144 kDa protein (1286 amino acids in human, 1331 in mouse) that interacts with the RCC1 

domain of RPGR (Fig. 17K). Both human and mouse proteins colocalize to the 

photoreceptor CC. Null mutations in the human RPGRIP1 gene were found associated with 

recessive LCA (Dryja et al., 2001). RPGRIP1 contains three predicted coiled-coil domains, a 

C2-domain and a RPGR-interacting domain (RID) at the C-terminal region (Arts et al., 

2009) (Fig. 17F). The interaction between RPGR and RPGRIP1 was impaired in-vivo by 

RP3-associated mutations in RPGR (Roepman et al., 2000). RPGRIP1 interacts with NPHP4 

through the C2-domain, and their interaction is disrupted by LCA mutations in RPGRIP1 

and by nephronophthisis mutations in NPHP4 (Roepman et al., 2005). Crystal structure of 

the complex between a RID fragment of RPGRIP1 and a RCC1 domain of RPGR (Fig. 17K) 

showed that the RID domain has a canonical β-sandwich structure consistent with a C2-

domain. The RID β-sandwich does not bind Ca2+ and/or phospholipids and thus constitutes 

a unique type of protein-protein interaction module (Remans et al., 2014).

Rpgrip1 knockout mice (Rpgrip1−/− or Rpgrip1 tm1Tili (Zhao et al., 2003), truncated after 

exon 14 or after 500 residues) elaborate oversized and distorted outer segment discs, but 

ciliogenesis in mutant mice appears to be normal (Zhao et al., 2003; Won et al., 2009). Mice 

lacking RPGRIP1 and RPGR are phenotypically indistinguishable from mice lacking 

RPGRIP1s alone (Zhao et al., 2003). RPGR is absent in the CC of Rpgrip1 knockout mice, 

but not vice versa (Zhao et al., 2003). AAV-mediated RPGRIP1 gene replacement preserved 

photoreceptor structure and function (Pawlyk et al., 2005) and restored the normal 

localization of RPGR (Pawlyk et al., 2010). An ENU-induced mouse model carrying a 

splice-acceptor site mutation in Rpgrip1 (Rpgrip1nmf247), resulting in deletion of exon 7 and 

a frame-shift, have a more severe phenotype and do not elaborate rod outer segments (Won 

et al., 2009). Rpgrip1nmf247 mice lack NPHP4 and RPGR in photoreceptor cilia (Patil et al., 

2012). RPGRIP1 loss in photoreceptors shifts the subcellular partitioning of SDCCAG8/

NPHP10 and NPHP4 to the ER membrane (Patil et al., 2012). In an ENU-induced zebrafish 

model, rod outer segments were absent but cone outer segments developed (Raghupathy et 

al., 2017). A naturally occurring dog model (frame-shift in exon 2 of the Rpgrip1 gene), by 

Baehr et al. Page 31

Prog Retin Eye Res. Author manuscript; available in PMC 2019 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



contrast, developed rod and cone outer segments and displayed variable retina degeneration 

phenotypes (Mellersh et al., 2006).

SPATA7 (spermatogenesis-associated protein 7) (LCA3, HSD3)—The SPATA7 
gene was first identified in human spermatocytes, predicted to be involved in chromatin 

preparation in early meiotic prophase nuclei (Zhang et al., 2003). SPATA7 is an acidic 

protein of 599 amino acids (582 in mouse), with N-terminal coiled-coil and C-terminal 

RPGRIP1-interacting domains (Fig. 17G). Homozygous nonsense and frame-shift mutations 

in SPATA7 are associated with rod-cone dystrophy (Perrault et al., 2010; Wang et al., 

2009a). SPATA7 is a ciliary protein, localizes to the photoreceptor CC and interacts with 

RPGRP1 (Eblimit et al., 2015). In Spata7 knockout mice, ciliogenesis is normal but 

rhodopsin significantly mislocalizes to the ONL as early as P15. RPGRIP1 also mislocalizes 

supporting the idea that SPATA7 is essential for RPGRIP1 localization to the CC. By 

contrast, PRPH2 localized normally to the OS, consistent with a trafficking pathway of 

PRPH2 distinct from rhodopsin (Tian et al., 2014). The knockout mouse phenotype is a 

juvenile recessive RP (Eblimit et al., 2015). By ultrastructure, OS are shortened at P15 and 

discs are disorganized. AAV8-based gene therapy ameliorated rod and cone photoreceptor 

loss in Spata7−/− mice, but the treated retina still degenerated (Zhong et al., 2015). In 

Spata7−/− mice, RPGRIP1 levels at the CC are reduced suggesting that SPATA7 may be 

required for the stable assembly of the ciliary RPGRIP1 protein complex (Eblimit et al., 

2015). Further analysis revealed that SPATA7 together with RPGR and RPGRIP1 maintains 

the structure of the distal connecting cilium (DCC), a region specific for photoreceptors 

(Dharmat et al., 2018).

FAM161A (family with sequence similarity 161 member A) (RP28)—FAM161A 

(in human 716 amino acids, in mouse 700 (isoform x1)) is expressed predominantly in the 

retina. FAM161A homozygous nonsense mutations were found to be associated with RP28 

(Langmann et al., 2008). Fam161a has multiple coiled-coil domains (Fig. 17H), localizes to 

photoreceptor cells during development and in the adult retina, is present in the inner 

segment and outer plexiform layer (Langmann et al., 2008). Immunofluorescence and 

immune-EM located FAM161A to the connecting cilium and centrioles (Zach et al., 2012). 

FAM161a directly interacts through its C-terminal moiety with lebercilin, CEP290, OFD1 

and SDCCAG8 (Di Gioia et al., 2012). Interactions were also reported with POC1B 

associated with recessive cone-rod dystrophy (Roosing et al., 2014). Interactome analysis 

revealed that FAM161A is a member of a Golgi-centrosomal network interconnecting Golgi 

maintenance, intracellular transport and centrosome organization.(Di Gioia et al., 2015). In 

Fam161a GT/GT mice, connecting cilia were shortened, photoreceptor outer segments were 

disorganized and the outer retina was completely absent at 6 months (Karlstetter et al., 

2014). Centrin 3 was reduced and targeting of the Fam161a interactors, lebercilin and 

CEP290, was impaired. Outer segment cargo proteins, opsin and peripherin 2, were 

misrouted (Karlstetter et al., 2014).

PCARE (photoreceptor cilium actin regulator) (C2orf71, RP54)—PCARE is a 

large ciliary protein consisting of 1288 amino acids in human (1279 amino acids in mouse). 

PCARE carries a MGC amino terminus and a myristoylation consensus sequence; it is likely 
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myristoylated at glycine-2 and palmitoylated at C3 (Nishimura et al., 2010). The protein 

does not contain coiled-coil domains or other recognizable motifs of the Pfam protein 

families database (Finn et al., 2016). The amino acid sequence reveals Pro-rich (at position 

1015–1067) and Ser-rich regions (at positions 1077–1133). Nonsense and missense mutation 

in the human PCARE gene are associated with non-syndromic RP (Audo et al., 2011; Gerth-

Kahlert et al., 2017; Collin et al., 2010). PCARE is expressed in zebrafish photoreceptor 

connecting cilia (Corral-Serrano et al., 2015). Knockdown C2orf71 expression in zebrafish 

results in visual defects (Nishimura et al., 2010). Loss of the Pcare gene in mouse caused 

severe degeneration as early as 3 weeks (Kevany et al., 2015). In Pcare−/− mice, connecting 

cilia and disorganized outer segments were present at three weeks of age. In Gordon and 

Irish setter dogs with late on-set retinal atrophy, a novel PRA (progressive retina atrophy) 

locus was identified, termed rod–cone degeneration 4 (rcd4), in which a frame-shift 

mutation (C1051VfsX90) truncates PCARE (Downs et al., 2013). A stable pcare1 mutant 

zebrafish model generated by CRISPR/CAS9 was recently generated (Corral-Serrano et al., 

2018). Retinas of both embryonic (5 dpf) and adult (6 mpf) pcare1 mutant zebrafish display 

disorganization of photoreceptor outer segments, resembling the phenotype observed in 

Pcare−/− mice (Kevany et al., 2015).

C8ORF37 (RP64, BBS21, CORD16, smalltalk)—C8ORF37 (in human 207 amino 

acids, in mouse 209) is expressed ubiquitously. It has a Retinal Maintenance motif (RMP) 

covering most of its sequence, but its function is unknown (Estrada-Cuzcano et al., 2012). 

C8ORF37 is a cytoplasmic protein present in rod and cone inner segments (Sharif et al., 

2018). Immunostaining using C8ORF37 antibodies suggested that C8ORF37 may be a 

ciliary protein as it localizes to the basal body (van Huet et al., 2013; Estrada-Cuzcano et al., 

2012; Heon et al., 2016). Autosomal recessive mutations in C8ORF37 have been linked to 

retinitis pigmentosa (RP64), cone-rod dystrophy (CORD16) and Bardet-Biedl syndrome 

(BBS21) (Heon et al., 2016). Gene knockdown in zebrafish resulted in impaired visual 

behavior and defects in the formation of Kupffer’s vesicle (Heon et al., 2016). CRISPR/

CAS9 knockout mouse models of C8orf37 exhibit progressive and simultaneous 

degeneration of rod and cone photoreceptors (Sharif et al., 2018). The major ultrastructural 

feature of C8orf37 knockout photoreceptors was disorganization of the outer segment discs 

which appear misaligned at the onset of disc morphogenesis; levels of OS-specific 

membrane proteins, including proteins involved in membrane disc organization, were 

reduced (Sharif et al., 2018). Extra-ocular phenotypes such as obesity and polydactyly were 

not observed. Considering the distribution of wildtype C8ORF37 throughout the 

photoreceptor cell body and its absence in the OS, the normal structure of the KO 

photoreceptor connecting cilium, and absence of defects in other ciliary organs of the KO 

mice, C8ORF37 may participate in the secretory pathway of membrane proteins destined for 

the OS (Sharif et al., 2018).

SDCCAG8 (serologically-defined colon cancer antigen 8) (NPHP10, BBS16, 
CCCAP, SLSN7)—SDCCAG8 is a centrosomal and TZ protein consisting of 713 amino 

acids in mouse. It was first cloned and characterized as a coiled-coil domain centrosome 

associated protein CCCAP (Kenedy et al., 2003). The C-terminal region allows for 

homodimerization of SDCCAG8 (Kenedy et al., 2003). SDCCAG8 also contains an N-
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terminal globular domain that is connected to the coiled-coiled domains via a short helical 

sequence (Fig. 17I). Many mutations in the human SDCCAG8 have been linked to 

syndromic ciliopathy with kidney and retinal dystrophies (Otto et al., 2010) and Bardet-

Biedl syndrome (Schaefer et al., 2011). Most currently identified human patient mutations in 

SDCCAG8 resulting in BBS occur within the first 7 of 8 coiled-coiled domains, transcribed 

from exons 4–16 (Otto et al., 2010). SDCCAG8 has been shown to interact with multiple 

proteins causing inherited retinal degeneration, such as RPGRIP1, RPGR and NPHP4 (Patil 

et al., 2012).

An Sdccag8 knockout mouse model carrying gene-trap cassette in intron 1 blocked 

expression of the 78 kDa and 83 kDa SDCCAG8 protein isoforms in the retina (Airik et al., 

2014). Sdccag8 knockout mice were viable and photoreceptor outer segment shortening was 

observed at postnatal day 30 through immunohistochemistry, and loss of photoreceptor 

function was measured as a decrease in photopic electroretinogram (ERG) amplitude at 

postnatal day 100. Nephronophthisis was also observed (Airik et al., 2014). A second 

Sdccag8 knockout mouse model was created by insertion of a gene-trap in intron 6 of the 

Sdccag8 gene, resulting in polydactyly and early postnatal fatality (Insolera et al., 2014). 

Both models apparently eliminated expression of SDCCAG8, yet the viability phenotypes 

differ drastically. A third mouse model (Sdccag8SBT) exhibiting hind limb polydactyly with 

very poor viability harbors a mutation created by random insertion of the pT2-BART3 

transposon (Dharmat et al., 2018; Weihbrecht et al., 2018). Our lab created an SDCCAG8 

knockout mouse using CRISPR/CAS9 technology to create a 5bp deletion in exon 7 (Reed 

M and Baehr W, unpublished), resulting in a frame-shift. Early lethality, polydactyly and 

organ underdevelopment were observed, similar to the second gene-trap model (Insolera et 

al., 2014).

POC1B (POC1 centriolar protein B) (CORD20)—Proteome of the centriole (POC) 1 

is a highly conserved centriole/basal body component that is involved in the assembly/

stability of the centriole/basal body as well as ciliogenesis (Hames et al., 2008; Keller et al., 

2009; Pearson and Winey, 2009). POC1 proteins have two functional domains connected by 

a spacer sequence (Fig. 17J). The N-terminal WD40 domain forms a 7-bladed β-propeller 

which is required for centrosome targeting (Hames et al., 2008; Keller et al., 2009). The C-

terminal coiled-coil allows POC1 to interact with other proteins (Hames et al., 2008; 

Roosing et al., 2014). In vertebrates a gene duplication of POC1 resulted in two paralogues, 

POC1A and POC1B (previously called Pix2 and Pix1) (Keller et al., 2009). Human patient 

mutations in POC1A have been shown to be causative for a ciliopathy characterized by 

primordial dwarfism termed SOFT syndrome (short stature, onychodysplasia, facial 

dysmorphism, and hypotrichosis) (Shaheen et al., 2012; Sarig et al., 2012). A LINE-1 

retrotransposon-mediated insertion into the mouse Poc1a gene resulted in mice with 

impaired cilia formation, multipolar spindles, growth insufficiency, and male infertility 

(Geister et al., 2015). A homozygous POC1B missense mutation p.Arg106Pro that prevents 

the formation of the third WD40 repeat of POC1B was found in affected individuals in a 

consanguineous family with a high incidence of LCA, Joubert syndrome and polycystic 

kidney disease (Beck et al., 2014). Knockdown of Poc1b in zebrafish using morpholino 

injection resulted in shortened and disorganized photoreceptors (Roosing et al., 2014; Zhang 

Baehr et al. Page 34

Prog Retin Eye Res. Author manuscript; available in PMC 2019 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



et al., 2015). Another study found that the number and length of connecting cilia, as well as 

inner segment length, is also reduced in morphant larvae (Beck et al., 2014).

5. Epilogue

The centrosome and basal body are the major microtubule-organizing centers of dividing 

and postmitototic cells, respectively. Complexity of their biogenesis, duplication and 

maintenance is astounding: numerous genes and proteins with largely unknown function are 

necessary to build these cytoplasmic structures. This report reviews select centrosomal and 

CC/TZ-associated genes to highlight their importance for centrosome biogenesis and early 

events of ciliogenesis. As we selected a limited number of genes, the functions of which are 

poorly understood or completely unknown, the selection is necessarily subjective and thus 

incomplete. Another intent was to examine individual components through the eyes of a 

biochemist and to dissect protein domain structures augmented by crystallography, if 

available.

Progress in ciliary gene identification, propelled by sophisticated protein interaction 

methods and proteomics, has been explosive over the last decade. Much progress is based on 

tissue culture experiments with IMCD3, RPE or immortalized tumor cells. Primary cilia of 

cultured cells, however, are distinct from primary cilia in-vivo, e.g., cilia of olfactory sensory 

neurons or photoreceptors. Such cilia have precise functions (olfaction and vision) and have 

adapted through millennia of evolution to current conditions. While many cellular functions, 

such as centrosome formation, microtubule organization and IFT have been conserved 

throughout evolution, individual cilia have adapted pathways according to their specialized 

sensory loads.

The light-sensitive cilium of photoreceptors, consisting of an outer segment, CC and the 

basal body/axoneme backbone, is a highly specialized primary cilium. The outer segment 

which performs photoreception and transduction, has a much larger volume than primary 

cilia of kidney epithelial or RPE cells. The CC can be divided into proximal and distal parts 

(Dharmat et al., 2018), where the distal part is photoreceptor-specific. The outer segment has 

a very high concentration of rhodopsin and its chromophore, 11-cis retinal (3–8 mM). 

Photolysis of retinal during photoreception generates toxic adducts which must be removed. 

Outer segment membrane is replaced every 10 days, requiring highly active membrane 

protein transport. Renewal is achieved by disc assembly/morphogenesis at the proximal end 

of the outer segment with concomitant disc shedding distally, with phagocytosis of shed disc 

membrane mediated by RPE apical processes. Daily renewal of 10% (~100 discs) of the 

outer segment membrane requires very active metabolism, i.e., persisting high rate of 

biosynthesis to replace OS proteins, with reliable transport and targeting pathways. 

Therefore, it is unsurprising that photoreceptors during their long evolution have optimized 

tools (proteins) to generate and maintain cilia, and develop specific trafficking pathways for 

membrane-bound and soluble proteins.

We emphasize here some differences between primary cilia and photoreceptor cilia, focusing 

on CETN2, CP110 and CC2D2A. Mouse CETN2 (see chapter on centrins) is nonessential 

for ciliogenesis as formations of both primary cilia (renal tubule epithelia, photoreceptors) 
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and motile cilia (multiciliated respiratory epithelia, ependymal epithelia) proceed normally 

in Cetn2 germline knockouts (Ying, et al, 2014). However, the in-vivo result contradicts an 

in-vitro study showing that CRISPR/CAS9 disruption of Cetn2 in hTERT-RPE1 cells leads 

to dramatically reduced ciliogenesis due to impaired removal of CP110 (a known basal body 

distal end cap and ciliation inhibitor) assayed via serum starvation-induced ciliogenesis. 

Also in cell culture, loss of CEP97 and CP110 promotes primary cilia formation in growing 

cells, suggesting that CP110 is a negative regulator of ciliogenesis (its presence prevents 

cilia formation; its absence induces cilia formation) (see CP110 paragraph). By contrast, 

photoreceptor CP110 is required for basal body anchoring to the plasma membrane and 

promotes cilia formation, acting as a positive regulator.

In a zebrafish Cc2d2a null mutant (see CC2D2A paragraph), sentinel (W628X), (Bachmann-

Gagescu et al., 2012; Mougou-Zerelli et al., 2009), mutant rods and cones formed cilia but 

outer segments were shortened and rhodopsin and cone pigments mislocalized. Rab8-coated 

vesicles accumulated at the apical inner segments suggesting CC2D2A is important for 

membrane protein trafficking in zebrafish. In a recent paper, Naharros et al show that 

CC2D2A plays a role in docking of opsin-carrying vesicles at the periciliary membrane 

(Ojeda Naharros et al., 2017). By contrast, the Cc2d2a −/− mouse recapitulates features of 

Meckel syndrome with multiorgan defects (Veleri et al., 2014). Loss of CC2D2A leads to 

embryonic lethality; embryos often show polydactyly, exencephaly and situs inversus. Cilia 

are absent in Cc2d2a embryonic node and other somatic tissues. The conclusion of the 

mouse CC2D2A knockout was that CC2D2A is essential for the assembly of subdistal 

appendages, which anchor cytoplasmic microtubules and prime the mother centriole for 

axoneme biogenesis (Veleri et al., 2014).

Future directions

From a photoreceptor development and disease perspective, germline knockouts using 

CRISPR/CAS9 and conditional knockouts of BB- and CC/TZ-associated genes (using one 

of various retina-, rod-, cone-, or RPE-specific Cre drivers) remain promising, as the mouse 

knockout phenotype provides important clues of wildtype gene function. Mutant mice with 

floxed genes can be generated relatively easily from commercially-available ESC lines 

carrying gene traps with conditional possibilities. Recent developments using CRISPR/

CAS9 to ‘knock in’ exons with flanking loxP sites for conditional deletion are quite exciting 

but of poor efficiency. However, technology such as Easi-CRISPR (“efficient additions with 

single-stranded DNA inserts”) promises to be much more efficient, thus reducing the cost of 

generating conditional knockouts (Miura et al., 2018; Quadros et al., 2017). We anticipate 

that research focusing on centrioles, CC/TZ and syndromic/non-syndromic ciliopathies will 

continue to expand in view of the importance of untreatable human disease. Further, gene 

mutations introduced into animal models by gene editing (DiCarlo et al., 2018; DiCarlo et 

al., 2017) will provide cornerstones toward understanding disease mechanisms and 

developing gene replacement therapy.
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Abbreviations

BB basal body

BBS Bardet-Biedl syndrome

CC connecting cilium

CD coiled-coil domain

C2 C2 domain for protein-protein or protein membrane interaction

DA distal appendages

DC daughter centriole

ER endoplasmic reticulum

IS inner segment

LCA Leber congenital amaurosis

IFT intraflagellar transport

JS Joubert syndrome

MC mother centriole

MKS Meckel syndrome

MT microtubules

MTOC microtubule organization center

NPHP nephronophthisis

PCM pericentriolar matrix

OFD orofaciodigital syndrome

OS outer segment

RP retinitis pigmentosa

SLS Senior Løken syndrome

SDA subdistal appendages

TZ transition zone
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Figure 1. 
Basal body/axoneme cytoskeleton. A, Schematic of cone and rod photoreceptors depicting 

the outer segment where phototransduction occurs, the inner segment containing the 

endoplasmic reticulum and Golgi apparatus, the nuclear region and the synaptic terminal. B, 

enlarged detail of the axoneme cytoskeleton consisting of basal body (= mother centriole) 

proximally, transition zone and axoneme distally. C, electron micrograph of mouse rod, 

partial view, revealing the basal body, microtubule-stabilized CC and outer segment (OS) 

stacked with membrane discs. Note, the daughter centriole is out-of-plane and not visible; 

inset shows a different BB/DC pair. Scale, 0.5 µm.
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Figure 2. 
The centrosome (microtubule organization center, MTOC) consisting of mother centriole, 

daughter centriole and pericentriolar matrix (PCM). Mother and daughter centriolar 

microtubules consist of nine triplet barrels organized in a cartwheel array. Each triplet has 

A-, B- and C-tubules; C-tubules are specific for mother and daughter centrioles. 

Cytoplasmic microtubules connect to subdistal appendages and to PCM points (green 

circles) anchored by the γ-tubulin ring complex. Centriolar satellites (CS) are distributed 

throughout the PCM. Distal ends of both mother and daughter centrioles are protected by 

centriolar coiled-coil protein CP110, and centrosomal protein CEP97. DA, distal 

appendages; SDA, subdistal appendages; MT, microtubules; γT, γ-tubulin ring complex; Rt, 

striated rootlet; CS, centriolar satellites.
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Figure 3. 
Basal body/axoneme backbone. A, basal body schematic representation with transition zone 

and axoneme. A-tubules (blue) and B-tubules (green) emanate from the basal body to form 

the transition zone which is characterized by y-links connecting the tubules to the ciliary 

membrane. While the proximal axoneme consists of microtubule doublets, the distal 

axoneme has singlets. DA, distal appendages; SDA, subdistal appendages; MT, 

microtubules; PCM, pericentriolar matrix; γT, γ-tubulin ring complex. B, Crossections of 

the axoneme, transition zone and basal body, distal-to-proximal respectively, indicating the 

arrangement of microtubule arrays. “+0” indicates absence of a central MT.
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Figure 4. 
Stages of rod photoreceptor ciliogenesis. At P0-P1, the centrosome consisting of mother and 

daughter centrioles (MC, DC) acquires a ciliary vesicle (CV) at its distal end. Soon, from 

P3-P4, the mother centriole docks to the cortex of the inner segment. At P5-P6, the axoneme 

(Ax) emanates from the MC and MC becomes a basal body (green). A- and B-tubules 

(black) extend at P7-P8, and the transition zone TZ is established. The cell membrane 

evaginates and discs are formed. The outer segment is considered mature at three weeks of 

age (P21). Adapted from May-Simera et al., 2018.
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Figure 5. 
Localizations of centrosomal and centriolar proteins to the basal body, transition zone, and 

axoneme. CEP89, CEP164, CEP83, ODF2, SCLT1 and FBF1 are distal appendage (DA) 

proteins, while CEP170, NIN, and TUBE1 are subdistal appendage (SDA) proteins. PCM1, 

CROCC1 (rootletin), centriolin, PCNT (pericentrin), CEP215, TUBG1, TUBE1 and MACF1 

are associated with the pericentriolar matrix (PCM) or ‘cloud.’ ARL13b and INPP5E are 

ciliary proteins. SPATA7, RPGR, RPGRIP1, NLP, centrins, CEP290, IQCB1/NPHP5, 

NPHP4, POC1B, TMEM67, SDCCAG8 (NPHP10) and C8ORF37 are located at the 

transition zone (TZ) distinguished by the presence of Y-linkers. AHI1, OFD1, C2CD3, 

CC2D2A, CP110, CEP97 localize to BB and DC. Inactive ARL3-GDP and KIF3a are 

cytoplasmic. Note that some proteins distribute to multiple subdomains (e.g., CETN2 

associates with MC, DC and TZ) or occur in active and inactive forms altering their 

subdomain affiliation (ARL3-GTP and ARL3-GDP, or active/inactive KIF3a). Rt, rootlet; 

BB, basal body; Ax, axoneme.
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Figure 6. 
Centrin 1 crystal structure and localization. A, Cetn1 (PDB 5D43) structure showing α-

helical ribbons (red) and β-strand loops (green), forming the four EF-hands. Circular N 

(blue) and C (green) denote N- and C-terminals, respectively. Ca2+ ion positions (black dots) 

are indicated. B, CETN1 domain structure showing four high-affinity Ca2+ binding sites 

(EF-hands, blue) and DEAD-box subfamily ATP-dependent helicase signature (D, red). C, 

immunohistochemistry with anti-CETN1 (green) antibody to show labeling of centrioles and 

connecting cilia of wild-type photoreceptors (left), and absence in photoreceptors of 

germline knockout retina (right). Germline deletion of CETN1 does not affect photoreceptor 

function. D, immunohistochemistry with anti-CETN1 antibody in wild-type (left) and 

germline knockout (right) seminiferous tubules; Cetn1−/− mice are infertile. Scale bars: 10 

μm; inset, 5 μm.
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Figure 7. 
Transgenic expression of EGFP-CETN2 identifies photoreceptor centrioles and connecting 

cilia. A, rod outer segments labeled with anti-rhodopsin (red), centrioles expressing EGFP-

CETN2 (green) and nuclei binding DAPI (blue). B, confocal microscopy of several 

connecting cilia. C, a single photoreceptor connecting cilium streak resembles the tail of a 

shooting star. BB, basal body; DC, daughter centriole.

Baehr et al. Page 68

Prog Retin Eye Res. Author manuscript; available in PMC 2019 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Domain structures of mouse pericentriolar and subdistal appendage proteins. A, PCNT 

(pericentrin), B, CROCC1 (rootletin), C, PCM1 (pericentriolar material), D, CEP215 

(CDK5RAP2), E, CEP170; F, CNTRL (centriolin), G, NIN (Ninein), H, Ninein-like (NINL) 

protein and I, ODF2. CD, coiled-coil domains. Myo-tail, myo tail region; CTD, centrosomal 

targeting domain; SHD, spectrin homology domain; NLS, nuclear localization signal; bZIP, 

basic leucine zipper domain; MTA, microtubule-associated region; FHA, forkhead-

associated domain; Q, glutamine-rich region; E, glutamic acid-rich region; L, leucine-rich 

region; P, proline-rich region; EF, high-affinity Ca2+ binding site (EF-hand); P-loop, ATP/

GTP-binding motif. The motifs were identified by scan “my Hits” at http://myhits.isb-sib.ch/

cgi-bin/PFSCAN. Coiled-coil domains (CD) were retrieved using https://embnet.vital-it.ch/

software/COILS_form.html.
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Figure 9. 
Domain structures of mouse distal appendage (DA) proteins. A, CEP164, B, CEP83, C, 

SCLT1, D, FBF1, E, ODF2, F, C2CD3 and G, CEP89. WW, protein interaction domain 

flanked by tryptophan (W); CD, coiled-coil domains; NLS, nuclear localization signal; 

regions that are Q, glutamine-rich; E, glutamic acid-rich; K, lysine-rich; P, proline-rich; S, 

serine-rich are marked with colored lines; bZip, basic leucine zipper domain; myo-tail, 

myosin tail region;. Motifs were identified by motif scan “my Hits” at http://myhits.isb-

sib.ch/cgi-bin/PFSCAN. Coiled-coil domains were retrieved using https://embnet.vital-it.ch/

software/COILS_form.html.
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Figure 10. 
Schematic of rod microtubule organization. Microtubules (green lines) radiate from the basal 

body (BB, or MTOC) to the photoreceptor periphery, i.e., the outer segment or alternatively, 

synaptic terminal. Microtubule (−) ends are located at the BB, (+) ends at the periphery. 

Plus-end directed kinesin-2 and minus-end directed cytoplasmic dynein transport “cargo” 

(vesicles loaded with membrane protein) to the appropriate destinations. Kinesin-2, an 

anterograde molecular motor, transports cargo through the TZ/CC to maintain the axoneme 

in the face of daily turnover of outer segment (OS) components. Cytoplasmic dynein-2 is the 

motor for retrograde intraflagellar transport (IFT). Y-links and ciliary proteins at the TZ/CC 

(CEP290) base have been proposed to form a gate controlling access to the OS, but a 

functional gate has not been shown to exist in photoreceptors. TZ/CC, transition zone/

connecting cilium; Ax, axoneme; BB, basal body; GA, Golgi apparatus; ER, endoplasmic 

reticulum; MT, microtubules.
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Figure 11. 
Distal centriole and proximal TZ protein domain structures. A, CP110; B, CEP97; C, 

CEP290; D, MACF1; E, CC2D2A. Ca, calmodulin- and centrin-interacting sites (Tsang, 

2006); CD, coiled-coil domains; NLS, nuclear localization signal. L, leucine-rich domain; 

IQ, IQ calmodulin binding motif. EZRA, EZRA (bacterial scaffolding protein) domain; 

myo, myosin tail domain; colored bars above and below denote interaction sites with 

indicated proteins; Δ, area of in-frame deletion of exons 36–39 in rd16, a CEP290 mutant. S, 

serine-rich domain. C2, Ca2+-binding domain, a β-sandwich composed of 8 β-strands that 

co-ordinates two or three Ca2+ ions; Q, glutamine-rich domain. (microtubule-actin 

crosslinking factor 1). PR, plectin domain; SR, spectrin domain; EF, high-affinity Ca2+-

binding site; CH, calponin-homology (actin-binding) domain; MT, microtubule-interacting 

region.
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Figure 12. 
Retina-specific deletion of Kif3a in photoreceptors (retKif3a−/−). A, KIF3a domain 

schematic. Six3-Cre expression excises exon 2, thereby truncating the protein after exon 1. 

B, C, connecting cilium formation in retKif3a+/− (left) and retKif3a−/− (right) photoreceptors 

expressing the centriole marker, EGFP-CENT2, at P6 (B) and P10 (C). In C, CCs appear as 

1µm-long streaks resembling shooting stars; despite presence of centrioles in the knockouts, 

CCs are absent. D-F, retKif3a+/− (D) and retKif3a−/− (E, F) photoreceptor ultrastructure. P10 
retKif3a+/− photoreceptor with stacks of membrane discs forming at the connecting cilium 

distal portion (D). E,F, mother centrioles of P10 retKif3a−/− photoreceptors dock to the 

cortex normally but are devoid of CCs and outer segments. Mother centriole subdistal 

(arrow) and distal (arrowhead) appendages are indicated.
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Figure 13. 
ARL3 distribution and function in photoreceptors. A, ARL3 activation by its GEF 

(ARL13b) and inactivation by its GAP (RP2) schematized. B, virally-expressed ARL3-

EGFP localizes to the CC/BB area (identified by a yellow circle), inner segment (IS) and 

outer nuclear layer (ONL) of WT photoreceptors. Rhodopsin (red) is identified with 

polyclonal antibody directed against the mouse rhodopsin N-terminus (VPP-rho). Scale bar, 

10µm. Enlargement of dotted area, right; scale, 5µm. C-F, ONL immunohistochemistry at 

P10 (C,E) and P15 (D,F). EGFP-CETN2 fluorescence (C,D), or anti-rhodopsin labeling 

(E,F) are illustrated. C,D (left panels) show controls with normal transition zones. C, D 

(right) are retina-specific knockouts with stunted or absent transition zones. Rhodopsin 

localizes normally to ROS (E,F left panels); rhodopsin mislocalizes to the outer nuclear 

layer (E,F, right). DAPI (blue) identifies extent of outer nuclear layer. Scale bar, 10µm. G, H, 

Ultrastructure of retArl3−/− retina. Transition zone ultrastructure of P10 (G) and P15 (H) WT 

Baehr et al. Page 74

Prog Retin Eye Res. Author manuscript; available in PMC 2019 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and mutant retinas. Controls (G,H left panels) demonstrate intact CC, BB and DC. CCs are 

absent in each knockout (right). Scale bar, 500 nm.
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Figure 14. 
Deletion of Arl13b in retina. A, ARL13b domains: hnn, hennin truncation mutation in 

mouse; PRR, proline-rich domain; CD, coiled-coil domain; G-domain, a canonical switch 

motif (‘on’ with GTP bound, ‘off’ with GDP bound). ). B, Co-crystal structure of C. 
reinhardtii ARL13b (residues 17–220, left) and ARL3 (residues 16–180, right) G-domains. 

Green circle, Mg2+ bound to GTP. C-terminal helix and switch II of ARL13B mediate GEF 

activity. C, Arl13b (red) immunolocalization in control (left panel) and knockout (right) 

photoreceptors; note, CCs of the heterozygous control are absent in the knockout. D, Egfp-
Cetn2+;retArl13b+/− (a, c, e) and Egfp-Cetn2+;retArl13b−/− (b, d, f) P15 mouse retina 

cryosections were labeled with antibodies directed against rhodopsin (a, b), S-opsin (c, d) 

and ML-opsin (e, f) (red). retArl13b+/− photoreceptors develop transition zones (a, white 

arrowheads), while formation of the CC and OS in retArl13b−/− photoreceptors (b, d, f) is 

impaired. Scale bar, 5 μm. E, Ultrastructure of P10 (a, b) and P15 (c, d) WT and mutant 
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photoreceptors. Controls (a, c) develop a CC and OS, while knockouts do not (b, d). Scale 

bar, 500 nm. F, tamoxifen-induced depletion of ARL13b, assayed 3 weeks post-injection 

(3WPI). Immunohistochemistry of 3WPI tamArl13b+/+ (left) and tamArl13b +/+ (right) 

cryosections with anti-IFT88 antibody. Proximal OSs (arrows) and basal bodies 

(arrowheads) are indicated. Enlargements, IFT88 (red) accumulates at the basal body, CC 

and proximal OS of control photoreceptors, while IFT88 appears predominantly restricted to 

the proximal OS of Arl13b-depleted cells. Scale bar, 10 μm; enlargements, 3 μm.
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Figure 15. 
IQCB1/NPHP5 domain structure and photoreceptor localization. A, IQCB1/NPHP5 

functional domains. BBS, BBSome interaction site; CD, coiled-coil domains; IQ, IQ 

calmodulin-binding motifs; Cep, CEP290-binding site. Crd2 dog, position of frameshift 

mutation in exon 12 associated with SLS. β-GEO identifies the approximate position of 

truncation in the Iqcb1 germline knockout. B, IQCB1/NPHP5 immunolocalization in P15 

control (left) and Iqcb1/Nphp5 −/− cryosections. Centrioles/CCs are identified by transgenic 

expression of EGFP-CETN2. Note, germline Iqcb1/Nphp5 knockout mice have 

photoreceptors that are unable to form OS. C, retina cryosections probed with anti-CEP290 

antibody. CEP290 is unstable and degraded in the absence of IQCB1/NPHP5. D, P10 control 

(left) and Iqcb1/Nphp5 −/− (right) ultrastructure showing photoreceptor transition zones.
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Figure 16. 
INPP5E and phosphoinositides. A, INPP5E domain structure. An inositide polyphosphate 

phosphatase, INPP5E bears a coiled-coil domain at its C-terminal region and a CAAX motif 

signaling farnesylation. B, INPP5E enzymatically removes a 5’-phosphate at the inositol 

ring of PI(3,4,5)P3; side chains R1 and R2 are acyl esters attached to glycerol. PI(3,4,5)P3 is 

a key secondary messenger in photoreceptors and other cells. C, virally-expressed EGFP-

INPP5E (green) distributes to the Golgi apparatus of the inner segment and colocalizes 

partially with the Golgi marker, giantin (red). INPP5E is also found associated with the 

perinuclear endoplasmic reticulum (ER). D, Anti-rhodopsin labels the rod outer segments 

where EGFP-INPP5E is undetectable.
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Figure 17. 
Domain structures of A, NPHP1, B, AHI1 (jouberin); C, NPHP4; D, lebercilin (LCA5); E, 

RPGR (RP3); F, RPGRIP1; G, SPATA7; H, TMEM67 (meckelin); I, FAM161A; J, 

SDCCAG8; K, POC1b. CD, coiled-coil domain; SH3, Src homology 3 domain; WD40, 

WD40 repeat (40 amino acids flanked by W and D); RPGR-BD, RPGR binding domain; P’ 

proline-rich domain; NLS, nuclear localization signal; P-loop, phosphate binding loop for 

interaction with ATP/GTP; RCC1, Regulator of Chromosome Condensation 1; E, glutamic 

acid-rich region; RID, RPGR-interacting domain; C2, β-sandwich structure that coordinates 

Ca2+ ions; TM, predicted transmembrane domain; S, serine-rich domain; N, asparagine-rich 

domain; Q- glutamine-rich domain. J, co-crystal structure of RPGR RCC1-like domain 

(RLD) and the RPGR-interacting domain (RID) of RPGRIP1. RPGR-RLD forms a seven-

bladed propeller, each consisting of four anti-parallel β-strands (Waetzlich et al. 2013). 
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RPGRIP1-RID consists of an eight-stranded antiparallel β-sandwich. Several mutations 

associated with XLRP are located at the RLD interface with RID (Remans et al., 2014).
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