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Abstract

With the increasing incidence of diabetic retinopathy and its improved detection, there is increased demand for diabetic
retinopathy treatment services. Prognostic prediction models have been used to optimise services but these were intended for
early detection of sight-threatening retinopathy and are mostly used in diabetic retinopathy screening services. We wanted to
look into the predictive ability and applicability of the existing models for the higher-risk patients referred into hospitals. We
searched MEDLINE, EMBASE, COCHRANE CENTRAL, conference abstracts and reference lists of included publications
for studies of any design using search terms related to diabetes, diabetic retinopathy and prognostic models. Search results
were screened for relevance to the review question. Included studies had data extracted on model characteristics, predictive
ability and validation. They were assessed for quality using criteria specified by PROBAST and CHARMS checklists,
independently by two reviewers. Twenty-two articles reporting on 14 prognostic models (including four updates) met the
selection criteria. Eleven models had internal validation, eight had external validation and one had neither. Discriminative
ability with c-statistics ranged from 0.57 to 0.91. Studies ranged from low to high risk of bias, mostly due to the need for
external validation or missing data. Participants, outcomes, predictors handling and modelling methods varied. Most models
focussed on lower-risk patients, the majority had high risk of bias and doubtful applicability, but three models had some
applicability for higher-risk patients. However, these models will also need updating and external validation in multiple
hospital settings before being implemented into clinical practice.

Introduction

There has been a global increase in the number of people
with diabetes, rising from 108 million in 1980 to 422 mil-
lion in 2014 [1]. The detection of retinopathy has also
increased through better population screening [2]. While
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services may be organised differently from country to
country, the care pathways are likely to be similar with
patients at higher risk being provided closer monitoring and
care. In the United Kingdom, diabetic retinopathy (DR)
services are organised into diabetic eye screening pro-
grammes (DESP) and hospital eye services. DESP provides
annual diabetic retinopathy screening to all patients with
diabetes above 12 years of age. Screening uptake in the year
2015/16 was 82.5% [3]. If the screening findings indicate
low risk (retinopathy stage RO, R1 and MO, see Fig. 1 and
Table Al) they are retained within the DESP and reviewed
yearly. When the disease progresses to sight-threatening
diabetic retinopathy (STR) stage—(R2, R3 or M1), they are
referred to the hospital eye services for closer observation
and treatment (Fig. 1). In the United States, yearly screening
is recommended to all type 2 diabetes mellitus (T2DM)
patients at diagnosis and afterwards, type 1 diabetes melli-
tus (T1DM) patients are recommended to have screening on
an annual basis, commencing 5 years after diagnosis [4, 5].

In the United Kingdom, ~50% of referrals with STR do
not need intervention and are observed in the hospital eye
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Fig. 1 Patient flow diagram®.
See Table Al for more details
on classification of diabetic
retinopathy. RO, no retinopathy;
R1, background retinopathy; R2,
pre-proliferative retinopathy;
R3, proliferative retinopathy;
MO, no maculopathy; M1,
maculopathy present; DESP,
diabetic eye screening
programme; HES, hospital eye
services; STR, sight-threatening
retinopathy; IVT, intra-vitreal
therapy; VEGF, vascular
endothelial growth factor; VR,
vitreoretinal

o
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Interventions:
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VR Surgery

service for a variable period of time [6], placing extra
burden on these services. Various modifications to improve
the service have been proposed, like digital surveillance
using optical coherence tomography (OCT), and virtual
clinics within DESP [6].

Prognostic modelling/nomograms can aid decision-
making [7]. There have been successful attempts at opti-
mising diabetic screening services through stratification of
patients by risk of progression of DR using a prognostic
prediction model [8, 9]. A similar approach will also help
optimise hospital eye services. Such a model combines
multiple prognostic factors to predict which patients are at
higher risk of progression to visual loss and thus need closer
observation or treatment to prevent loss of vision [10-12].
The aim of this systematic review is to summarise the
characteristics and performance of existing models in pre-
dicting progression of retinopathy and their applicability for
higher-risk DR patients under hospital care to predict need
for treatment or loss of vision.

Methods/design

Patient group, selection criteria/study design/
inclusion criteria

Studies were included in the review of any design that
developed, updated, validated, compared or evaluated a
prognostic prediction model/tool, using multiple prognostic

factors to predict the risk of progression of diabetic reti-
nopathy and/or vision loss. The searches covered studies
reporting the development of a model, validation of a model
and impact of a model in practice.

There was no restriction on the age of participants or
type of diabetes. The primary outcomes of our review
were predictive accuracy and applicability of the prog-
nostic prediction models/tools in relation to progression of
diabetic retinopathy from stages that required hospital
referral (R2, R3 or M1) to treatment requiring stage or
vision loss.

Search strategy and selection criteria

As prognostic model studies can be difficult to identify,
several approaches were used. MEDLINE, EMBASE and
COCHRANE CENTRAL (up to March 5, 2017) were
searched using index and free text terms for diabetes, reti-
nopathy and prognostic models. A sample search strategy
for MEDLINE is shown in Table A2. We did not apply any
restrictions on language or dates of publication. We also
searched abstracts from the following national and inter-
national conferences from 2014 to March 5, 2017.

e The Royal College of Ophthalmologists, American
Academy of Ophthalmology, European Society of
Retina Specialists (EURETINA), European Society of
Ophthalmology (SOE) and Association for Research in
Vision and Ophthalmology (ARVO)
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e Diabetes conferences. American Diabetic Association
(ADA), Diabetes UK and International Diabetes
Federation

Reference lists of included studies were screened for
additional studies and authors of relevant conference
abstracts were identified and their publication lists checked
for additional relevant studies using Pubmed, Google
Scholar and Scopus.

Search results were recorded in Endnote (version
x7.4Clarivate Analytics) and duplicate entries removed.
Titles (and abstracts where available) were screened for
relevance using predefined screening criteria. Full texts of
all potentially relevant articles were obtained and assessed
against the selection criteria. Reviewer decisions, including
the reason why studies were excluded from the review were
recorded.

Data extraction and quality assessment

The information extracted from each study included study
characteristics, source of data, study design, participants
characteristics, candidate predictors, their handling, out-
comes assessed, sample size, missing data and its handling,
modelling methods, methods for selection of final pre-
dictors, model performance measures (discrimination, cali-
bration and classification measures), model validation and
presentation of the final prediction models. Authors were
contacted where necessary (mostly for reporting defi-
ciencies). Some models have dealt with multiple outcomes
other than of interest to our review. We only considered the
ocular outcomes.

Critical appraisal was carried out using a risk assessment
form by combining PROBAST [10] and CHARMS [13]
checklists. Risk of bias and applicability was assessed
mainly by using PROBAST tool [10], however, since the
tool was being piloted, CHARM checklist [13] was also
used to further refine assessment of the studies.

Study selection, data extraction and risk of bias assess-
ment were carried out by two reviewers independently with
disagreements resolved by mutual discussion or with a third
reviewer where required.

Analysis

As some models were the subject of more than one study,
they were grouped by specific models and organised by
whether describing model development, internal validation
or external validation. Details on each model are presented
in evidence tables and narrative summaries are given on
key model features (population, samples, predictors and
performance).

SPRINGER NATURE

This review was registered prospectively with PROSPERO
(registration number CRD42017057767) [14] and is reported
here in accordance with the PRISMA guidelines [15].

Results
Volume of the research literature available

The searches yielded 12,118 records of which 4893 were
duplicates. After screening titles and abstracts, 62 relevant
articles were identified of which 22 met all selection criteria
and are included in the review (Fig. 2).

Overview

This systematic review analysed 14 prognostic prediction
modelling studies, including four updates. Six models had
both internal and external validation, five models performed
only internal validation and two were only validated in
external datasets. One model lacked both internal and
external validation. No studies assessing the impact of a
model were identified. All studies were published within the
last two decades. Figure 3 shows how the studies fit into the
evolution of the modelling process. The characteristics of
individual studies are summarised in Table 1.

Population

The majority of studies have been conducted post year 2000
(n=19). The latest data used were from 2009 to 2014 in
ISDR study [16], and the oldest data were part of the
UKPDS OMI1 study (1977-1997) [17], though this model
has been validated in recent data [18, 19]. Two studies were
in TIDM [20, 21], eight in T2DM [17-19, 22-26] and 11 in
mixed populations [8, 16, 27-34], with one unspecified
[35]. Population studied ranged from newly diagnosed
patients [17, 22, 35] to those with a relatively severe form of
the disease [19]. The included studies have used large
routinely available databases such as The Health Improve-
ment Network (THIN) [19], Q Research and Clinical
Practice Research Datalink (CPRD) [28], US claims data-
bases [35], hospital databases [21, 26], diabetic screening
data and clinical trials research data [17, 20, 22, 24].

Sample size, events per variable (EPV) and follow-up

Sample size ranged from 1441 [27] to 454,575 [28] in
primary development studies and from 200 [21] to 206,050
[28] in validation studies. EPVs ranged from as low as 0.86
[20] to 424.27 [28]. External validation samples were
generally small and yielded low EPV. Lack of reporting
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Fig. 2 PRISMA flow diagram
showing the search process from
the volume of the research
literature available

-

Records identified through
database searching
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Additional records identified
through other sources including
reference lists
(n=8)

Identification
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Duplicate records
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(n =7225)

Records excluded
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Full-text articles and
relevant abstracts
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Full-text articles excluded for

——— | reasons of not meeting inclusion

criteria (n = 40)
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Included articles in systematic review (n = 22)

Full-text articles (n = 18)
Abstracts (n= 4)

affected assessment of EPV in two models [20, 23]. Median
duration of follow-up time was 5.1 years, ranging from 1.1
[30] to 17.6 years [22].

Predictors

The models contained 78 different candidate predictors,
which can be grouped into nine broad groups (Table A3
in supplementary material). The number of candidate pre-
dictors ranged from 3 [32, 33] to 51 [27] in any one model
and their selection was mostly based on literature reviews or
clinical intuition. Forty nine different predictors appeared in
the final models. The median number of final predictors
used in a given model was 5 with a range of 2 [17] to
14 [35].

Standardised definitions and measurement methods were
generally used for predictors. Predictor values were recor-
ded or measured at baseline cohort entry, or soon after.

Categorisation of the continuous predictors was mostly
avoided, but was not always reported [20, 24, 27, 34]. The
method of selection of the final predictors was reported in
9 out of 14 primary development studies and was typically
performed using backward elimination [16, 20, 22, 24, 28].
Four models [29, 31, 32, 35] used the full model approach
by using all candidate predictors.

Biochemical predictors were the most
(Table A3 in supplementary material). HbAlc was the most
popular predictor appearing in all studies except one [32]. It
was followed by duration of diabetes (n=7). Age was
another important predictor used in various forms—as age
(n=4), age at diabetes diagnosis (n =4) and age at DR
diagnosis (n = 1). Half of the models used local predictors/
ocular signs. One model [32] only used ocular signs as the
sole set of predictors. They categorised baseline DR into
three predictors (RO in eyes, R1 one eye or R1 both eyes).
This trend continued in subsequent related studies [34, 36],

common

SPRINGER NATURE



706

S. Haider et al.

Model Development (D) Internal Validation (IV) External Validation (EV) Model Updating
(n=14) (n=11) (n=28) (n=4)

Model Impact
studies

(n=0)

UKPDS OM1 2004

UKPDS OM2 2013
JJriskengine 2013
Soedamah-Muthu etal. 2014
Laganietal. 2015

Harris et al. 2013
Hippisley-Coxet al.2015
UKPDS 68 update. 2015
Icelandicmodel 2011 —_—

+ * VvV o YV VYV o

No internalvalidation

» J. LEAL 2013,UKPDS 68 update 2015—» UKPDS 68 update 2015,
» Validation of the UKPDS 82 2015*

UKPDS OM2 2013

Soedamah-Muthu etal. 2014
Laganietal. 2015°

Hippisley-Cox et al.2015°

Van der Heijiden etal. 2014, Soto-Pedre

et al2015, Hottzer-Goor et al2015, Lund
et al 2016, HNg et al 2016

Stratton et al. 2013 _ No internalvalidation
Stratton, Aldington et al. 2014
Scanlonetal 2015

ISDR 2017

eV & ¥

Danishmodel 2012 —e

Aldington et al. 2014

—® Stratton, Aldington et al. 2014,
Scanlon etal 2015

Scanlon et al 2015°

Fig. 3 Flow diagram showing the modelling process and studies in each part of this process (the arrow indicates continuation of the process; the
box implies cessation of further progress). *Performed Internal Validation on UKPDS OM2 2013. "External Validation reported in same study

except RO was later omitted and biochemical predictors
were added.

Outcomes

Outcome definition varied from blindness only [17-20, 22,
23, 28], to STR [8, 25, 26, 29, 30, 32-34, 36], retinopathy
progression [8, 24, 27, 35], need for treatment [31] and
referable DR [16]. The definition of blindness was mostly
defined as best corrected vision of less than 6/60. In some
models, STR was used interchangeably with treatment [29,
31]. Validation studies defined the outcomes in a similar
way to their respective model development studies.

Statistical model

The final models were based on Cox proportional hazards
model in most studies [22, 24, 27, 28, 32, 34-36]. Weibull
proportional hazards model was used in four studies [17, 19,
20, 29]. Logistic regression [31] and continuous-time
Markov mathematical models [16] were used by one
study each.

Model performance/evaluation

Performance measures were poorly reported in almost half
of the studies. The remainder reported either Harrell’s
concordance index [20, 24, 28], area under the curve or both
in the case of the ISDR model [16]. Model calibration
where reported was mainly in the form of calibration plots.
Five primary modelling studies [17, 22, 31, 32, 35] and one

SPRINGER NATURE

validation study [26] failed to report any performance
measures. For discriminatory power, one model [16]
reported a c-statistic of >0.80 (0.91) and the remainder
reported moderate discrimination of 0.614 to 0.79, except
for one poor c-statistic value of 0.57 [19].

Missing data

The amount of missing data varied in most studies [16, 18—
20, 24, 27-29, 36], with some reporting more than 50% of
participants missing at least one predictor value [19, 28].
Proportions of missing data have not always been reported
[16, 18, 24, 27]. The mechanisms used to handle missing
data included the last observation carried forward (average
or mode) [18, 27, 29, 36], complete case analysis [36] and
multiple imputations [16, 19, 20, 24, 28].

Summary of bias

Four modelling studies had moderate [16, 19, 28, 36] and
one had low risk of bias [29] (Table 2). Risk of bias was
unclear in one modelling study [34] taken from conference
abstracts (lack of reporting). The remaining studies were at
high risk of bias. High risk of bias was mostly due to low
number of outcomes per variable (EPV <10), lack of
information on missing data, absence of external validation
and lack of reporting of relevant performance measures. All
validation studies have shown good discrimination ability,
but were mostly at high risk of bias due to small numbers
(<100) of outcomes [13] or lack of reporting [33].
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Low risk of bias: The Icelandic model [29] used good
sample size (n =5199) and EPV of 21-29 (>10). Moreover,
it is the only model to have multiple external validation
studies (n =5). Development of the model was a bit unu-
sual, based on hazard ratios from UKPDS and Wisconsin
studies and prevalence figures from Icelandic diabetic eye
screening programme. They 'empirically’ tested this model
in Aarhus diabetic database, which could be interpreted as
an external validation.

Moderate risk of bias: Hippisley-Cox et al. [28] used a
large cohort with a long follow-up and good reporting.
However, there was a lack of formal adjudication of out-
comes and a high number of missing variable values (up to
80.9%), though dealt by multiple imputation. The study by
Scanlon et al. [36] has sound methodology, logical process
of evolution and pragmatic decisions about predictors.
However, there is lack of multiple imputations for missing
data. The recently published ISDR model [16] has no
external validation yet (which according to PROBAST is
high risk of bias). We assigned it a moderate risk of bias
because of a large sample (n = 11,806) and a robust internal
validation. UKPDS 2015 [19] lacks external validation but
was judged to have moderate risk of bias as it had a large
sample size and used multiple imputation.

Applicability of the models

The target population and the outcomes of interest in our
review were progression of diabetic retinopathy reaching
the treatment requiring stage or visual loss (blindness or low
vision) in patients under close observation in a hospital
setting (Table 2). In the models identified, the context was
broadly the early, low-risk part of the disease pathway. The
population was largely a mixed diabetic population of all
ages and any duration of diabetes but mainly early-onset
diabetic retinopathy. None of the models were fully
applicable to our review question with regard to population
characteristics or outcomes used.

Even though five out of 14 models used blindness as the
outcome (defined as corrected vision of 6/60 or less) [17,
19, 20, 22, 28], these models were mostly designed for
multiple outcomes. Therefore, their predictor sets were also
less specific for the outcomes needed for DESP or hospital
eye service population. Despite having blindness as their
outcome, these limitations make them high risk for applic-
ability. Lagani et al. [27] model also focussed on multiple
outcomes and defined outcome as any diabetic retinopathy
event. Therefore, this was also classified as high risk. JJ
risk Engine [24] model used predictors and outcomes
more relevant to DESP or hospital eye service population
but their participants were only patients with type 2 dia-
betes. We therefore assigned it as medium risk for
applicability.

There was good applicability to low-risk diabetic
screening patients and partial applicability for higher-risk
hospital patient population in the remaining seven models
[16, 29, 31, 32, 34-36]. Mehlsen et al. [31] used the out-
come of DR progression to treatment-requiring stage and
another study [35] used the outcome of DR progression.
The remainder used STR/referable DR [16, 29, 32, 34, 36].
Only three models had a moderate to low risk of bias and
also have low risk for applicability [16, 29, 36].

There were 11 different types of final predictors in these
three models. Duration of diabetes and HBAlc were com-
mon among all three, and systolic blood pressure was used
by two models [16, 29]. Other predictors included in these
three models were presence, grade of diabetic retinopathy
[29], presence of background diabetic retinopathy in one or
both eyes [36], gender [29], type of diabetes [29], age at
diagnosis [16] and total serum cholesterol [16].

Because of the heterogeneity introduced due to differ-
ences in populations, outcome measurements and the con-
text in which they were studied, a meta-analysis could not
be carried out.

Discussion

This systematic review summarises the details of 14 pre-
dictive model development studies, including four updates.
Most of the studies dealt with the question of diabetic
retinopathy progression up to the level of referral to the
hospital for treatment or closer observation (lower-risk part
of the disease pathway). The perspective has been largely
individual patients’ risk stratification in diabetic screening
services using diabetic screening databases (12 out of
22 studies). Only very limited evidence was fully applicable
to high-risk patients. Five modelling studies had moderate
to low risk of bias and out of them, only three studies also
had potential for applicability [16, 29, 36].

To our knowledge, no systematic review looking at the
predictive accuracy and applicability of predictive models
for patients with DR beyond referable sight-threatening
diabetic retinopathy has been published. Our review con-
sidered all levels of the modelling process from model
development through to validation studies. We have inclu-
ded all diabetic populations (both type 1 and type 2 diabetic
patients). Thorough electronic and manual searches were
conducted. Following up authors of relevant conference
abstracts identified two studies that were not found by other
means, one of which was published prior to the searches of
bibliographic databases. Models from Europe, United States
and Japan are included giving a global picture.

Some studies failed to report important information such
as sample size and EPV [23], predictor handling, mathe-
matical algorithm/equation (22, 28), follow-up period
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Table 2 (continued)

Overall bias Applicability High Comments for bias
concern

High

External

Model development
and evaluation

Participants Predictors Outcome Sample size and

Study ID

validation

participant flow

Moderate concern
Low concern

Moderate
Low

Did not report relevant performance

measures”

Yes

L

Stratton et al. [32]

2013

Lack of information as meeting abstract

only

L

Unclear”

NA

L

Aldington et al. [33]

2014

Lack of information as meeting abstract

only

L

Unclear®

No

L

Stratton Aldington
et al. [34] 2014

Lacks external validation

High amount of missing information

and did CCA

Mb

Yes

L

Scanlon et al. [36]

2015

Lacks external validation

Mb

No

L

ISDR [16] 2017

EPV events per candidate variables, EV external validation, LOCF last observation carried forward, NA not applicable, CCA complete case analysis, L low, M moderate, H high

Calibration, discrimination and/or classification measures

bSee text

[29, 31] and model performance measures [17, 22, 26, 31,
32, 35]. Out of 14 primary modelling studies, three had no
internal validation, and six lacked an external validation. On
the whole, external validation studies had smaller samples.
The studies are heterogeneous principally due to differing
population characteristics, disease classification, outcomes,
predictors, their handling/numbers and type of statistical
models.

There have been three systematic reviews on topics
related to diabetic retinopathy. Lagani et al. [37] examined
the probability of complications developing in diabetic
patients which included the incidence of diabetic retino-
pathy. However, they did not consider models for pro-
gression of diabetic retinopathy or vision loss (our precise
review question). Van der Heijden’s systematic review [38]
is a conference abstract, so insufficient information was
available to make comparison. The population of interest
was only T2DM (our review includes T1DM as well). The
context was screening and detection of DR (earlier low-risk
part of the disease pathway), rather than progression to
vision loss and treatment (higher-risk patients, the popula-
tion of interest in our review). Taylor-Phillips et al. [39]
investigated annual against longer screening intervals and
concluded that there is insufficient evidence to support
extending screening of diabetic patients for STR beyond
1 year. They based their conclusions on the lack of quality
and use of different definitions of the low-risk group of
patients. Their question was different from ours.

The three models identified as moderate to low risk of
bias and low risk for applicability have already shown some
impact in diabetic screening in lower-risk patients. Recent
work by Scanlon et al. [36], Aspelund et al. [29] and ISDR
[16] has clearly shown that individual patient’s risk
assessment and prediction can be safely and effectively
achieved through the use of routine data in pre-STR
patients. The evidence from Scanlon et al. [36] is also
expected to have an impact on DESP, to risk-stratify
patients into those suitable for 2-yearly screening and the
relatively higher-risk group for yearly screening. Aspelund
et al. [29] have the largest number of external validation
studies and the model is being used in practice in Aarhus
University. ISDR model is already the subject of an impact
study [40]. One of these models could also be updated and
tested on a higher-risk hospital patient population as well.

In conclusion, in countries with developed DR screening,
for patients who have been referred for treatment or closer
observation, a model is needed to determine their individual
risk of progression to treatment stage/loss of vision, to
direct the resources appropriately and further optimise the
services especially for higher-risk patients. This review
highlights some of the useful models available for the said
purpose. Scanlon et al. [36], Aspelund et al. [29] and ISDR
model [16] seem to be appropriate in terms of contemporary
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participant data, accessible predictors and sound metho-
dology, though they do not directly address the outcome of
our interest. They need further external validation in diverse
high-risk settings before being implemented into clinical
practice. In addition to these three models, we have listed
the predictors and performance of all other models. This
means anyone, dependent on their own particular datasets,
could use one that suits their needs such as to define
screening intervals, or to target screening in poorly
resourced countries.

More primary modelling studies particularly for use in
hospital eye services will be useful as long as they are well-
structured with good reporting. Studies should also ensure
to present the final model in a simplified way, to make it
easier for clinicians or policy makers to implement. The
model’s integration into electronic medical records can help
decision-making and needs to be the goal in future models.
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