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Integrative transcriptome imputation reveals
tissue-specific and shared biological mechanisms
mediating susceptibility to complex traits
Wen Zhang 1,2,11, Georgios Voloudakis 1,11, Veera M. Rajagopal 1,2,3,4,5, Ben Readhead2,6, Joel T. Dudley2,

Eric E. Schadt 2, Johan L.M. Björkegren 2,7,8,9, Yungil Kim1,2, John F. Fullard1,2, Gabriel E. Hoffman 2 &

Panos Roussos 1,2,10

Transcriptome-wide association studies integrate gene expression data with common risk

variation to identify gene-trait associations. By incorporating epigenome data to estimate the

functional importance of genetic variation on gene expression, we generate a small but

significant improvement in the accuracy of transcriptome prediction and increase the power

to detect significant expression-trait associations. Joint analysis of 14 large-scale tran-

scriptome datasets and 58 traits identify 13,724 significant expression-trait associations that

converge on biological processes and relevant phenotypes in human and mouse phenotype

databases. We perform drug repurposing analysis and identify compounds that mimic, or

reverse, trait-specific changes. We identify genes that exhibit agonistic pleiotropy for

genetically correlated traits that converge on shared biological pathways and elucidate dis-

tinct processes in disease etiopathogenesis. Overall, this comprehensive analysis provides

insight into the specificity and convergence of gene expression on susceptibility to complex

traits.
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Despite the recent success of genome-wide association
studies (GWASs) in furthering our understanding of the
genetic basis of disease, the mechanisms through which

many of the identified risk variants act remain largely
unknown1. Disease-associated risk variants are highly enriched
in cis regulatory elements (CREs), including promoters and
enhancers2,3 and increasing evidence suggests that they affect
the regulation of gene expression2–6. Multiple computational
methods have been developed to perform transcriptome-wide
association studies (TWASs) linking risk variants with differ-
ential gene expression7–11. For instance, using the summary
data-based Mendelian randomization method, Zhu and col-
leagues conducted a TWAS for complex traits by integrating
eQTL and GWAS summary data9. However, the field is
increasingly favoring transcriptomic imputation methods as the
basis of TWAS applications, as they enable feature-centered
modeling of the combined effect of multiple cis-SNPs (SNPs in
proximity to the transcription start site) on transcription. The
two most widely used methods are PrediXcan and FUSION.
Gusev et al. developed the latter method and were the first to
apply it to GWAS summary statistics to explore genetic
mechanisms for complex traits11. On the other hand, Pre-
diXcan12 is the first, and most widely used, transcriptomic
imputation method for individual genotypes that was adapted
for use with GWAS summary statistics and, so far, it outper-
forms similar methods13. Briefly, PrediXcan uses elastic net
(ENet) regression models, trained in a reference transcriptome,
to impute gene expression. The models use a set of cis-SNPs as
linear predictors of gene expression. The imputed expressions
are then correlated with the phenotype of interest to identify
gene-trait associations (GTAs). The generated trait-associated
imputed transcriptomes can also be leveraged for diverse
downstream applications such as the identification of candidate
compounds, for which we have reference transcriptomic
data, that are predicted to reverse trait-specific, genetically
driven, gene expression changes14. These downstream appli-
cations depend on the prediction accuracy of the genetically
regulated expression (GReX) and, thus, any improvements in
the transcriptomic imputation performance would translate to
higher confidence in the GReX-based drug repositioning
predictions.

Here, we present EpiXcan, a method that increases prediction
accuracy in transcriptome imputation by integrating epigenetic
data to model the prior probability that a SNP affects transcrip-
tion. EpiXcan specifically leverages annotations derived from the
Roadmap Epigenomics Mapping Consortium (REMC) that
integrates multiple epigenetic assays, including DNA methylation,
histone modification and chromatin accessibility15. The rationale
of our approach is that SNPs within CREs are more likely to be
functionally relevant16. We utilize 14 large-scale transcriptome
datasets of genotyped individuals to train prediction models and
integrate with 58 complex traits and diseases to define significant
GTAs. GTAs exhibit significant enrichment for relevant biologi-
cal pathways and known genes linked to trait-related phenotypes
in humans and mice. Imputed transcriptomic changes are used to
identify known compounds that can normalize genetically driven
expression perturbations. Chemogenomic enrichment analyses
are performed and an agnostic approach is proposed to validate
drug predictions. Pairwise trait analysis identifies genes that
exhibit agonistic pleiotropy for genetically correlated traits that
converge on shared biological pathways. Finally, bi-directional
regression analysis identifies putative causal relationships among
traits. Overall, our analysis provides insight into the specificity
and convergence of gene expression mediating the genetic risk
architecture underlying susceptibility to complex traits and
diseases.

Results
EpiXcan outperforms PrediXcan. Since TWAS is limited to
genes that can be accurately predicted from genotype data,
increasing prediction accuracy can increase the scope and power
of analyses. Here, we integrate biologically relevant data in a
single framework to improve performance of gene expression
prediction. The overall schematic of EpiXcan is shown in Sup-
plementary Fig. 1. Briefly, EpiXcan leverages epigenetic annota-
tion to inform transcriptomic imputation by employing a three-
step process (see Methods and Supplementary Methods): (1)
estimate SNP priors that reflect the likelihood of a SNP having a
regulatory role in gene expression based on a Bayesian hier-
archical model17 that integrates epigenomic annotation15 and
eQTL summary statistics for cis-SNPs (SNPs located ±1Mb from
the transcription start site of the gene); (2) rescale the SNP priors
to penalty factors by employing an adaptive mapping approach;
and (3) use the genotypes and penalty factors in weighted elastic
net to perform gene expression prediction.

Using simulated data, we apply EpiXcan and PrediXcan to
train prediction models and estimate the adjusted cross-
validation R-squared (R2CV), which is the correlation between
the predicted and observed expression levels during the nested
cross validation. Although the actual R2CV achieved by both
methods is generally low, in all simulated scenarios, EpiXcan
improves the average R2CV compared to PrediXcan models (all
p values ≤7 × 10−10 based on one-sample sign test; Supplemen-
tary Fig. 2). We then train prediction models by applying
EpiXcan and PrediXcan in 14 RNAseq datasets, derived from
dorsolateral prefrontal cortex (DLPFC) from the CommonMind
Consortium (CMC)18, seven tissues from Stockholm-Tartu
Atherosclerosis Reverse Network Engineering Task (STARNET)
19 and six tissues from GTEx20 (Supplementary Table 1). We
compare the performance of EpiXcan with PrediXcan by
considering the delta value (EpiXcan minus PrediXcan) of two
metrics: (1) cross-validation R2 (R2CV) within each tissue and (2)
predictive performance R2 (R2PP), estimated based on Pearson’s
correlation between predicted and observed expression in an
independent dataset of a relevant tissue. Positive delta values
indicate that EpiXcan has higher prediction performance
compared to PrediXcan.

Across all datasets, EpiXcan improves the average R2CV
compared to PrediXcan (all p values ≤ 9 × 10−16 based on one-
sample sign test; Fig. 1; Supplementary Figs. 3, 4; Supplementary
Data 1). We predict 4.6% more genes (pairwise Wilcoxon test
p value= 6.10 × 10−5) with R2CV > 0.01 using EpiXcan (average
number of genes across tissues is 10,181) compared to PrediXcan
(average number of genes across tissues is 9760). To obtain the
second metric, R2PP, we train prediction models in the training
dataset, which are then used to predict expressions in the test
dataset. Across all datasets, EpiXcan improves the average R2PP
compared to PrediXcan (all p values < 9 × 10−16 based on one-
sample sign test; Fig. 1; Supplementary Figs. 5–7; Supplementary
Data 2). Importantly, the ratios of genes predicted more
effectively by EpiXcan are higher in the independent dataset
evaluation (R2PP) than in the cross-validation (unpaired t-test,
p value= 3.3 × 10−17) (Fig. 1), suggesting that the adaptive
rescaling of the penalty factors during model training does not
result in significant overfitting that could affect the external
validity of the models. Overall, compared to PrediXcan, EpiXcan
has improved predictive performance and identifies more genes
that can be used for TWAS.

In addition, we compare EpiXcan to recently developed
predictive methods such as the Bayesian sparse linear
mixed model (BSLMM)21 and the Dirichlet process regression
(DPR) method22 (Methods; Supplementary Methods). EpiXcan
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outperforms BSLMM and DPR in transcriptomic imputation,
both in cross-validation and in independent datasets (all p
values < 7 × 10−16) while having on average, depending on the
method, from 0.63× to ~240× the computing speed (Supple-
mentary Fig. 8).

EpiXcan informs better gene-trait associations. We apply
EpiXcan and PrediXcan prediction models from 14 tissues
(Supplementary Table 1) in 58 complex traits (Supplementary
Data 3) and examine their performance based on four criteria: the

number of GTAs that are: (1) significant after multiple testing
correction, (2) positioned outside the GWAS loci (3) unique (i.e.,
genes identified only by one method), and (4) enriched for
clinically relevant genes.

EpiXcan has more power to detect GTAs than PrediXcan
(Kolmogorov-Smirnov p value is 3.3 × 10−16, Fig. 2a) and
achieves an 8.47% average increase in χ2 statistic for GTAs where
χ2 ≥ 1 by both methods (n= 1,077,801, Mann–Whitney U test
p value < 2.2 × 10−16). Since statistical power is linearly related to
the χ2 statistic, this corresponds to EpiXcan producing an 8.47%
increase in effective sample size. Consequently, we observe a 9.6%
increase (n= 1202) in the significant GTAs at 0.01 false discovery
rate (FDR)23 using EpiXcan (n= 13,724) compared to PrediXcan
(n= 12,522). One advantage of PrediXcan/EpiXcan methods is
that they identify genes within loci that did not reach genome-
wide significance (p value < 5 × 10−8) in GWASs. We detect an
18.3% increase (one sample sign test p value= 3.6 × 10−7) in the
GTAs using EpiXcan (mean of 25.4) compared to PrediXcan
(mean of 21.5) (Supplementary Fig. 9). The largest difference is
observed for height (EpiXcan= 168, PrediXcan= 134), followed
by schizophrenia (EpiXcan= 119, PrediXcan= 104) (Supple-
mentary Fig. 10a). The overwhelming majority of the most
significant SNPs for these genes identified by both methods have
GWAS p values within the interval (5 × 10−8, 10−3) and are more
likely to be within the interval (5 × 10−8, 10−5) when adjusted for
the p value distribution of LD-independent genomic regions for
each GWAS (Supplementary Fig. 10b). They thus represent
‘borderline’ GWAS results that one might expect to be identified
as larger studies become available. Similarly, EpiXcan detects
9.95% more GTAs (one-sample sign test p value= 0.015) that are
not identified by MAGMA gene analysis24 compared to
PrediXcan (Supplementary Fig. 9).

For any given tissue and trait, we find high correlation of GTA
z scores between EpiXcan and PrediXcan (Pearson’s correlation
r= 0.92) (Fig. 2b), although unique associations are observed for
each method. We identify 79.9% (n= 327) more unique genes in
EpiXcan (n= 788) than PrediXcan (n= 461) (Supplementary
Fig. 11), due to either a lack of a prediction model for a specific
gene and/or tissue or insufficient statistical power using
PrediXcan models. For example, using the waist-adjusted BMI
trait and prediction models from STARNET subcutaneous
adipose tissue, overall, we observe high correlation between
EpiXcan and PrediXcan genes (Pearson’s r= 0.83) (Supplemen-
tary Fig. 12). Interestingly, EpiXcan identifies 7 genes (PPP2R5A,

Fig. 1 Comparison of prediction performance between EpiXcan and
PrediXcan. EpiXcan and PrediXcan models are trained across multiple
tissues that include: brain, aorta, mammary artery, subcutaneous fat,
visceral fat, liver, skeletal muscle, and blood by leveraging 14 datasets from
CMC, STARNET and GTEx. The difference in training performance between
EpiXcan and PrediXcan models is compared using the adjusted cross
validation R2 (R2CV) metric. The 14 models are further assessed by
estimating the predictive performance (R2PP) in independent datasets; the
training dataset is shown before the arrow and the test dataset after the
arrow (G=GTEx and S= STARNET). For a given dataset, we compare
the R2CV and R2PP by estimating the delta value of EpiXcan minus PrediXcan
for each gene. Positive and negative delta values indicate genes with higher
predictive performance in EpiXcan and PrediXcan, respectively. These
genes are assigned as “EpiXcan” and “PrediXcan” and counts are shown as
barplots. The number on the right indicates the ratio of “EpiXcan” assigned
gene counts divided by “PrediXcan” counts. Across all datasets, the ratios
are higher than 1 indicating that EpiXcan outperforms PrediXcan. p value
from one-sample sign test indicates that the shift of the delta R2CV and R2PP
values is greater than zero (All p values < 9 × 10−16)
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ALAS1, HOXC8, PIEZO1, SCD, PARP3, and EYA1) that are not
detected by PrediXcan, even if we test across all tissue-specific
models. SCD (stearoyl–CoA desaturase) is of particular interest,
as it encodes an enzyme that catalyzes a rate-limiting step in the
synthesis of unsaturated fatty acids (mainly oleate and palmi-
toleate); knocking out the SCD ortholog in the mouse results in
reduced body adiposity and resistance to diet-induced weight
gain25. Accordingly, EpiXcan predicts that upregulated SCD gene
expression is associated with increased waist-adjusted BMI.

To more broadly compare the unique GTAs identified by
EpiXcan or PrediXcan, we wanted to see whether they exhibit
similar colocalization properties. Several methods (e.g., HEIDI
post-SMR9, COLOC7, eCAVIAR26) make use of local LD
patterns in an attempt to distinguish: (1) pleiotropy-driven
(causal variants affecting both phenotype and gene expression)
and causality-driven (causal variants affecting phenotype via gene
expression) GTAs from (2) linkage-driven GTAs (one causal
variant affecting gene expression and a second causal variant

affecting the phenotype in LD) which can lead to misinterpreta-
tion of TWAS-derived GTAs. No method can provide perfect
separation of pleiotropy and linkage but, as shown for
S-PrediXcan27, HEIDI analysis is moderately to highly concor-
dant with COLOC’s classification, and PrediXcan performs
favorably when compared to other methods. Thus, we utilize
our HEIDI post-SMR analysis5 to identify the proportion of genes
with good colocalization properties uniquely identified by either
study (Methods) and find no difference between EpiXcan and
PrediXcan (χ2 test p value= 0.14, Supplementary Note 1).

EpiXcan uncovers more clinically relevant genes. We perform a
series of gene set enrichment analyses (GSEA) to determine how
well EpiXcan can uncover clinically relevant genes and molecular
pathways compared to PrediXcan. For this, we employ five
categories of datasets: (1) ExAC gene pLI (probability of loss-of-
function intolerance) dataset28, (2) ClinVar dataset—pathogenic
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or likely pathogenic genes in the ClinVar database29, (3) OMIM
CS dataset—genes in OMIM with phenotypes in the clinical
synopsis (CS) section30, (4) SoftPanel dataset—custom gene
panels for our traits created with SoftPanel31 based on ICD-10
classification and keyword queries (underlying knowledge base is
OMIM but gene panel creation is more integrative), and (5)
MGD dataset—mouse orthologs of human genes associated with
mouse strain-specific phenotypes32. GTAs from both PrediXcan
and EpiXcan exhibit enrichment for genes that are associated
with the traits in the above datasets (Supplementary Fig. 13).

Transcripts identified by EpiXcan (q value= 0.029), but not by
PrediXcan (q value= 0.096), are enriched for genes that are
extremely loss-of-function intolerant (pLI ≥ 0.9) (Fig. 2c). More
specifically, we find significant enrichment of pLI genes with
neuropsychiatric (q value= 0.012, known association33,34) and
anthropometric/development (q value= 0.032) related traits
(Supplementary Data 4). Unlike pLI, for all other gene sets
(ClinVar, OMIC CS, SoftPanel, MGD), we define and test for
enrichment only for that specific trait. For example, for autism,
we generate a gene list from the significant autism-specific GTAs
from all tissues for each method. We then perform GSEA for
genes in the ClinVar database that are reported to be associated
with autism. In so doing, we find that, overall, EpiXcan has more
power than PrediXcan to identify clinically relevant genes (Fig.
2d), including those that are more likely to belong to more than
one dataset (pLI, ClinVar, OMIC CS, SoftPanel, MGD)
(Supplementary Fig. 14).

In conclusion, TWAS across 58 traits shows that, compared to
PrediXcan, EpiXcan has more power to detect significant genes,
including unique associations, which are indispensable for life
and clinically significant. In the following section, we further
explore the EpiXcan-derived GTAs, in terms of: (1) per-tissue
contribution of significant genes, (2) gene-set enrichment
analysis, (3) computational drug repurposing analysis, and (4)
genes shared within, and across, different disease categories.

Tissues differentially contribute GTAs. In this study, we employ
3 different training cohorts to generate 14 predictive models for 8
tissue homogenate types and use the predictive models to impute
tissue-specific transcriptomes across 58 GWASs. By pooling
together imputed transcriptomes for each tissue from all traits, we
first determine the robustness of our method by examining the z
score correlation for similar tissues within and across cohorts. As
expected, predictions are highly correlated when EpiXcan models
are trained in (1) different cohorts (GTEx and STARNET) pre-
dicting the same tissue (Spearman’s ρ: 0.89–0.93) and (2) the
same cohort predicting similar tissues (Spearman’s ρ:0.89 when
comparing aorta with mammary artery, and 0.92–0.95 when
comparing visceral with subcutaneous adipose tissues) (Fig. 3a).
In contrast, unrelated tissues, such as blood and brain, exhibit
only moderate correlation (Spearman’s ρ 0.38–0.42).

Tissue-specificity of GTAs can be used to prioritize biologically
relevant tissues for each disease. In contrast to a null model of no
trait-associated tissue specificity, significant EpiXcan GTAs are
statistically enriched for particular tissues (Pearson’s χ2 test
p value= 2.7 × 10−8, Fig. 3b). For example, we find a higher
number of contributions than expected from brain tissue in
schizophrenia and from blood in inflammatory bowel diseases,
which is concordant with previous SMR analysis5. This occurs
despite the observation that largely similar numbers of GTAs are
obtained irrespective of tissue source (Supplementary Fig. 15).

For 48 of the traits, more than 50% of the associated genes are
found in only one tissue (Supplementary Fig. 16) and a large
proportion (32.98 ± 17.36%; mean ± SD) of these unique GTAs
come from the highest contributing tissue type (Supplementary

Fig. 17). A few examples of top tissue type contributors for unique
GTAs are as follows; schizophrenia: brain tissue (30.34%, CMC),
myocardial infarction and coronary artery disease: arterial tissue
(33.33% and 31.88% respectively, STARNET aorta and mammary
artery and GTEx aorta), systemic lupus erythematosus: blood
(38.89%, STARNET and GTEx blood), most lipid traits: liver
(24.06–26.43%, STARNET and GTEx liver). Besides tissue
relevance, cohort size and tissue dissimilarity explain 52% of
the variation in the number of unique GTAs contributed by
different tissues (Supplementary Fig. 18, multiple linear regres-
sion model, p value= 0.007). This indicates that additional GTAs
will be uncovered with increased sample size of gene expression
datasets in disease-relevant tissues.

Biological relevance of gene-trait associations. High confidence
GTAs (observed p value vs. expected p value) for a given trait get
progressively enriched for genes that are more directly implicated
in the pathogenesis of diseases with trait-relevant phenotypes. In
databases (ClinVar and OMIM) where mostly large effect
mutations are cataloged, we observe this progressive increase in
enrichment (as indicated by λ, Supplementary Fig. 19), starting
with genes that are associated with trait-relevant clinical signs,
even if those clinical signs are not the primary symptoms of the
disorder (OMIM CS: λ= 1.29, p value= 6.17 × 10−14). Next, we
see enrichment for genes that are driving similar disorders based
on ICD10 classification grouping, or phenotype descriptive terms
(SoftPanel: λ= 1.36, p value < 2.22 × 10−16). Finally, we observe
the highest enrichment for those genes that are directly driving
trait-relevant phenotypes (ClinVar: λ= 1.83, p value= 7.07 ×
10−14). We also observe enrichment (λ= 1.21, p value= 1.69 ×
10−13) for mouse orthologs that produce mouse phenotypes in
the same phenotypic category as the relevant human trait.

We perform gene-set enrichment analysis for traits with more
than 10 significant GTAs (43 out of 58 traits) to determine if the
associated genes can be mapped to biological processes
(Supplementary Data 5). After FDR adjustment, 74 highly
enriched pathways are obtained with p values < 1.70 × 10−5

(corresponds to q < 0.05). Significantly associated genes are
enriched for biological processes relevant to trait pathophysiol-
ogy. For instance, the enriched pathways for elevated total
cholesterol and triglycerides are involved in sterol and lipid
homeostasis, as well as lipoprotein digestion, mobilization, and
transport. Similarly, for atopic dermatitis the significantly
enriched pathway modulates the rate or extent of water loss
from an organism via the skin. In addition, genes associated with
mineral density of the femoral bone demonstrate a high
enrichment for a pathway that positively regulates cartilage
development.

GReX-based computational drug repurposing. Computational
drug repurposing (CDR) offers a systematic approach for relating
disease and drug-induced states towards the goal of identifying
indications for existing therapeutics35. We perform a computa-
tional screen against a library of 1309 drug-induced transcrip-
tional profiles36 to identify small molecules capable of perturbing
the expression of our identified trait-associated genes (Fig. 4a).
For each trait/compound pair, we calculate a signed connectivity
score36, which summarizes the transcriptional relationship
between each trait and drug signature, thus identifying drugs that
might be predicted to “normalize” the gene-trait signature, as well
as those expected to induce a “disease-like” state (Fig. 4b-d,
Supplementary Data 6). Figure 4e provides example compounds
predicted to regulate the expression of genes associated with the
“Hip circumference adjusted BMI” trait. This list includes drugs
under investigation for treatment of obesity, including ursolic
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acid, which is reported to increase skeletal muscle and brown fat
while reducing diet-induced obesity37.

To explore the higher-level biological context of trait/
compound associations, we perform a chemogenomic enrichment
analysis to determine whether drugs that regulate particular sets
of trait-associated genes might share pharmacological features,
such as drug targets, drug classes, side-effects and drug
indications (Fig. 4b, Supplementary Data 6). We find multiple
significant (FDR < 0.1) chemogenomic trends, including enrich-
ment with phenotypically related side-effects (Fig. 4f), supporting

the potential for these compounds to perturb trait-related
molecular networks.

We hypothesized that, in general, trait-associated drug targets
would connect to risk-associated genes for phenotypically related
diseases38. To evaluate this, we identify referenced39 and
predicted40 drug targets that are enriched (FDR < 0.1) among
compounds that modulate the signature of each trait. We identify
≥1 drug target enrichment, for 53 of the traits considered, and ≥3
drug targets for 40 traits (Supplementary Data 6). We then
perform a further gene set analysis on the targets associated with
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Fig. 3 Contribution of GWAS and tissues to gene-trait associations. a Correlation of genetically regulated expression imputed for different tissues (pooled
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shown from Ward hierarchical clustering. b Enrichment of tissue-specificity of significant EpiXcan GTAs compared to a null model, where each tissue
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each trait, focusing on disease risk genetic resources that might
implicate phenotypes that could then be related to the traits
considered within this study. We identify several significant
overlaps (FDR < 0.1) between trait-associated targets and pheno-
typically related disease risk gene sets (Fig. 4g, Supplementary
Data 6). For example, drug targets enriched among compounds
that perturb genes associated with “Hip circumference adjusted
BMI” are enriched for risk genes for weight gain, nausea, and
psychological stress, and drug targets enriched among com-
pounds that perturb “Coronary Artery Disease” associated genes
are enriched for risk genes for heart disease, hypercholesterole-
mia, abdominal obesity, and myocardial infarction.

Towards an objective assessment of the CDR pipeline
performance, we compare the CDR predictions with known
physician-curated indications for our traits (Supplementary Note
1) that fall into four groups of increasingly perceived efficacy: (1)
non-indication: a drug that neither therapeutically changes the
underlying or downstream biology nor treats a significant
symptom of the disease, (2) symptomatic: a drug that treats a
significant symptom of the disease, (3) FDA-approved for the
trait, and (4) disease modifying: a drug that therapeutically
changes the underlying or downstream biology of the disease.
Compounds that are predicted to normalize the gene-trait

signature demonstrate progressive enrichment for higher indica-
tion levels, whereas compounds that are expected to induce a
“disease-like” state show a progressive depletion (Supplementary
Fig. 20a). When only considering known disease modifying and
non-indication compounds for our traits, compounds that are
predicted to normalize the gene-trait signature are more likely to
be disease modifying (odds ratio 11.37, Barnarnd’s unconditional
test p value= 0.006, considering only our CDR predictions with
p value < 0.3, Supplementary Fig. 20b). In addition, the
chemogenomic enrichment for drug indications is also able to
identify several cases where compounds predicted to normalize
the gene-trait signature are enriched for compounds indicated to
treat the trait’s comorbidities, e.g. (1) compounds that would
reverse the “current versus former smoking” trait are enriched for
compounds indicated for congestive heart failure and increased
triglycerides and (2) compounds that would reverse childhood
obesity are enriched for compounds indicated for coronary artery
disease41, respectively (considering only chemogenomic enrich-
ments with FDR < 0.25, Supplementary Data 6).

Taken together, these combined analyses illustrate the potential
for the approach described in this study to inform drug discovery
and drug development efforts. The identification of side effect,
drug target and drug indication enrichments linked to known or
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plausible trait biology supports the veracity of the repurposing
predictions deriving from the accurate prediction of known
indications, and, more broadly, the power of integrative genomics
approaches to identify molecular networks that underpin disease.

Trait-trait correlations and gene-trait associations. To further
understand trait relatedness, we construct a network based on
pairwise trait comparison of genetically regulated expression
(including traits with more than 50 significant associations). By
using a broad categorization of traits (Supplementary Data 3), we
identify 245 pairs of shared gene associations across trait cate-
gories and 66 pairs within trait categories (Fig. 5a, Supplementary
Data 7). Higher numbers of genes are shared between traits that
belong to the same trait category than those that do not; the

highest number of genes is shared between low density lipopro-
tein and total cholesterol in the lipids category. Previous studies
have shown significant genetic correlation among common
traits42,43. Pairwise trait GReX correlation shows a positive
association with genetic co-heritability42,43 (Pearson’s r= 0.8,
p value < 2.79 × 10−126) (Fig. 5b), extending the genetic similarity
among traits to specific genes.

We then apply bi-directional regression analyses44 on the
GReX of different traits across all tissues to infer causal
relationships among pairs of traits with significant genetic and
GReX correlation (Fig. 5c for CAD and Supplementary Fig. 21 for
all the traits in our study). We find evidence that CAD is a
complex trait whose predicted gene expression changes can be
partly, but directly, explained by predicted expression changes
found in individuals with elevated triglycerides, elevated LDL,
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and increased waist/ hip ratio. On the other hand, predicted
expression changes in individuals with increased HDL, or those
suffering from ulcerative colitis (UC), are expected to normalize
expression changes in individuals with CAD. By expanding the
causal network to include more upstream traits, we can see that
another 6 traits (waist and hip circumference, years of education,
age at menarche, birth weight, and BMI), which are correlated, or
anti-correlated, with CAD may cause, or protect, from the
predicted expression changes through effects on intermediate
traits (Fig. 5c). For example, waist circumference acts via a causal
relationship with triglycerides; other traits follow multiple
pathways such as age at menarche, which opposes predicted
transcriptomic changes of the increased triglycerides group while
promoting imputed transcriptomic changes for individuals with
high HDL. We then leverage these causal networks to dissect the
pathogenesis of CAD by identifying the molecular pathways
shared among all the involved trait pairs. For each trait that can
cause or protect from CAD, we identify the agonistic genes—
genes whose predicted expression is changing towards the same
or opposite direction for causal (e.g., triglycerides) and protective
(e.g., HDL) traits, respectively. Gene set enrichment analysis of
agonistic genes for biological pathways point towards biologically
relevant processes for CAD (Fig. 5d). For example, a subset of
CAD genes (n= 256 out of 2806 genes with p value ≤ 0.05) is
shared with triglycerides and affects biological processes related to
apolipoprotein binding and lipid digestion, mobilization, and
transport.

Taken together, the pairwise GReX trait correlations illustrate
the potential to identify genes that are shared among genetically
correlated traits. Agonistic versus antagonistic pleiotropy among
two traits can be differentiated by leveraging the directionality of
gene expression association in each trait. For traits, such as CAD,
this analysis can be applied to dissect the complex phenotype, to
identify genes and pathways that are shared with another trait,
and potentially identify and develop therapeutic strategies to
reverse those perturbations.

Discussion
The maps of gene expression and regulatory annotations, gen-
erated by projects such as REMC15, CommonMind18, GTEx20,
and STARNET19 hold the potential to further our understanding
of non-coding risk genetic variation. Here we describe EpiXcan
which, compared to PrediXcan, integrates biologically relevant
data in a single framework to improve predictive performance of
transcriptome imputation. EpiXcan is also better powered to
identify clinically significant results such as enrichment for loss-
of-function intolerant genes in neuropsychiatric traits33,34 and
can detect more robust gene expression changes in genes asso-
ciated with severe forms of the trait. Despite improvements in
transcriptomic imputation predictive performance, it is important
to note that all current imputation methods overall explain a
small proportion of gene expression variation. We apply EpiXcan
prediction models from 14 tissues in 58 common and complex
traits and examine properties of those associations.

First, gene associations are predominantly identified in
pathophysiologically relevant tissues and most associations are
only identified in one tissue. Considering that the average cor-
relation between genetically regulated gene expression of unre-
lated tissues such as blood and brain across 58 traits is 0.38–0.42
(Spearman’s ρ), we highlight the need for trait-relevant tissue
datasets for such studies to be more effective.

Second, among genes associated with the traits in this study, we
observe significant enrichment for biological pathways involved
in trait pathophysiology. Moreover, gene-trait associations are
significantly enriched for: (1) pathogenic (or likely pathogenic)

genes for the given trait (clinVar), (2) genes associated with trait-
relevant phenotypes (SoftPanel), (3) genes that have been asso-
ciated with clinical signs relevant to the trait (OMIM CS), and (4)
orthologous mouse genes with phenotypes that belong to the
same phenotypic category as the given trait. This suggests that
common variants partly act via smaller effect size perturbations in
genes that lead to more severe forms of the phenotype when
subject to larger effect size disruptions, as recently similarly
suggested27.

Third, by leveraging trait-specific transcriptomic changes, we
identify compounds that can reverse trait-specific changes,
pointing to potential drug repurposing candidates. We assess the
performance of our pipeline by comparing the predictions with
known drug indications and find drugs that are predicted to
normalize trait-specific changes are more likely than expected to
be disease modifying for the trait. Towards further validation of
our approach, chemogenomic enrichment analysis reveals trait-
specific, phenotypically related, side effects, drug indications and
drug target enrichment for risk-associated genes of phenotypi-
cally related traits. One recent study14 applied a similar approach,
which was somehow limited in scope (brain tissue −10 regions—
transcriptomic imputation with S-PrediXcan for psychiatric
traits). It is hard to directly compare the results of the two studies
since our approaches differ on many levels: we use EpiXcan, train
models on more diverse tissues, employ a different drug repur-
posing pipeline that includes a set of chemogenomic enrichment
analyses and use a more agnostic approach to validate our pre-
dictions. Despite the above limitations, both approaches share a
lot of similarities, including their use of the same compound
signature reference panel source and similar principles for
ranking the compound predictions. Among common traits
between the two studies, we do not find a particularly high
concordance among our predictions (OR range: 0.91–1.31) but
we do find that our predictions (1) are more likely to agree for
schizophrenia (OR= 1.31, p value= 0.026) and (2) have higher
concordance the higher the brain tissue enrichment score for the
trait (p value < 2.2 × 10−16) compared to other tissues (Supple-
mentary Note 1, Supplementary Fig. 22). For schizophrenia—
where our results are most concordant—their studies identify no
candidate compounds after adjustment for multiple testing. In
contrast, EpiXcan identifies one statistically significant result
(phenformin, Supplementary Data 6) that is a very potent anti-
diabetic agent (no longer FDA-approved due to safety concerns)
which is not surprising given that glucose homeostasis is altered
from illness onset in schizophrenia45. Within the top 10 results
for schizophrenia, we also identify a potent antipsychotic (pro-
chlorperazine), a voltage-gated sodium channel46 inhibitor (pra-
mocaine) and guanfacine, which was trialed for cognitive
impairment in schizophrenia and found to be worthy of further
investigation47. Although our approach performs remarkably well
given the modest percentage of gene expression variation that we
are able to explain (despite performance improvements from
EpiXcan), there are several limitations that are hampering its
translational potential. Towards further improving common
variant derived GReX-based CDR pipelines, generating cell-type
specific predictive models with spatial and temporal annotation,
as well as expanding and improving the repertoire of compound
signatures in more relevant cells and in vivo models, holds much
promise in establishing a powerful genetically driven drug dis-
covery and repurposing pipeline.

Finally, we use bi-directional regression analysis44 to construct
putative causal trait networks. Causal trait networks built on top
of EpiXcan are sufficiently powered to provide valuable insight
into the development of complex traits such as CAD. For
example, we find that high BMI can influence CAD by two dis-
tinct pathways; (1) by positively influencing triglycerides (TG)
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which would positively influence CAD, and, conversely, (2) by
negatively influencing HDL which would negatively influence
CAD. The independent effect of BMI on TG and HDL has been
shown in a population with a broad spectrum of BMI values48

which—as in our study—found no effect of BMI on LDL levels.
Downstream, there is genetic evidence to suggest a causal influ-
ence of TG on CAD49. In addition, a negative correlation of HDL
with CAD has been established in observational epidemiology,
although a link between genetic loci causal for high levels of HDL
and protective for CAD is, at present, elusive50. The construction
of these causal trait networks allows us to identify genes that
exhibit agonistic pleiotropy participating in shared pathways.
Such information could potentially be used to develop distinct
therapeutic strategies based on individual comorbidities.

Overall, the described method utilizes epigenomic information
to further improve prediction of transcriptomes and it provides a
framework for TWASs, improved interrogation of trait-associated
biological pathway involvement, and a platform for drug repur-
posing and treatment development.

To facilitate interpretation, we provide the EpiXcan pipeline,
trained models and resulting data tables as an online resource.

Methods
Genotype and expression data. Genotype datasets (CMC, GTEx and STARNET)
are uniformly processed for quality control (QC) steps before imputation. We
restrict our analysis to samples with European ancestry (Supplementary Methods).
Genotypes are imputed using the University of Michigan server51 with the Hap-
lotype Reference Consortium (HRC) reference panel52. RNAseq gene level counts
are adjusted for known and hidden confounds, followed by quantile normalization.
For CMC gene expression, we use the gene level counts generated from DLPFC
RNAseq data18 (http://commonmind.org/). For GTEx53, we use publicly available,
quality-controlled, gene expression datasets from the GTEx consortium (http://
www.gtexportal.org/). RNAseq data for STARNET were obtained in the form of
residualized gene counts from a previously published study19 [https://www.ncbi.
nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001203.v1.p1]. Addi-
tional information for CMC, STARNET and GTEx tissues (for both predictors and
observed datasets) including sample sizes is shown in Supplementary Table 1. To
compare the prediction accuracy of the CMC-trained predictors, we utilize
expression data from the HBCC (n= 280 samples18), as well as 13 brain areas from
GTEx53 (Supplementary Table 1). The GTEx data are publicly available de-
identified data, whereas ethical approvals of STARNET and CMC data are detailed
in the original papers.

SNP priors and rescaling to WENet penalty factors. To leverage epigenomic
information, we incorporate rescaled SNP priors as penalty factors into a weighted
elastic net model. First, we compute eQTLs using MatrixEQTL54. Then, epigenome
annotations from REMC15 are integrated to obtain SNP priors using qtlBHM17

(top panel in Supplementary Fig. 1; Supplementary Methods; Supplementary Data
8). Lastly, the SNP priors are rescaled to penalty factors used in WENet by a data-
driven rescaling equation. The optimal rescaling equation is approximated by the
best performing quadratic Bézier function, providing both the curve of the
rescaling function and the minimum value of the penalty factors. Briefly, to
determine the best performing rescaling equation, we simulate genotypes (n=
500 samples) using HAPGEN255 and haplotypes from the 1000 Genomes Pro-
ject56. For each gene under consideration, we utilize a shifting window policy to
generate quadratic Bézier rescaling equations. In each separate window, we define a
minimal penalty factor (Supplementary Fig. 23) and, within that window, evaluate
possible intermediate Bézier curve control point locations to test for a wide range of
curves for our rescaling equation (Supplementary Fig. 24). The equation that
exhibits the highest improvement of R2CV when compared to not assigning penalty
factors to the SNPs (as in PrediXcan) is selected. The process to evaluate and select
the optimal rescaling equation is described in greater detail in Supplementary
Methods.

Simulation analysis and predictive performance comparisons. Five hundred
samples are simulated to verify the model performance. For specific gene, suppose
X is the matrix containing genotypes of all cis-SNPs included in the gene. For the i-
th SNP, we choose an effect estimate βi, so we have vector of estimated effects β for
all the SNPs of the gene. Gene expression values are simulated by

y ¼ X ´ βþ level � ε ð1Þ

Here ‘×’ denotes matrix-vector product and ε is normally distributed noise with
given standard deviation (SD= 0.3). We select ten levels (Level from 0.1 to 1) of
noise to simulate expression values for given genes. The CMC eQTL beta values are

used as the effects in the simulation. We use 1000 genes with the highest sig-
nificance from CMC eQTL studies to perform the simulations. For each gene, we
simulate 50 times and take the mean value to evaluate the closeness between
simulated and real-world gene expressions.

Comparison with BSLMM and DPR methods. We perform a comparison, more
limited in scope than in Fig. 1, of EpiXcan with PrediXcan, BSLMM and DPR. We
use the CMC dataset for training and cross-validation (CV) and HBCC as an
independent test dataset to calculate the gene expression imputation R2, as well as
the per gene computation duration required by each method. For estimating the
R2CV, we utilize four folds of the CMC samples for training and then the remaining
one fold to test the prediction performance. Similar approaches for predictive
performance comparisons were employed in previous studies22. To estimate the
R2PP in independent datasets, we use all CMC samples for training and the HBCC
dataset to test the predictive performance. DPR has the option to use two different
fitting algorithms: (1) the mean-field variational Bayesian (VB) approximation and
(2) the Monte Carlo Markov Chain (MCMC). We perform the above tests and
measure the predictive performance and imputation speed for EpiXcan, BSLMM,
DPR (VB), DPR (MCMC), as well as PrediXcan. Details about different package
implementation parameters are given in Supplementary Methods.

Large scale gene-trait association analysis. We train predictors of gene
expression by applying EpiXcan and PrediXcan to genotype and RNAseq datasets
across 14 tissues (Supplementary Table 1). For each tissue, we keep genes with
pred.perf q value of the correlation between cross-validated prediction and
observed expression (pred.perf12) ≤0.01. We identify gene-trait associations by
jointly analyzing summary statistics from 58 complex traits (Supplementary Data
3) and gene expression predictors using S-PrediXcan27. SNPs in the broad major
histocompatibility complex (MHC) region (chromosome 6: 25–35Mb) are
removed. p values are adjusted using the Benjamini-Hochberg method of con-
trolling the false discovery rate at ≤0.01. The gene-trait associations that remain
after this filtering are considered significant. The analysis of the GWAS data
pertains to de-identified summary-level data and requires no ethical approval.

Uniquely identified genes by EpiXcan (or PrediXcan) are genes that are
identified in significant gene-trait associations with one method but not the other.
For gene-trait associations found in multiple tissues, we categorize genes as
upregulated (or downregulated) in the trait if there are more tissues in which the
effects are towards the indicated direction. If there are equivalent numbers of
tissues in which the gene is positively and negatively correlated with a given trait,
we categorize the gene regulation as ambiguous. Transcriptomic imputation yields
approximately the same number of genes predicted to be upregulated or
downregulated (z scores) across each trait (Supplementary Fig. 25). To construct
the shared gene network in Fig. 5a: (1) we filter genes so that those with pred.perf
q values ≤0.5% and FDR-adjusted p values ≤0.5% are retained, (2) specifically for
shared genes across traits of the same category, we only include genes with high
effects (e.g. z scorej j � meani z scorej ji; i is number of genes) to limit network
density.

For identification of novel genes outside of GWAS loci, we define index SNPs
based on LD clumped regions using Plink software (v1.9)57. The following settings
are used: (a) significance threshold for index SNPs is 5 × 10−8, (b) significance
threshold for clumped SNPs is 5 × 10−8, (c) clumping window size is 250 Kb and
(d) LD threshold for clumping is 0.1. The coordinates of the GWAS loci are defined
as 1 Mb on either side of the index SNP in each clump. The genomic coordinates of
the significant genes are then extracted from GENCODE (build GRCh37, release
19) and overlapped with the coordinates of GWAS loci. Properties of those genes
that lie outside the overlaps are explored. To identify the background distribution
of p values of LD clumped regions, we used Plink, as above, but with no
significance thresholds and a clumping window size of 500 kb. In addition,
MAGMA gene analysis24 is performed for 55 GWAS phenotypes. Genes
significantly associated with the phenotypes are identified after adjusting for
multiple testing correction using Benjamini-Hochberg method. Significant genes
identified using EpiXcan and PrediXcan are compared with the significant genes
identified using MAGMA (FDR < 0.01) to indicate how many genes are inferred by
EpiXcan or PrediXcan but not by MAGMA. The difference in the number of genes
that lie outside the overlaps (when compared to GWAS or MAGMA) identified
between the two methods is calculated by subtracting the number of genes
identified by PrediXcan from the number of genes identified by EpiXcan. The
statistical significance is tested with the null hypothesis such that the mean
difference is zero using one sample sign test (H0: ~X ¼ 0).

To indicate enrichment or depletion of the trait in a given tissue we use the
Pearson standardized residuals as tissue-specificity enrichment score

(Standardized residualij ¼
nij�μ̂ij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ̂ij ð1�piþÞð1�pþjÞ
p , where i is row, j is column, nij are

observed values, μ̂ij are expected values, pi+ is the observed ratio of total row count
for i divided by all observations and p+j is the observed ratio of total column count
for j divided by all observations as described in Agresti58. To see whether there is a
deviation from the null hypothesis of statistical independence (e.g. in Fig. 3b, the
tissue-trait combination does not affect the number of significant GTAs), we
perform Pearson’s χ2 test of independence. This method is applied for Fig. 3b and
Supplementary Figs. 20a, 22b.
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We identify significant GTAs from EpiXcan and PrediXcan as described above
(predictive performance q value ≤ 0.01 and FDR ≤ 0.01) that are also identified in
our SMR study (p_SMR ≤ 0.05)5. We then classify them into GTAs with either
good co-localization properties (p_HET ≥ 0.05) or not (p_HET < 0.05, rejecting the
null hypothesis that there is a single causal variant affecting both gene expression
and trait variation, Supplementary Note 1).

Gene set enrichment analyses and phenotypic datasets. To investigate whether
the genes associated with a given trait exhibit enrichment for biological pathways,
we use gene sets from MsigDB 5.159 and filter out non-protein coding genes, as
well as genes that do not have eQTL. For the enrichment analysis we only consider
traits with >10 genes identified in significant gene-trait associations; this condition
is met for 43 traits in our study. Statistical significance is evaluated with one-sided
Fisher’s exact test and the adjusted p values are obtained by the Benjamini-
Hochberg method. Similarly, for Fig. 2c, we perform gene set enrichment analysis
for all decile bins of pLI from ExAC28 (all results can be found in Supplementary
Data 4). The phenotypic datasets: ClinVar, OMIM CS, SoftPanel, and MGD are
prepared as described in Supplementary Methods and contain genes that are
associated with one or multiple traits. The approximation of known gene-
phenotype associations from these datasets allows us to (1) compare the power of
EpiXcan vs. PrediXcan in identifying known gene-trait associations (as in Fig. 2d)
and (2) evaluate the extent to which common risk variants confer trait risk by
affecting gene expression levels of genes associated with monogenic forms of the
trait or genes associated with similar-to-the-trait phenotypes in humans and mice.

Computational drug repurposing. Compound profiles are sourced from Con-
nectivity map, and are based on gene expression microarray data collected from
6100 individual experiments36, each comparing compound-treated with vehicle-
treated cell line based gene expression profiles. We download the ranked log2 fold
change matrix available for the 6100 individual experiments, and merge them into
a single representative signature for the 1309 unique small molecule compounds
(Supplementary Data 9) according to the prototype-ranked list method60.

We iterate over each trait considered in this study, retaining trait/gene
associations with an FDR < 0.1, and converting HGNC gene symbols to NCBI
entrez gene identifiers. If a gene is linked with a trait via an association that was
detected in multiple tissues, the associations are summarized as the mean z score.
There are 58 traits with a minimum of 5 positively, and negatively, associated genes
and each of these query signatures (QS) are used for the subsequent drug
repurposing.

For each trait, and each unique compound, we calculate a connectivity score
(CS) using an approach described in Lamb et al.36 The calculation of the CS
proceeds as follows: a running sum enrichment score (ES) is calculated for the
negative (ESNeg) and positive (ESPos) components of the QS, separately, reflecting
the distribution of the QS component within the ranked gene list of the compound
under consideration. ES can assume a value between −1 and +1, where a negative
ES indicates that genes within a QS component are relatively downregulated by a
compound, and a positive ES indicates that genes within a QS component are

relatively upregulated. The two ES are then combined into a single CS: ¼ ESPos�ESNeg
2 .

The resulting CS thus assumes a range of [−1, +1] and aims to summarize the
overall transcriptional relationship between a compound and a QS. We estimate
statistical significance of a given CS by generating an empirical CS distribution for a
given QS against 1000 permutations of compound signatures. Permuted compound
signatures are generated by randomizing the ranked log2 of gene expression fold
change for a given compound, and used to derive two-tailed p values, which are
adjusted by the Benjamini-Hochberg method of controlling the false discovery rate.

For each trait, connectivity scores are then used to sort the list of 1309
compounds and used as the basis for a chemogenomic enrichment analysis. For
each compound in the drug signature library, we collect diverse chemogenomic
annotations, such as drug target information, side effect, therapeutic class
associations, and drug indications. Side-effect associations are downloaded from
Offsides61 and SIDER61 and connected to compounds in Connectivity map via
Stitch identifiers. Drug target associations include targets referenced in
DrugBank39, and also an augmented set of associations, based on predictions
generated using the Similarity Ensemble Approach40. Drug disease indications
were derived from the Clue Drug Repurposing Hub (https://clue.io/repurposing)
and used to annotate compounds within the scope of our analysis with available
trait indications. This resulted in 139 distinct clinical indications with at least three
associated compounds. For each of these features, we calculate a signed running
sum enrichment score, which reflects whether that feature is over-represented at
the extreme ends of the drug list that has been ordered according to trait. Statistical
significance of enrichment scores is based on comparison to a large distribution of
permuted null scores, generated by calculating scores from randomized
chemogenomic sets that contain an equivalent number of compounds to the true
set being evaluated. p values are adjusted using the Benjamini–Hochberg method of
controlling the false discovery rate.

We compile disease and trait risk associations from multiple sources, including
HGMD62, ClinVar29, dbGAP63, Genetic Associations Disease64, GWAS catalog65,
GWASdb66, Human Phenotype Ontology67, HuGE68, and OMIM69. Many of these
are accessed through Harmonizome70. We use a Fisher’s exact test to compare each
set of trait-associated drug targets (that contain at least 3 targets), with each disease

risk gene set. The analysis is performed against a background of 2802 genes,
representing the unique set of human drug targets in the combined set of referenced
and predicted targets associated with the 1309 compounds. Two-sided p values are
adjusted using the Benjamini-Hochberg method of controlling the FDR.

Trait co-heritability analysis. To calculate the genetically regulated gene
expression correlation (rGReX), as shown in Fig. 3a, we keep the significant imputed
gene expression change (z score) values with q value ≤0.01 and perform pairwise
tissue Spearman correlation analysis of the complete cases of z scores. To cluster
the tissues together for plotting, we use hierarchical agglomerative clustering
analysis with Ward’s method.

For genetically regulated gene expression correlation (rGReX), pairwise genetic
correlation (rg), as shown in Fig. 5b, among traits analyzed by GWAS is taken from
previously published reports42,43. For trait comparisons that appear in both studies
we use the more recent study43. We consider the genetic correlation between traits
significant if q value ≤0.05. To calculate rGReX, we keep the imputed gene
expression values with unadjusted p value ≤0.05 and perform pairwise trait
Spearman’s correlation analysis with Holm’s adjustment for multiple comparisons.
To estimate the correlation of rg and rGReX for the trait pairs in our study we
perform Pearson’s correlation analysis with Holm’s adjustment for multiple
comparisons.

We identify all the significantly correlated trait-pairs (rg and rGReX, q value ≤
0.05 as above) and perform bi-directional regression analyses44 to identify causal
relationships among the traits of our study (Supplementary Fig. 21). Then, taking
as an example the coronary artery disease (CAD), we graph all the putative causal
and protective relationships up to 2 nodes upstream in Fig. 5c (when the causal
relationship is bi-directional between 2 traits, the relationship with the higher
degrees of freedom is kept) and perform pathway enrichment analysis of shared
agonistic genes for this causal network in Fig. 5d. For each causal or protective trait
in the network, we generate a list of genes whose expression changes are predicted
towards the same direction (or the opposite direction for protective traits) in CAD.
These lists of shared agonistic genes are used for GSEA for common pathways. In
Fig. 5d. only the top 15 (based on q value) results are shown and are ranked based
on odds ratio.

URLs. For CMC, see http://commonmind.org/; for Synapse for CMC data, see
https://www.synapse.org/cmc; for GTEx portal, see http://www.gtexportal.org/; for
MSigDB, see http://software.broadinstitute.org/gsea/msigdb; for EpiXcan website
and repository, see http://icahn.mssm.edu/EpiXcan; for EpiXcan source code, see
https://bitbucket.org/roussoslab/epixcan; for qtlBHM package, see https://github.
com/rajanil/qtlBHM; for RHOGE package, see https://github.com/bogdanlab/
RHOGE; for PrediXcan pipeline, see https://github.com/hakyim/PrediXcan; for
PredictDB resource, see https://github.com/hakyimlab/
PredictDB_Pipeline_GTEx_v7; for Clue Drug Repurposing Hub, see https://clue.
io/repurposing; for DPR, see https://github.com/biostatpzeng/DPR; for BSLMM,
see https://github.com/genetics-statistics/GEMMA/releases.

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
The data sets analyzed during the current study are available for download from the links
provided in the URLs section; of note is that some are controlled-access data. The data
sets generated by the analyses of this study are provided as Supplementary Data files.
Intermediate data sets derived from online aggregator databases will be made available
from the corresponding author upon reasonable request.
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