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ABSTRACT Divergent selection works when an allele establishes in the subpopulations in which it is adaptive, but not in the ones in
which it is deleterious. While such a locally adaptive allele is maintained, the target locus of selection works as a genetic barrier to gene
flow or a barrier locus. The genetic divergence (or FST) around the barrier locus can be maintained, while in other regions of the
genome, genetic variation can be mixed by gene flow or migration. In this work, we consider theoretically the evolutionary process of a
barrier locus, from its birth to stable preservation. Under a simple two-population model, we use a diffusion approach to obtain
analytical expressions for the probability of initial establishment of a locally adaptive allele, the reduction of genetic variation due to the
spread of the adaptive allele, and the process to the development of a sharp peak of divergence (genomic island of divergence). Our
results will be useful to understanding how genomes evolve through local adaptation and divergent selection.
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A genomic island of divergence could arise when a locally
adapted allele establishes in a certain subpopulation

(e.g., Wu 2001; Turner et al. 2005; Nosil 2012). This local
establishment could be stably maintained by divergent selec-
tion if the allele confers sufficient benefit in the subpopula-
tions in which it is adaptive, but not in the ones in which it is
deleterious. Such a locus works as a genetic barrier to gene
flow, or a barrier locus, because migrants are maladaptive.
Due to recombination, the genomic region that is affected by
divergent selection is limited, thereby creating a peak of di-
vergence along the chromosome (i.e., a genomic island of
divergence). Further development of multiple barrier loci in
the genome might initiate ecological speciation (Turner et al.
2005; Nosil 2012). Here, we are interested in the evolution-
ary dynamics of a barrier locus, from its establishment via a
partial local sweep, through the emergence of a peak of di-
vergence, to its stable preservation.

Weconsider theprocess theoretically bydividing into three
phases—establishment, consolidation and equilibrium—as
illustrated in Figure 1. We consider a simple situation with
two subpopulations: I and II. Assuming a relatively high mi-
gration rate between them, the levels of polymorphism
within the two subpopulations are similar to each other
(measured by the heterozygosities, hw1 and hw2, for subpop-
ulations I and II). In the meantime, the population diver-
gence (measured by hb, the heterozygosity between the two
subpopulations) is very low (Figure 1A). Then, a de novo
mutation (star in Figure 1A) arises in subpopulation I, in
which the mutation is advantageous, whereas it is maladap-
tive (or deleterious) in subpopulation II. In the establish-
ment phase, the mutation spreads in subpopulation I and
nearly fixes (Figure 1B), but its frequency in subpopulation II
is low because it should be selected against if migrated into
subpopulation II. In a strict sense, this is not a fixation that
can be treated mathematically as an absorbing state, because
migration keeps providing maladaptive alleles. Therefore,
after Kimura (1954), we hereafter use the terminology of
“quasi-fixation” for this nearly fixed state. The quasi-fixation
should occur quickly, and a partial local selective sweep oc-
curs in subpopulation I (Figure 1B), thereby establishing a
barrier locus. Around the barrier locus, it is typical to ob-
served a “block” of region with low genetic variation in
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subpopulation I, with a slightly elevated genetic divergence
(FST). The consolidation phase starts after the initial estab-
lishment of the barrier locus, during which the block of low
genetic variation gradually shrinks in length over time by
recombination and migration, while new mutations accumu-
late and the divergence between two subpopulations in-
creases particularly near the barrier locus (Figure 1C).
Then, at the end, a stable sharp peak of divergence arises in
the equilibrium phase (Figure 1D). The equilibrium shape of
the peak of divergence is determined mainly by the balance
between selection intensity and the rates of recombination
and migration.

The scope of this work is to provide a unified and compre-
hensive theoretical understanding of the evolution of a new
peak of divergence, from its birth to stable preservation in
equilibrium. We use a simple two-population model, where
migration is allowed between subpopulations I and II. Sup-
pose a de novomutation arises that confers a selective advan-
tage specific to subpopulation I, which is the initial state
of our system. Under this model, we derive the following:
for the establishment phase,

1. The establishment probability of the de novo mutation,
that is, the probability that the mutation quasi-fixes in
subpopulation I.

2. The expected reduction of genetic variation within sub-
populations I and II after the quasi-fixation (i.e., partial
local sweep).

for the consolidation phase,

3. the evolutionary dynamics at both the barrier locus and
the linked neutral sites since the quasi-fixation.

and for the equilibrium phase,

4. The expected shape of the peak of divergence at equilib-
rium.

Several theoretical works have focused on a specific part of
these aspects. For (1) the establishment probability, perhaps
the most flexible, useful theoretical framework was intro-
duced by Barton (1987) in a general multiple-island-model.
By using a diffusion approximation, Barton (1987) derived a
partial differential equation for the establishment probability.
Essentially the same result was obtained by Pollak (1966),
who used a branching process, and the establishment prob-
ability was derived from a probability generating function.
Barton’s differential equation was solved, and closed forms of
the establishment probability have been available only in
several specific situations in continuous habitat models. In a
one-dimensional continuous habitat model, Barton (1987)
solved his partial differential equation analytically, assuming
two forms of fitness gradient (linear and pocket). Kirkpatrick
and Peischl (2013) used a branching process, from which
they obtained a partial differential equation that is similar
to that of Barton (1987). Then, the authors successfully in-
corporated changes in fitness gradient along time, and de-
rived an approximate establishment probability.

In discrete population models, Barton’s general formula
(and also Pollak’s one) is difficult to handle, and has not been
fully explored even in a simple two-population model with
symmetric migration. Therefore, the currently available the-
oretical results are not based on Barton’s differential equa-
tion, and have some limitations. In a continent-island model
with unidirectional migration, Aeschbacher and Bürger
(2014) solved the establishment probability of a locally ben-
eficial mutation linked to another locally beneficial mutation
that was already established, where mathematical treatment
is facilitated by unidirectional migration (see also Yeaman
et al. 2016). Yeaman and Otto (2011) obtained an approxi-
mate establishment probability by using a heuristic approach
that is a combination of the leading eigenvalue of the transi-
tion matrix of deterministic process and Kimura’s formula of
fixation probability (Kimura 1962). As shown in their paper,
this formula well describes the establishment probability
when a de novomutation arises in the adapted subpopulation
(i.e., subpopulation I in our model), but it does not work
when it arises in the maladapted subpopulation (i.e., subpop-
ulation II in our model). Recently, Tomasini and Peischl
(2018) provided an approximate establishment probability
by assuming a slightly supercritical branching process. Their
formula works well under the assumption of slightly super-
critical approximation, namely, the leading eigenvalue of the
transition matrix of deterministic model is not large, but it
may not work well when the selection intensity in the
adapted subpopulation is very large.

In this work, we derive a closed form formula of the
establishment probability in a two-population model with
bidirectonal migration along the formulation of Barton
(1987). We extend Barton’s derivation with simultaneous
quadratic equations and solve them allowing unequal sub-
population sizes. Our formula is more general than previous
ones (Yeaman and Otto 2011; Tomasini and Peischl 2018); it
works with strong selection and it allows that a de novo mu-
tation can arise either subpopulation I or II.

To the best of our knowledge, there is no theoretical work
on the hitch-hiking process of a partial local sweep in a two-
population model. With regard to a single population model,
many studies investigated the reduction of polymorphism
theoretically due to a selective sweep. These studies consid-
ered a selected site and a linked neutral site, and assumed that
a sufficiently advantageous mutation arises and goes to fix-
ation in the population. Along this fixation, they derived how
much polymorphism can be reduced at the linked site.
Maynard Smith and Haigh (1974) first obtained the reduc-
tion of polymorphism, where the stochastic effect of genetic
drift at the linked site was ignored. The model was extended
to include the stochastic effect by using a coalescent approach
(Kaplan et al. 1989) and by using a diffusion method
(Stephan et al. 1992; see also Barton 1998; Etheridge et al.
2006). Durrett and Schweinsberg (2004) used a different
approach for a faster approximate simulation of a selective
sweep and derived some analytical expressions (see also
Schweinsberg and Durrett 2005).
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Figure 1 Illustrating the evolution of a barrier locus in a simple two-population model with fairly high migration between them. (A) A locally adaptive de
novo mutation arises in subpopulation I at position 0. A typical pattern of polymorphism is shown in left. The star is the locally adaptive mutation, and
gray circles are neutral polymorphism in the surrounding region. The right panel shows the spacial distributions of nucleotide diversity obtained by a
simulation. The simulation considers two subpopulations with population sizes are 2N1 ¼ 2N2 ¼ 2000, between which symmetric migration is allowed
at rate 4N1m1 ¼ 4N2m2 ¼ 5:0: We assume selection intensity s1 ¼ 0:2 and s2 ¼ 20:2. The entire simulated region is 400 kb if a population re-
combination rate of 4Nr = 0.001 per site is assumed. See Appendix A for details about the simulation. The polymorphism levels within the two
populations (pw1 and pw2) are in red and blue, and divergence between the two populations ðpbÞ is in black. pw1, pw2; and pb can be considered as
the averages of hw1, hw2; and hb in a 20-kb window. The y-axis is adjusted such that Eðpw1Þ ¼ Eðpw2Þ ¼ 1 under neutrality (the solid line) and the
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There are several theoretical studies on a sweep in multi-
population models available, but these considered a fixation
acrossmultiple subpopulations, not a localfixation. In amodel
with multiple subpopulations, Slatkin andWiehe (1998) and
Santiago and Caballero (2005) considered the process where
a beneficial mutation fixes in the entire population through
weak migration. Kim and Maruki (2011) allowed stronger
migration, and derived an analytical expression in a two-pop-
ulation model. Our interest is different from these studies in
that we consider a locally beneficial mutation that can quasi-
fix only in the subpopulation in which it is beneficial (not in
the entire population). We here extend the theory of
Stephan’s diffusion model (Stephan et al. 1992) to a two-
population model, and consider how much polymorphism
can be reduced locally at a linked site after a partial local sweep.

We then turn to the evolutionary dynamics at both the
barrier locus and the linked neutral sites after the completion
of the partial local sweep.Wehere consider this process after a
local sweep as described in Figure 1. A local sweep creates a
“block” of a fairly long region with almost no genetic varia-
tion within the subpopulation in which the new mutation is
adaptive (i.e., subpopulation I in our model). In this work,
given an arbitrary configuration of genetic variation after a
local sweep, we obtain, analytically, the moments of allele
frequency at a linked site, with which we describe how a
genomic island decays. Yeaman et al. (2016) investigated a
similar problem in a different situation, where an genomic
island evolves due to the clustering of two barrier loci. In
their model, considering a secondary contact, erosion starts
when there already are a large number of fixed sites that
spread over the genome, and islands appear because selec-
tion works to maintain divergence at selected site(s), while
losing divergence in other regions through homogenization
by migration. By using the structured coalescent, they
obtained the expected spatial distribution of FST (in terms
of relative coalescent time) around selected sites as a func-
tion of the time since the secondary contact. They also con-
sidered the scenario where a de novo mutation broadens a
genomic island that has been created by a barrier locus, and
revealed the final shape of a two-barrier island is the same as
the genomic island under the secondary-contact scenario.
However, their derivation did not consider the effect of selec-
tive sweep of the de novo mutation. It should be noted that,
because our derivation accepts any arbitrary initial allele fre-
quency at a linked site, it can be applied to any situation, not
only that after a secondary contact but also that after a local
sweep.

In the equilibrium phase, the balance between selection,
migration, recombination, and mutation holds. Theoretical
treatment at equilibrium is relatively straightforward, and

there are several theoretical studies on the spatial distribution
of FST (Charlesworth et al. 1997; Akerman and Bürger 2014;
Yeaman et al. 2016). Under our framework for the consoli-
dation phase, essentially the same result can be provided as a
special case, with time going to infinity.

Model and Results

We consider a two-population model with discrete genera-
tions and monoecious diploid individuals that mate at ran-
dom. The diploid population sizes of subpopulations I and II
are assumed to be constant at N1 and N2, respectively. As
illustrated in Figure 1, we are specifically interested in selec-
tion for local adaptation in subpopulation I. We consider a
genomic region encompassing a selected site at position 0,
which is referred to as locus A (Figure 2). At locus A, two
alleles (A/a) are allowed with no recurrent mutation be-
tween them. Allele A confers a selection coefficient s1 in sub-
population I and s2 in subpopulation II (we assume s1 . 0
and s2 , 0). Additive selection is assumed so that the fitness
of individuals with AA, Aa, and aa are given by 1þ 2s1, 1þ s1,
and 1 in subpopulation I, and 1þ 2s2, 1þ s2 and 1 in sub-
population II. Selection works only at this selected site, and
all remaining sites are assumed to be neutral. For the follow-
ing derivation under a two-locus model, we consider a sec-
ondary neutral site (locus B), at which two alleles (B/b) are
allowed with recurrent mutation between them (Figure 2).
The mutation rate from allele B to allele b is u, and that from
allele b to allele B is v. The recombination rate between the
two loci, A and B, is r.

The system starts when a de novomutation (allele A) arises
in a single individual either in population I or II, where allele
a is fixed in both subpopulations. Therefore, the initial state is
ðx1; x2Þ ¼ ð1=2N1; 0Þ or ð0; 1=2N2Þ, where x1 and x2 are fre-
quencies of the new allele A in subpopulations I and II, re-
spectively. Throughout this article, we assume strong
selection and weak migration so that maladapted individuals
are rare in each subpopulation once the initial establishment
is achieved.

Establishment probability

We derive the establishment probability of a new de novo
allele using the general framework of Barton (1987), who
derived a simultaneous quadratic equation from the diffusion
theory. This section focuses only on the selected locus A (see
Figure 2), at which we are interested in the probability that
allele A quasi-fixes in subpopulation I. Following Haldane
(1927), we approximate the establishment probability by
the probability that the new mutation increases in frequency
and escapes from immediate extinction. This is because,

broken line exhibits EðpbÞ, (i.e., = the genomic average). (B) The mutation quasi-fixes in subpopulation I, causing a drastic reduction in pw1. (C)
Migration shuffles polymorphisms in the two subpopulations, while selection works to maintain the quasi-fixation of the mutation. (D) The divergence
gradually increases around the mutation, and (E) a clear peak of divergence arises. It should be noted that the star is fixed in the sample (left panes in
B–E), but it does not necessarily mean that it is fixed in subpopulation I because there should be maladaptive immigrant alleles at a low frequency.
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under the assumption of strong selection, the behavior of
such a mutation is almost deterministic once it escapes from
extinction by genetic drift.

Let Fðx1; x2Þ be the establishment probability when the
frequencies of allele A are x1 and x2 in the two subpopula-
tions. By using an analogous procedure to Barton (1987),
we derive p1 ¼ Fð1=2=N1; 0Þ and p2 ¼ Fð0; 1=2N2Þ, the es-
tablishment probability when the new allele arises in sub-
populations I and II, respectively. According to the
diffusion theory, F satisfies the Kolmogorov backward
equation:

0 ¼ x1
4N1

@2F
@x21

þ x2
4N2

@2F
@x22

þ fs1x1 þm1ðx22 x1Þg @F
@x1

þ fs2x2 þm2ðx12 x2Þg @F
@x2

;

(1)

wherem1ðm2Þ is the proportion of immigrant individuals just
after migration in subpopulation I (II). To keep the subpop-
ulation sizes constant, we assume N1m1 ¼ N2m2, and we
ignore higher order terms of oðxiÞ (i.e., x21, x22). This is reason-
able because of the assumption that the establishment prob-
ability is determined mainly at low frequencies. Because the
extinction probabilities of individual mutations are indepen-
dent, we can write F as

Fðx1; x2Þ ¼ 12 expð22N1x1c1 2 2N2x2c2Þ (2)

where expð2ciÞ is the extinction probability of a new mu-
tant in subpopulation i; therefore, pi is determined as
pi ¼ 12 expð2ciÞ. After substitution of Equation 2 into
Equation 1, one can show that solutions to Equation 1 can
be obtained by solving the following system of equations:

c2
1 ¼ 2ðs1 2m1Þc1 þ 2

N2

N1
m2c2

c2
2 ¼ 2

N1

N2
m1c1 þ 2ðs22m2Þc2;

(3)

which corresponds to equation 4b in Barton (1987). Equation
3 can be rearranged to

c1
�
c3
1 22ac2

1 þ
�
a2 2 bd

�
c1 þ bðad2 bcÞ� ¼ 0 (4)

c2 ¼ c2
1 2 ac1

b
; (5)

where a¼ 2ðs12m1Þ;   b¼ 2N2
N1
m2 ¼ 2m1;   c¼ 2N1

N2
m1 ¼ 2m2;

 and  d¼ 2ðs22m2Þ. Equation 4 can be solved by using the
solution of a cubic equation. Equations 4 and 5 have, at most,
one solution that fulfills p1.0 and p2.0. The condition
where Equations 4 and 5 have such a solution is aþ d.0
or ad2bc,0, which corresponds to the situation where the
deterministic growth rate of the mutant allele is positive (see
Appendix B for details).

Figure 3 shows the establishment probability from Equa-
tions 4 and 5 as a function of migration rate. We first consider
a symmetric model ðN1 ¼ N2 ¼ 1000Þ, and two selection
intensities (s1 ¼ 0:02 and s1 ¼ 0:1) are assumed, while
s2 ¼ 2 0:01 is fixed (Figure 3, A and B). The establishment
probability can be computed when a locally adaptive muta-
tion arises either in subpopulation I or II, represented as
Fð1=2N1; 0Þ and Fð0; 1=2N2Þ, respectively. We performed a
forward simulation to check the performance of our analyti-
cal result (Appendix A). For each parameter set, we ran
1,000,000 independent replications of the simulation, and
counted the number of replications where the new allele A
was preserved in 10,000 generations. The establishment
probability was then obtained as the proportion of such rep-
lications. Therefore, it includes replications where two alleles
(A and a) coexisted (case C) and those where allele A is
completely fixed in both subpopulations (case F). The pro-
portion of case C in the established replications ðPcÞ de-
creases with increasing migration rate (see below).

Our result (red in Figure 3) is in excellent agreement
with the simulation result: Fð1=2N1; 0Þ is approximately
Fm¼0 ¼ 12 expð22s1Þ

12 expð24N1s1Þ when the migration rate is very low,
consistent with the prediction in a single population
model (Kimura 1957). As the migration rate increases,
Fð1=2N1; 0Þ decreases and Fð0; 1=2N2Þ increases, and they
become similar to each other. With a very high migration
rate ðm � 0:5Þ, the two subpopulations can be considered
as a single random-mating population, and the fixation
probability of a single mutation is mainly determined
by the average selection coefficient, �s ¼ s1N1þs2N2

N1þN2
, namely,

Fm¼0:5 ¼ 12 expð22�sÞ
12 expð24NT�sÞ where NT ¼ N1 þ N2 (Nagylaki 1980).

Indeed, in our simulations, allele A was fixed in both popu-
lations in almost all established cases (Pc ¼ 1). In each panel
in Figure 3, a gray region is placed such that Pc. 0:9 in the

Figure 2 Two-locus model used in this work. Locus A targeted by di-
vergent selection is placed at position 0, and a linked neutral locus B can
be placed at an arbitrary position. The frequencies of allele A and allele a
at locus A, and those of allele B and allele b at locus B in the two
subpopulations are illustrated.
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left, while Pc, 0:1 in the right. It has been demonstrated
that, under a deterministic model, the condition where two
alleles (A and a) coexist is s1s2 , 0 and

����m1ð1þ s1Þ
s1

þm2ð1þ s2Þ
s2

����, 1 (6)

(Nagylaki and Lou 2008). The critical migration rate predicted
by this equation is shown by the vertical lines in Figure 3,
which roughly agrees with the line of Pc ¼ 0:9 (see Yeaman
and Otto 2011). This indicates that the pattern dramatically
changes in a short range ofm1, and the left side is the scope of
this article. Similar results were also obtained in asymmetric
models (N1 ¼ 3N2 in Figure 3C and N1 ¼ N2=3 in Figure 3D).

Figure 3 quantitatively compares our analytical results
with those of previous studies (Yeaman and Otto 2011;
Tomasini and Peischl 2018). It is found that Fð1=2N1; 0Þ from
Yeaman and Otto (2011) is almost as good as ours, but un-
fortunately Fð0; 1=2N2Þ was not provided by Yeaman and
Otto (2011). It seems that Tomasini and Peischl (2018) over-
estimates Fð1=2N1; 0Þ and underestimates Fð0; 1=2N2Þ.
Reduction of genetic variation due to a selective sweep

When a new locally adaptivemutation (a/A) arises and quasi-
fixes in subpopulation I, genetic variation in the surrounding
region in subpopulation I should be reduced dramatically
due to the hitch-hiking effect. In this section, we consider a

two-locus model as defined in Figure 2. We derive the degree
of reduction in heterozygosity at a linked neutral site (locus B)
in subpopulation I, DLS, by extending the diffusion approach of
Stephan et al. (1992), who investigated the effect of hitch-
hiking in a single populationmodel with no population structure.

Overview of Stephan’s diffusion approach: We first briefly
introduce the approach of Stephan et al. (1992), which pro-
vides the basis of our derivation below. The expected reduc-
tion of heterozygosity at locus B for a single population
model with diploid size N is denoted by D0. With the assump-
tion of strong selection, Stephan et al. (1992) assumed that
the behavior of the frequency (x) of the beneficial allele A
with selection coefficient, s, follow a deterministic function:

dx
dt

¼ sxð12 xÞ; (7)

where selection is additive. This deterministic treatment
works once the frequency of allele A exceeds a certain thresh-
old such that it escapes from immediate extinction by genetic
drift, as mentioned in the previous section. This treatment
makes the following derivation much easier because the
dynamics can be described by a two-dimensional diffusion
equation. It should be noted that x with no subscript denotes
the frequency of allele A in the single population model,
whereas, in our two-population model, the frequencies of

Figure 3 Establishment probability as a function of migration rate. (A) Weak selection (s1 ¼ 0:02 and s2 ¼ 20:01) and (B) strong selection (s1 ¼ 0:1
and s2 ¼ 2 0:01) are assumed in a symmetric model ðN1 ¼ N2Þ. (C and D) Asymmetric population settings are considered (N1 ¼ 3N2 in C and
N1 ¼ N2=3 in D). Our result in red is compared with those of Yeaman and Otto (2011) and Tomasini and Peischl (2018), together with the result of
our forward simulation. The establishment probability for a mutation that arises in subpopulation I ðFð1=2N1; 0ÞÞ is shown by solid lines and closed
circles, and that for a mutation that arises in subpopulation II ðFð0; 1=2N2ÞÞ is shown by broken lines and open triangles. The establishment probability
at the high migration limit ðm ¼ 0:5Þ is shown by a yellow triangle. In each panel, a gray region is placed such that the proportion of the replications
where two alleles (A and a) coexisted ðPcÞ .0:9 in the left, while Pc, 0:1 in the right. The vertical line presents the critical migration rate, above which
allele A fixes in the entire population, obtained by Equation 6 (see text for detail).
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allele A in subpopulations I and II are denoted by x1 and
x2, respectively (see Figure 2). We consider another bial-
lelic neutral locus (B/b), and the recombination rate
between this neutral locus and the selected locus is
assumed to be r. yA is the frequency of allele B among
A-chromosomes, and ya is the frequency of allele B among
a-chromosomes. Then, the expected changes of an arbitrary
function fðyA; yaÞ is described as the following ordinary dif-
ferential equation:

d
dt

Eðf Þ ¼ EðLðfÞÞ; (8)

where L is a differential operator of the Kolmogorov back-
ward equation:

L ¼ yAð12 yAÞ
4Nx

@2

@y2A
þ rð12 xÞðya 2 yAÞ @

@yA

þ yað12 yaÞ
4Nð12 xÞ

@2

@y2a
þ rxðyA2 yaÞ @

@ya
:

(9)

By using this formula, Stephan et al. (1992) solved the first
and second moments of yA and ya after a sweep, from which
the expected reduction of heterozygosity at the linked site
can be computed numerically. With some approximation,
Stephan et al. (1992) further obtained a nice closed form of
the solution:

D0 ¼ 2r
s
ð2NsÞ22r=sG

�
2
2r
s
;
1

2Ns

�
: (10)

In this work, we found that this equation somehow under-
values the effect of random genetic drift at the linked neutral
locus, perhaps due to the approximation of Stephan et al.
(1992). We noted that, in Equation 10, D0 goes to
expð21=2NsÞ in the limit of r/N, whereas heterozygosity
should decrease by genetic drift by a factor of 1=2N per gen-
eration, even in the absence of the hitch-hiking effect. Here,
we consider the expected reduction of heterozygosity along
the quasi-fixation as expð2logð2NÞ=NsÞ, because the fixation
time is approximately given by

T ¼
Z 121=2N

1=2N

dx
sxð12 xÞ �

2logð2NÞ
s

:

This equation means that the expected reduction of hetero-
zygosity due to genetic drift, expð2logð2NÞ=NsÞ, is not neg-
ligible compared to expð21=2NsÞ. To correct for this factor,
we add this into Equation 10:

D09 ¼
2r
s
ð2NsÞ22r=sG

�
2
2r
s
;
1

2Ns

�
exp

�
2
logð2NÞ

Ns

�
: (11)

We found that this heuristic approach is in very good agree-
ment with the numerical solution obtained by directly com-
puting Equation 9.

Local sweep in the two-population model: In this work, we
extend Stephan derivation (Stephan et al. 1992) to the two-
population model defined above. We first consider the
dynamics of the new mutant allele frequency ðx1Þ at the se-
lected locus (position 0) in subpopulation I. The major dif-
ference from the corresponding formula in Stephan et al.
(1992) (i.e., Equation 7) is that the effect of migration should
be considered in the two-population model. Because allele
A is very rare in subpopulation II under the assumption of
strong selection and low migration, we can ignore migrants
with A allele from subpopulations II to I. Then, the dynamics
of x1 can be approximated by a deterministic function:

dx1
dt

¼ s1x1ð12 x1Þ2m1x1: (12)

We set the time such that t ¼ 0when themutation arises, and
t ¼ t when the mutation quasi-fixes. We next consider the
neutral locus B (B/b). As illustrated in Figure 2, yA1 ðyA2Þ is
the frequency of haplotype A-B among A-chromosomes in
subpopulation I (II), and ya1 ðya2Þ is the frequency of haplo-
type a-B among a-chromosomes in subpopulation I (II). We
assume that yA2 is very small throughout the sweep process.
Then, the expected changes of an arbitrary function
f ðyA1; ya1; ya2Þ is described as the following ordinary differen-
tial equation:

d
dt

Eðf Þ ¼ EðLðf ÞÞ; (13)

where L is a differential operator of the Kolmogorov back-
ward equation. Following Ohta and Kimura (1969), we ob-
tain L for our model as

L ¼ yA1ð12 yA1Þ
4N1x1ðtÞ

@2

@y2A1
þ rð12 x1ðtÞÞðya12 yA1Þ @

@yA1

                 þ ya1ð12 ya1Þ
4N1ð12 x1ðtÞÞ

@2

@y2a1
þ frx1ðtÞðyA1 2 ya1Þ þ m1

ð12 x1ðtÞÞð12m1Þ þm1
ðya2 2 ya1Þg @

@ya1

                 þ ya2ð12 ya2Þ
4N2

@2

@y2a2
þ �

x1ðtÞme;1/2ðyA1 2 ya2Þ þ ð12 x1ðtÞÞm2ðya12 ya2Þ
� @

@ya2
:

(14)
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This equation is derived such that several terms are added
to Equation 9 for incorporating random genetic drift
within subpopulation II (first term on the third line)
and the effect of migration. The second term of @=@ya1
(second line) is for migration from subpopulation II to
subpopulation I, and the term of @=@ya2 (third line) is
for migration from subpopulation I to subpopulation II.
Due to the assumption of strong selection, migrant
A-chromosomes from subpopulation I to subpopulation
II should be selected out immediately. Therefore, the mi-
gration rate of locus B can be effectively considered as the
product of migration rate and the probability that at least
one recombination event occurs before selection purges
allele A, me;1/2:

me;1/2 ¼ ð1þ s2Þr
12 ð1þ s2Þð12 rÞm2 (15)

(Bengtsson 1985). Then, Equation 13 directly allows us to
compute the first and secondmoments of yA1 and ya2 after the
quasi-fixation of allele A (i.e., yA1ðtÞ and ya2ðtÞ. We obtain
heterozygosity within each subpopulation (hw1 and hw2) and
between them ðhbÞ at t ¼ t as

hw1ðtÞ ¼ 2EðyA1ðtÞÞ2 2E
	
yA1ðtÞ2



;

hw2ðtÞ ¼ 2Eðya2ðtÞÞ2 2E
	
ya2ðtÞ2



;

hbðtÞ ¼ EðyA1ðtÞÞ þ Eðya2ðtÞÞ2 2EðyA1ðtÞya2ðtÞÞ;
(16)

from which the expected reduction of heterozygosity is
obtained as

DLS ¼ hw1ðtÞ=hw1ð0Þ: (17)

Generally, DLS involves the initial frequencies, ya1ð0Þ and
ya2ð0Þ. However, it should be noted that their quantitative
effect on DLS is not large unless ya1ð0Þ and ya2ð0Þ are not very
similar.

Figure 4 shows the effect of migration on the reduction in
heterozygosity. The plot in red is the case of no migration,
where our result is essentially identical to that of Stephan
et al. (1992), and the plots in blue and green are for migra-
tion cases. We consider three pairs of population sizes,
N1 ¼ N2 ¼ 1000 in A, N1 ¼ 1000;N2 ¼ 5000 in B, and
N1 ¼ 5000;N2 ¼ 1000 in C. For each parameter set, filled
circles represent the average over 100,000 replications of
forward simulation (see Appendix A). In Figure 4, hw1ðtÞ,
hw2ðtÞ; and hbðtÞ are plotted such that hw1ð0Þ ¼ hw2ð0Þ ¼ 1
before the sweep, so that hw1ðtÞ directly corresponds to DLS.
In all cases, our theoretical result from Equation 14 is in
excellent agreement with the simulation results. It is found
that the effect of a local partial sweep seems to be only on
subpopulation I, and there is almost no effect on the varia-
tion in subpopulation II. Moving away from the selected site
at position 0, DLS is larger for a higher migration rate. This is
because that migration brings standing variation maintained
in subpopulation II into subpopulation I, thereby increasing

the polymorphism level in subpopulation I. We observed
hbðtÞ is slightly elevated around the selected site at posi-
tion 0. If we assume 12 hwðtÞ=hallðtÞ roughly approxi-
mates FST, where hall is heterozygosity when the two
subpopulations are merged together, it can be said that a
local sweep creates a relatively wide block of region with
elevated FST, which can be considered as an initial peak of
divergence.

Consolidation of a barrier locus with a peak
of divergence

When a new locally adaptive mutation (a/A) quasi-fixes
in subpopulation I, a block of region with elevated FST
arises, where genetic variation in subpopulation I is dra-
matically reduced (Figure 1B). In this section, by using the
two-locus model defined in Figure 2, we consider the pro-
cess after this state, but our derivation is flexible enough to
plug in any initial state.

We use a similar diffusion approach to the previous section
but we focus on the behavior of yA1 and ya2. The expected
changes of an arbitrary function fðyA1; ya2Þ is described as the
following ordinary differential equation:

d
dt

Eðf Þ ¼ EðLðf ÞÞ; (18)

where L is a differential operator of the Kolmogorov back-
ward equation, which is given by

L ¼ yA1ð12 yA1Þ
4N1

@2

@y2A1
þ ya2ð12 ya2Þ

4N2

@2

@y2a2
þ �

v2 ðuþ vÞyA1

þme;2/1ðya2 2 yA1Þ
� @

@yA1
þ �

v2 ðuþ vÞya2

þme;1/2ðyA12 ya2Þ
� @

@ya2
:

(19)

The two terms in the first line of Equation 19 are for random
genetic drift within subpopulations I and II, and the terms in
the second line describes the deterministic change of the
frequency of allele B due to mutation and migration. As well
as the previous section, we use the effective migration rate
(Bengtsson 1985):

me;2/1 ¼ ð1þ ~s1Þr
12 ð1þ ~s1Þð12 rÞm1; (20)

where ~s1 ¼ 1=ð1þ s1Þ2 1 is the relative selection coeffi-
cient of maladapted individuals in subpopulation I.
me;1/2 is defined by Equation 15. We consider the dy-
namics of the first and second order moments, and put
y ¼ ðEðyA1Þ; Eðya2Þ; Eðy2A1Þ; EðyA1ya2Þ; Eðy2a2ÞÞT . By using
Equation 18, we derive a differential equation for y as
follows:

dy
dt

¼ Qy þ e; (21)
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where Q is the 53 5 matrix given by

and e ¼ ðv; v; 0; 0; 0ÞT . See Appendix C for details. By
solving Equation 21, y is given by

yðtÞ ¼ expðtQÞyð0Þ þ Q21ðexpðtQÞ2 IÞe (23)

where I is the identity matrix of size 5 (Appendix C). y at
equilibrium is given by ~y ¼ 2Q21e. Our solution at equilib-
rium is well consistent with previous studies (Charlesworth

et al. 1997; Yeaman et al. 2016) that used the coalescent
approach (see Appendix D for a proof).

Figure 5 compares our theoretical results from Equa-
tion 23 (broken lines) with simulation results (closed cir-
cles). N1 ¼ N2 ¼ 1000; s1 ¼ 2 s2 ¼ 0:05; u ¼ v ¼ 2:53 10
26;m1 ¼ m2 ¼ 1:253 1023 are assumed to represent a
strong selection case. As the initial condition ðt ¼ 0Þ, we set
hw1 ¼ 0,hw2 ¼ 0:18; andhb ¼ 0:1, representinga situationafter
a local sweep in subpopulation I. Equation 23 describes how a

Figure 4 The expected reduction of heterozygosity after a local partial sweep in the two-population model. Position is shown in 4N1r from the
selected site. Theoretical results for hw1ðtÞ hw2ðtÞ and hbðtÞ computed from (14)–(17) by assuming ya1ð0Þ ¼ ya2ð0Þ ¼ 0:3 for convenience, but very
similar results were obtained for other values of ya1ð0Þ and ya2ð0Þ. In the case of no migration (red), our results is identical to Stephan et al. (1992) (i.e.,
Equation 11). Results for three parameter sets are shown: (A) s_1=0.1, s_2=-0.1,N_1=1000, N_2=1000, m_2=m_1, (B) s_1=0.1, s_2=-0.1,N_1=1000,
N_2=5000, m_2=m_1/5, (C) s_1=0.1, s_2=-0.1,N_1=5000, N_2=1000, m_2=5m_1.

Q ¼

2
�
uþ vþme;2/1

�
me;2/1 0 0 0

me;1/2 2
�
uþ vþme;1/2

�
0 0 0

2vþ 1
2N1

0 22
�
uþ vþme;2/1 þ 1

4N1

�
2me;2/1 0

v v me;1/2 2
�
2uþ 2vþme;2/1 þme;1/2

�
me;2/1

0 2vþ 1
2N2

0 2me;1/2 22
�
uþ vþme;1/2 þ 1

4N2

�

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

(22)
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Figure 5 Temporal change of heterozygosity ðhw1; hw2;hbÞ after a local sweep in subpopulation I. The spacial distributions of hw1, hw2; and hb are
shown for seven time points (t = 0, 250, 1000, 2500, 10,000, 50,000, and 500,000 generations after a sweep). Position in the simulated regions is
shown in 4Nr from the selected site. N1 ¼ N2 ¼ 1000; s1 ¼ 2 s2 ¼ 0:05; u ¼ v ¼ 2:531026;m1 ¼ m2 ¼ 1:253 1023, y1ð0Þ ¼ 0:0 and y2ð0Þ ¼ 0:1
are assumed. Theoretical results from Equations 23 and 25 are shown by broken and solid lines, respectively. Simulation results (closed circles) are the
averages over 50,000 replications of forward simulations.
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sharp peak of divergence grows along time. As time goes, hw1
and hw2 become closer to each other, and eventually reaches
their equilibrium values (t�10,000). hb also decreases ex-
cept for a short region surrounding the selected site. The rate
of erosion (decrease of hb) increases moving away from the
selected site. At the selected site, hb gradually increases and
eventually develops a sharp peak, and simultaneously hw1
and hw2 also exhibit a small peak that can be created by
migration between two subpopulations. It reaches an equi-
librium after a significant amount of time, where the selec-
tion-migration balance holds so that the shape of the peak
does not change much.

Figure 5 shows that Equation 23 (broken lines) is consis-
tent with the simulation results, but the agreement could be
further improved if we account for the presence of locally
maladapted allele, i.e., allele A (a) in subpopulation I (II).
At migration-selection equilibrium, alleles A and a are pre-
sent in subpopulation I and II at an expected frequency
of 12 x1 � 2m1=~s1 and x2 � 2m2=s2, respectively. Even
though these frequencies are small under our assumption
of weak migration relative to selection, we show in the
following that the approximation in Equation 23 can be
improved by accounting for them. Let us focus on the fate
of a single neutral allele at the neutral locus linked to an
immigrant locally maladaptive allele. We ask how long
such a neutral immigrant allele survives on the locally
maladaptive background. The linked neutral allele will
either be eliminated by selection against the locally mal-
adapted allele in its background, or it recombines off its
deleterious background onto a locally beneficial back-
ground. The expected time until elimination by selection
or recombination in subpopulations I and II are, respec-
tively, given by

t2/1 ¼
XN
i¼0

fð1þ ~s1Þð12rÞgi ¼ 1
12 ð1þ ~s1Þð12 rÞ;

t1/2 ¼
XN
i¼0

fð1þ s2Þð12rÞgi ¼ 1
12 ð1þ s2Þð12 rÞ:

(24)

Therefore, the expected numbers of neutral alleles from
the other subpopulation with the maladapted allele is
N1m1t2/1 and N2m2t1/2 in subpopulations I and II,
respectively.

Let the frequencies of B in subpopulations I and II includ-
ing those on the locally maladapted background ~y1 and ~y2.
Accounting for the presence of locally maladaptive alleles,
the first- and second-order moments of ~yi are:
See Appendix C for details. Figure 5 shows that Equation 25
fits the simulation results better than Equation 23. A notable
improvement is seen in hw1 for a narrow region around the
selected site. Because Equation 23 ignores the presence of
maladaptive alleles (assuming their immediate death), Equa-
tion 23 predicts a small dip, but our simulation demonstrated
rather that a small peak arises. This small peak of hw1 is well
described by the improved Equation 25.

Discussion

In theearly stagesofecological speciationwithgeneflow,divergent
selection is required to maintain phenotypes that are adaptive to
each niche (Wu2001; Turner et al. 2005; Nosil 2012). Each target
locus of divergent selection works as a barrier locus to migration,
because maladaptive migrants should be selected out in a short
time. Such a barrier locus can be formed if a locally adaptive
mutation arises and becomes established in subpopulations where
it is adaptive. This quasi-fixation of a locally adaptive mutation
causes a local partial sweep, thereby creating a block of region
with elevated FST. Then, while divergent selection maintains the
mutation, recombination shuffles genetic variation in the linked
regions and mutations accumulate around the barrier locus.
Through this process, a sharp peak of divergence develops in a
narrow region around the barrier locus.

Thisarticle considers theoretically theevolutionarybehaviorof
abarrier locus, fromits initialestablishment tostablepreservation.
The process was divided into three phases: establishment, con-
solidation and equilibrium (Figure 1).We obtained (1) the estab-
lishment probability of a locally adaptive mutation, (2) the
expected reduction of genetic variation within subpopulations I
and II after a partial local sweep, (3) the evolutionarydynamics at
both the barrier locus and the linkedneutral sites since the sweep,
and (4) the expected shape of the peak of divergence around the
barrier locus at equilibrium.

For (1), we derived a closed-form formula of the estab-
lishment probability along the formulation of Barton (1987).
Our simulations showed that our theoretical results for
Fð1=2N1; 0Þ and Fð0; 1=2N2Þ outperform the previous ap-
proximations, although Yeaman and Otto (2011)’s heuristic

        Eð~y1Þ ¼ ð12m1t2/1ÞEðyA1Þ þm1t2/1Eðya2Þ
        Eð~y2Þ ¼ m2t1/2EðyA1Þ þ ð12m2t1/2ÞEðya2Þ
      E

�
~y21
� ¼ ð12m1t2/1Þ2E

�
y2A1

�þm2
1t

2
2/1E

�
y2a2

�þ 2m1t2/1ð12m1t2/1ÞEðyA1ya2Þ
Eð~y1~y2Þ ¼ ð12m1t2/1Þm2t1/2E

�
y2A1

�þm1t2/1ð12m2t1/2ÞE
�
y2a2

�
                                               þ fð12m1t2/1Þð12m2t1/2Þ þm1t2/1m2t1/2gEðyA1ya2Þ
       E

�
~y22
� ¼ m2

2t
2
1/2E

�
y2A1

�þ ð12m2t1/2Þ2E
�
y2a2

�þ 2m2t1/2ð12m2t1/2ÞEðyA1ya2Þ:

(25)
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approach is almost as good as ours. Because we focused on
divergent selection so that allele A is quasi-fixed in subpop-
ulation I, whereas allele a is quasi-fixed in subpopulation II,
we assumed s1 . 0 and s2 , 0. However, as shown in Figure
3, it is possible that either allele A or a could fix in the entire
population, even if s1 . 0 and s2 , 0 hold, although it might
take an extremely long time. In contrast, Gavrilets and
Gibson (2002) and Whitlock and Gomulkiewicz (2005)
obtained the probability of such eventual fixation in the entire
population. These studies and ours can be understood in a single
framework as follows. Assuming s1 . 0 and s2 , 0, the estab-
lishment of allele A first occurs and is maintained quite stably for
a long time, but with time going toward infinity, allele A could
fix in the entire population most likely when the average selec-
tion coefficient�s is positive, while allele a could likely fix when�s
is negative. This is why our formula of the establishment proba-
bility (Equation 2) is the same as the numerator of the fixation
probability when�s is positive (equations 7 and 8 in Gavrilets and
Gibson 2002 and equation 6 in Whitlock and Gomulkiewicz
2005). On the other hand, the establishment probability signifi-
cantly differs from the fixation probability of Gavrilets and Gib-
son (2002) and Whitlock and Gomulkiewicz (2005) when �s is
negative because such a mutation hardly goes to eventual fix-
ation, although it can be maintained as a quasi-fixed state for a
sufficiently long time.

For (2),we extended the diffusionmethod of Stephan et al.
(1992) to our two-population model. Because the beneficial
allele A quasi-fixes only in one subpopulation, the process is
very similar to that of a single population model (Stephan
et al. 1992), except that migration between two subpopula-
tions has some effect. Our theoretical result (see Figure 4)
demonstrated a relatively minor effect of migration; with an
increasing migration rate, the level of polymorphism in sub-
population I increases because migration brings genetic var-
iation from subpopulation II.

For (3) and (4), we considered the evolutionary dynamics
at both the barrier locus and the linked neutral sites since the
quasi-fixation, followedby thedevelopmentof a stablepeakof
divergence around the barrier locus. This process to equilib-
rium can be described by a single Equation 25. Furthermore,
Equation 25 is flexible enough to plug in any initial state, such
as a secondary contact of already diverged subpopulation. To
demonstrate this, in Supplemental Material, Figure S1, we
compare the pattern after a local sweep (left panels) and that
after a secondary contact (right panels) (see also Appendix E
for details). After a secondary contact, hb is already high
across the genome, and hb gradually decreases, but selection
works to keep divergence around the selected site, thereby
creating a peak of divergence. After a very long time (i.e., in
equilibrium), the shape of the peak becomes identical to that
after a sweep, as pointed out by Yeaman et al. (2016). We
further performed simulations to investigate how robust our
derivation is when the selection intensity is reduced (al-
though we assumed strong selection). The results with
10 times lower selection intensity are shown in Figure S2.
This selection intensity is fairly weak, and close to the lower

limit to maintain the quasi-fixation state of the two alleles.
Yet, Equation 25 is in fairly good agreement with the sim-
ulation results, although the performance of Equation 23 is
not very good. This is because the frequency of maladap-
tive alleles is not negligible with a reduced selection
intensity.

We thus developed analytical expressions for the evolu-
tionary behavior of a barrier locus, from its emergence to
development of a peak of divergence. In the early stages of
ecological speciation, it is possible that multiple barrier loci
develop and genomic islands of divergence arise, but this
does not necessarily mean that the emergence of genomic
islands of divergence always results in speciation. It is
possible that genomic islands of divergence could disappear
due to environmental changes, or by chance, and no spe-
ciation occurs. To achieve speciation, many other forces
would be necessary, including emergence of additional
islands (Feder et al. 2012a,b; Via 2012; Aeschbacher and
Bürger 2014; Yeaman et al. 2016), further divergence on a
genomic-scale possible due to a reduction in migration
rate, and environmental changes. More theoretical studies
are needed to fully understand the process to ecological
speciation.
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Appendix

Appendix A: Forward Simulation

Here, we describe the setting and assumptions of our forward simulations. A model with two subpopulations (I and II) is used.
Subpopulations I and II consist of 2N1 and 2N2 haploids. We are interested in how DNA sequence evolves at the population
level around a selected locus. We considered a genomic region encompassing a selected locus at the center, and assumed the
infinite-site model for simulating patterns of nucleotide polymorphisms (e.g., Figure 1). For other simulations, we consider a
two-locus model with the selected locus and a linked neutral locus. The recombination rate between the two loci is r. The
fitness of an individual is determined by the allelic state at the selected locus: The fitness of an individual with allele A and a
are, respectively, 1þ s1 and 1 in subpopulation I, and 1þ s2 and 1 in subpopulation I. Every generation, migration is allowed
such that 2Nm individuals are swapped between the two subpopulations, Then, to construct a new population in the next
generation, 2N1 and 2N2 individuals are chosen randomly from the current subpopulations I and II, respectively, where their
fitness is taken into account. No recurrent mutation is allowed at this site in order to trace the fate of the mutation (unless
otherwise mentioned). In contrast, at the linked neutral locus, recurrent mutation is allowed at rate m per generation.
Heterozygosities within and between (hw and hb) subpopulations can be scored at any arbitrary time point.

Appendix B: The Solution of Equations 4 and 5

First, we present a proof that there is, at most, one solution that fulfills p1 .0 and p2 . 0, and the condition on which such a
solution exists is aþ d. 0 or ad2 bc, 0. Then, we give a closed expression of the solution.

For c1 and c2 to satisfy p1 . 0 and p2 . 0, c1 .0 and c2 . 0 are needed. Note that b; c.0 because the migration rate
and population size are always positive. Although, in this work, we consider only the case of d, 0, Equations 4 and 5 may
also work in the case of d$ 0. Therefore, here, we present the proof that allows d$0. We set f ðxÞ ¼ x3 2 2ax2þ
ða2 2 bdÞx þ ðabd2 b2cÞ; and note that the first derivative of f ðxÞ is f 9ðxÞ ¼ 3x2 2 4ax þ ða2 2 bdÞ. We discuss the comple-
mentary following three cases.

1. a$ 0
From Equation 5, c1 . a, then x. a is needed. Because the x-coordinate of the vertex of f 9ðxÞ, 2

3 a, is not greater than a,
f 9ðxÞ increases monotonically when x. a. Noting that f ðaÞ ¼ 2 b2c, 0, there is only one solution to fðxÞ ¼ 0.

2. a, 0 and d# 0
From Equation 5, c1 . 0, then x. 0 is needed. Because f 9ð0Þ ¼ a2 2 bd. 0 and the x-coordinate of the vertex of f 9ðxÞ, 23 a,

is smaller than 0, f 9ðxÞ . 0 when x. 0. Therefore, whether fðxÞ ¼ 0 has a solution or not in (0, N) depends on the
sign of f ð0Þ. If f ð0Þ$ 0, i.e., bðad2 bcÞ$0, there is no solution. Otherwise, there is only one solution.

3. a, 0 and d. 0
From Equation 5, c1 . 0, then x. 0 is needed. Because the x-coordinate of the vertex of f 9ðxÞ, 23 a, is smaller than 0, f 9ðxÞ

increases monotonically when x. 0. Noting that f ð0Þ ¼ bðad2 bcÞ, 0, there is only one solution.

Noting that b; c.0 and ad2 bc is negative when ad# 0, the condition on which one solution exists is rearranged to
aþ d. 0 or ad2 bc,0. This is the same as the condition where a deterministic model,

d
dt

�
x1
x2

�
¼ 1

2

�
a b
c d

��
x1
x2

�
; (B1)

has a positive growth rate. In other words, the matrix in Equation B1 has at least one positive eigenvalue.
Next, we present a closed form of c1. From the above proof, if there is a nonzero real root of f ðc1Þ ¼ 0;which fulfills p1 . 0

and p2 . 0, the root is the largest real root of f ðc1Þ ¼ 0. Therefore, by using the solution of cubic equation, c1 can be expressed
as

c1 ¼

0 when aþ d# 0 and ad2 bc$ 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
Q
2
þ

ffiffiffi
R

p3

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
Q
2
2

ffiffiffi
R

p3

r
2

A2

3
when R. 0 and ðaþ d. 0 or ad2 bc, 0Þ

2  Scos
�
1
3
arccos

�
T
2S

��
2

A2

3
when R# 0 and ðaþ d. 0 or ad2 bc, 0Þ

;

8>>>>>><
>>>>>>:

(B2)
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where A0 ¼ abd2 b2c;A1 ¼ a2 2 bd;A2 ¼ 2 2a; P ¼ A1 2
A2
2
3 ;Q ¼ A0 2

A1A2
3 þ 2

27 A
3
2;R ¼ ðP3Þ3 þ ðQ2Þ2; S ¼

ffiffiffiffiffiffi
2P

3

q
;T ¼ 2 Q

S2. In
the above expression, we assume the range of principal value of y ¼ arccosðxÞ as 0# y#p.

Appendix C: Derivation of Equations 21, 23, and 25

Here, we describe the derivation of Equations 21, 23, and 25 inmore detail. By applying Equation 18 to f ¼ yA1; ya2; y2A1; yA1ya2;
and y2a2, we can derive the time derivative of moments of yA1 and ya2 as follows:

       
dEðyA1Þ

dt
¼ v2

�
uþ vþme;2/1

�
EðyA1Þ þme;2/1Eðya2Þ         

dEðya2Þ
dt

¼ v2
�
uþ vþme;1/2

�
Eðya2Þ þme;1/2EðyA1Þ         

dE
�
y2A1

�
dt

¼
�
2vþ 1

2N1

�
EðyA1Þ2 2

�
uþ vþme;2/1 þ 1

4N1

�
E
�
y2A1

�þ 2me;2/1EðyA1ya2Þ
dEðyA1ya2Þ

dt
¼ vEðyA1Þ þ vEðya2Þ þme;1/2E

�
y2A1

�
2
�
2uþ 2vþme;2/1 þme;1/2

�
EðyA1ya2Þ þme;2/1E

�
y2a2

�
           

dE
�
y2a2

�
dt

¼
�
2vþ 1

2N2

�
Eðya2Þ2 2

�
uþ vþme;1/2 þ 1

4N2

�
E
�
y2a2

�þ 2me;1/2EðyA1ya2Þ:

(C3)

By setting y ¼ ðEðyA1Þ; Eðya2Þ; Eðy2A1Þ; EðyA1ya2Þ; Eðy2a2ÞÞT , e ¼ ðv; v; 0; 0; 0ÞT and defining Q as Equation 22, Equation C3 can be
rearranged in a matrix form (Equation 21). Then, by using the solution of a linear differential equation with constant
coefficients, the solution of Equation 21 is given by

yðtÞ ¼ expðtQÞyð0Þ þ
Z t

0
expððt2 sÞQÞeds

                     ¼ expðtQÞyð0Þ þ Q21ðexpðtQÞ2 IÞe:
(C4)

The solution23 is further improvedbyaccounting for neutral immigrant alleles linked tomaladaptive alleles. Todo so,wederive
the expected time of a neutral immigrant allele until its elimination by selection or recombination as Equation 24. The expected
frequencies of such an allele arem1t2/1 andm2t1/2 in subpopulations I and II, respectively. ~y1 and ~y2, denote the frequencies
of B in subpopulations I and II including those on the locally maladapted background. Then, ~y1 and ~y2 can be approximated by

~y1 ¼ ð12m1t2/1ÞyA1 þm1t2/1ya2;
~y2 ¼ ð12m2t1/2Þya2 þm2t1/2yA1:

(C5)

By using Equation C5 and taking expectations, the first and second-order moments of ~y1 and ~y2 are given by Equation 25.

Appendix D: Comparison Between Diffusion and Coalescent at Equilibrium Phase

In themain text, we show that replacing themigration rate in the neutral diffusion equation by the effectivemigration rate well
approximates the effect of linkagewith the locusunderdivergent selection. In aneutralmodel, heterozygosity at equilibrium ina
structuredpopulation is alreadywell studiedby the coalescent theoryunder the infinite-sitemodel (reviewed inWakeley2009).
In this work, we alternatively used the forward diffusion approach because the diffusion approach can be applied to more
general conditions. In this Appendix, we show our diffusion result at equilibrium is consistent with that of the coalescent
theory.

We attempt to derive the expected heterozygosity under the infinite-site setting along our diffusion-based derivation. In
practice, we first consider aK-allelemodel, and then the resultswill be transformed to the infinite-sitemodel. Let B allele be one
of the alleles at the locus. We put y1 and y2 as frequency of allele B in subpopulation I and II, respectively. In the following
derivation, we assume N1 ¼ N2 ¼ N and m1 ¼ m2 ¼ m. The differential operator of the Kolmogorov backward equation is as
follows,
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L ¼ y1ð12 y1Þ
4N

@2

@y21
þ y2ð12 y2Þ

4N
@2

@y22

                 þ ½v2 ðuþ vÞy1 þmðy2 2 y1Þ� @

@y1
þ ½v2 ðuþ vÞy2 þmðy1 2 y2Þ� @

@y2
;

(D1)

At the equilibrium, we derive the moments up to the second order as

Eðy1Þ ¼ Eðy2Þ ¼ V
U þ V

;

E
�
y21
� ¼ E

�
y22
� ¼ VðV þ 1ÞðU þ V þMÞ þ V2M

ðU þ VÞðU þ V þM þ 1ÞðU þ V þMÞ2M2ðU þ VÞ;

Eðy1y2Þ ¼ MVðV þ 1Þ þ V2ðU þ V þM þ 1Þ
ðU þ VÞðU þ V þM þ 1ÞðU þ V þMÞ2M2ðU þ VÞ;

(D2)

where U ¼ 4Nu, V ¼ 4Nv; and M ¼ 4Nm. In the limit to the infinite-allele model, that is, v ¼ u
K2 1 and K/N, the expected

heterozygosity within and between subpopulation goes to

hw ¼ 12KE
�
y21
�
/

U2 þ 2UM
ðU þM þ 1ÞðU þMÞ2M2;

hb ¼ 12KEðy1y2Þ/ UðU þ 2M þ 1Þ
ðU þM þ 1ÞðU þMÞ2M2:

(D3)

This result under the infinite-allele setting can be transformed to the infinite-sitemode: If we putU ¼ u
n and n goes toN,pw and

pb are described as

pw ¼ nhw/2u

pb ¼ nhb/uð2þ 1
M
Þ;

(D4)

which is identical with the result from the coalescent theory (Charlesworth et al. 1997; Yeaman et al. 2016).

Appendix E: Comparing the Scenarios of Local Partial Sweep and Secondary Contact

We compute Equation 23 for a scenario of secondary contact, and compared with the results of a local partial sweep shown in
Figure 5. For a secondary-contact scenario, we assume that already diverged two subpopulation have merged so that there are
a number of fixed sites between the two subpopulations. To make a realization of this situation, we set y1ð0Þ ¼ 0:1 and
y2ð0Þ ¼ 0:9, and the other parameters are identical to those used for Figure 5 (i.e., 4N1s1 ¼ 2 4N2s2 ¼ 200 and
4N1m1 ¼ 4N2m2 ¼ 5). Figure S1 compares the patterns after a local sweep (left panels) and after a secondary contact (right
panels). After a secondary contact, hb is already high across the genome, and hb gradually decreases but selectionworks to keep
divergence around the selected site, thereby creating a peak of divergence. In equilibrium, the shape of the peak becomes
identical to that after a sweep, in agreement with Yeaman et al. (2016).

Figure S2 shows the resultswith identical parameter sets to those for Figure S1 except for the selection intensity. The purpose
is to check how robust our derivation is when the selection intensity is reduced. We here set 4N1s1 ¼ 2 4N2s2 ¼ 20 and
4N1m1 ¼ 4N2m2 ¼ 5. The results with 10 times lower selection intensity are shown in Figure S1. This selection intensity is
fairly weak, and it is close to the lower limit to maintain the quasi-fixation state of the two alleles.
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