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ABSTRACT Construction of genetic linkage maps has become a routine step for mapping quantitative trait loci (QTL), particularly in
animal and plant breeding populations. Many multiparental populations have recently been produced to increase genetic diversity and
QTL mapping resolution. However, few software packages are available for map construction in these populations. In this paper, we
build a general framework for the construction of genetic linkage maps from genotypic data in diploid populations, including bi- and
multiparental populations, cross-pollinated (CP) populations, and breeding pedigrees. The framework is implemented as an automatic
pipeline called magicMap, where the maximum multilocus likelihood approach utilizes genotypic information efficiently. We evaluate
magicMap by extensive simulations and eight real datasets: one biparental, one CP, four multiparent advanced generation intercross
(MAGIC), and two nested association mapping (NAM) populations, the number of markers ranging from a few hundred to tens of
thousands. Not only is magicMap the only software capable of accommodating all of these designs, it is more accurate and robust to
missing genotypes and genotyping errors than commonly used packages.
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THE construction of a genetic linkage map consists of
grouping, ordering, and spacing genetic markers in ex-

perimental crosses. Genetic maps provide insights and clues
for understanding genetic processes such as recombina-
tion, chromosome arrangement, and genome evolution. Al-
though available physical maps can provide marker grouping
and ordering, genetic maps can validate physical maps, im-
prove de novo genome assemblies (Fierst 2015; Song et al.
2016), supply intermarker genetic distances, and include the
markers that cannot be localized on physical maps. Most
importantly, genetic maps allow more powerful strategies
for mapping QTL, particularly in animal and plant breeding
populations (e.g., Paterson et al. 1988).

Traditional biparental mapping populations are produced
from two inbred lines. Many software packages exist for map
construction in these populations. Examples include Map-

MAKER (Lander and Green 1987), JoinMAP (Stam 1993;
Van Ooijen 2006), CarthaGène (Schiex and Gaspin 1997),
Neighbor Mapping (Ellis 1997), R/qtl (Broman et al. 2003),
RECORD (Van Os et al. 2005), MadMapper (Kozik and
Michelmore 2006), AntMap (Iwata and Ninomiya 2006),
MSTmap (Wu et al. 2008), THREaD Mapper (Cheema
et al. 2010), and MapDisto (Lorieux 2012). Hidden Markov
models (HMM) with the Lander and Green algorithm (Lander
et al. 1987) have been used by MapMAKER, CarthaGène,
and R/qtl, where hidden inheritance vectors describe the
gene flow from founders to offspring in a breeding pedigree.

Many multiparental populations have recently been pro-
duced, where multiple inbred founders are crossed for some
generations to increase genetic diversity and QTL mapping
resolution. Examples include Kover et al. (2009), Dell’Acqua
et al. (2015), Pascual et al. (2015), and Liller et al. (2017),
and see the review by Huang et al. (2015) for more examples
in crops. Currently, mpMap (Huang and George 2011) is the
package most commonly used for multiparental populations,
but see also the recently released R/qtl2 (Broman et al.
2019). However, the mpMap package is limited to funnel
scheme multi-way recombinant inbred lines (RILs; e.g.,
Dell’Acqua et al. 2015; Pascual et al. 2015), and does not
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allow markers with missing founder genotypes. In the funnel
scheme, the founders of each line are randomly permuted,
and each line is produced by an intercross scheme that com-
bines all founder genomes through several generations of
pairwise crosses prior to repeated generations of selfing.

CP populations are often used for QTLmapping when only
outbred founders are practical. Examples of software pack-
ages for CP populations include OneMap (Margarido et al.
2007), FsLinkageMap (Tong et al. 2010), JoinMAP (Van Ooi-
jen 2011), HighMap (Liu et al. 2014), HetMapps (Hyma et al.
2015), and Lep-MAP3 (Rastas 2017). Various HMMs have
been used by all these packages except HetMapps. See also
CRI-MAP for map construction in a large multi-generation
pedigree but with some available information arbitrarily ex-
cluded (Green et al. 1990).

The primary aim of this paper is to build a general frame-
work for genetic map construction in diploid populations,
which can be applied to all of the above mapping populations
including bi- and multiparental populations and CP popula-
tions. The population design information can be specified by
either a breeding pedigree or a series of mating schemes from
onegeneration to thenext.ThealgorithmmagicMapbuildson
our previously developed HMM with hidden states being the
ancestral origins of genotypes (Zheng et al. 2014, 2015,
2018a,b; Zheng 2015). The algorithm is computationally ef-
ficient, because the state space in our HMM is proportional to
the number of inbred founders in the case of homozygous
populations, whereas the state space in the packages such
as MapMAKER and CarthaGène increases exponentially with
pedigree size.

The second aim is to analyze the increasing available
genotyping-by-sequencing (GBS) data. Low coverage se-
quencing is often used to cut costs, resulting in many missing
genotypes and errors. To increase the robustness of map
construction to missing genotypes and genotyping errors,
we integrate map construction with founder linkage phasing,
genotype imputation, and correction, and develop an efficient
multilocus likelihoodmaximization.Themaximumlikelihood
gives themarginalprobabilityofmarkerdataby integratingall
hidden states, which has been shown to be more robust to
missing genotypes than simplified two-point statistics such as
the sum of adjacent recombination fractions (Hackett and
Broadfoot 2003; Tong et al. 2010). The criterion using two-
point statistics has been commonly used in the packages such
as RECORD, MSTmap, mpMap, and HighMap because of
high computational efficiency.

Most software packages, such as MSTmap and Lep-MAP3,
start with two-locus linkage analysis, and then groupmarkers
using hard thresholds such as the logarithmof the odds (LOD)
scoreor recombination fraction.However, thegrouping is very
sensitive to the input hard thresholds, and thedesired number
of groups cannot always be obtainedby varying the thresholds
because of missing data and genotyping errors. Another aim
of magicMap is to develop an automatic pipeline for map
construction to allow for extensive evaluations, in particular,
we increase the robustness of grouping by combining several

clustering methods, and removing the dependence on input
thresholds.

We evaluate magicMap by simulated data in three types of
populations: the F2, the CP, and the funnel scheme eight-way
RIL, which differ in the number of founders and the homo-
zygosityof foundersoroffspring to showthewideapplicability
of our method. We study the sensitivity of magicMap to
missing genotypes and genotyping errors, and compare mag-
icMapwith one of the commonly usedmethods in each type of
population: MSTmap in biparental populations, Lep-MAP3 in
the CP, and mpMap in the eight-way RIL. Furthermore, we
evaluate magicMap by eight real datasets: one biparental
population, one CP, four MAGIC, and two NAM, the number
of markers ranging from a few hundred to tens of thousands
(Table 1), and compare magicMap with MSTmap, Lep-
MAP3, and the available genetic and physical maps.

Methods

Overview of magicMap

Figure 1 shows the workflow of magicMap for map construc-
tion in multiparental populations. The inputs include the ge-
notypic data of founders and sampled offspring at a set of
single nucleotide polymorphism (SNP) markers, and the
breeding design in terms of pedigree or mating schemes since
the founder population. Themap construction consists of five
stages: (1) group cosegregating markers into bins, (2) calcu-
late similarity matrix by independence test and two-locus
linkage analysis, (3) construct an initial map by spectral clus-
tering and ordering, (4) refine the map by iteratively improv-
ing intermarker distances and local ordering using simulated
annealing, and (5) enlarge the refined map by reintroducing
binned markers. The map refinement also includes the foun-
der genotype imputation or the founder linkage phasing in
the case of outbred founders, and offspring error correction.
We describe the five stages in the following, see Supplemen-
tal Material, File S1 for the details of the algorithmmagicMap
and Table S1 for a list of symbols and their brief explanations.

Marker binning

A large proportion of markers may become cosegregating,
because of a limited number of recombination events accu-
mulated during the generations between founders and off-
spring. Two markers become cosegregating if there are no
recombination events between them, and they have the same
offspring genotypes if they have the same founder genotypes.

An adjacency matrix A is first produced based on the ob-
served genotypes. The matrix element aij is set to 1 if off-
spring at markers i and j have the same observed genotypes
except missing data and allelic coding, and otherwise it is set
to 0. An undirected graph can be generated from the adja-
cencymatrix. Themarker binning is based on the partitioning
of the resulting graph, according to clique rather than con-
nectivity, since a marker with many missing data would be
connected to many other markers. A marker bin corresponds
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to a clique, a maximal set of markers where the correspond-
ing subgraph is a complete graph, that is, all pairs of markers
within the bin are connected. In a bin, the marker with least
missing genotypes represents the bin, and we delete those
markers with less than one-half observed genotypes being in
common with the representative marker.

Pairwise similarity

We calculated the similarity matrix S among all pairs of rep-
resentative markers. We first performed independence tests,
and then pairwise linkage analysis, since the former does not
require parental genotypes and is thus less sensitive to seg-
regation distortion. The independence test is a likelihood
ratio test called the G-test, and the test statistic is given by

G ¼ 2
X
g1;g2

Og1g2ln

 
Og1g2
Eg1g2

!

where Og1g2 is the observed count of offspring with genotype
g1 at marker 1 and genotype g2 at marker 2, and Eg1g2 is the
expected count under the null hypothesis of two markers
being independent. The G-test statistic follows a chi-square
distribution. To compare with the linkage analysis, the result-
ing P-value is transformed into a LOD score.

In a two-locus linkage analysis, offspring are assumed to be
independent, conditional on parental haplotypes. The likeli-
hood lðr; h1; h2Þ for offspring genotypic data at twomarkers is
a function of recombination fraction r, and parental haplo-
types h1 at marker 1 and h2 at marker 2, where the hidden
ancestral origins are integrated out (File S1). The parental
haplotypes account for missing genotypes in founders and
possible unknown parental phases. The likelihood implicitly
depends on allelic error probabilities eF and e in founders and
offspring, respectively. Conditional on a combination of pa-
rental haplotypes h1 and h2, we estimate r using the maxi-
mum likelihood approach, and take the estimate with the
largest likelihood among all combinations. We calculate the
linkage LOD score under the null model of r ¼ 1; the recom-
bination fraction is scaled so that its maximum is 1. Thus, a
pair of markers has zero linkage LOD score if it has a flat or
noninformative likelihood function.

Tosavecomputational time,weperformed linkageanalysis
only for those pairs of markers with the independence LOD

scores larger than a threshold Csaveð. 0Þ. To save storage
space, the results of linkage analyses are saved only if the
linkage LOD scores are no less than Csave. The similarity ma-
trix S is given by one minus the scaled recombination fraction
matrix, where the similarities for unsaved pairs of markers
are set to zero.

Initial map construction

The construction of an initial genetic map can be divided into
three steps: (1) cosegregation binning based on the results of
two-locus linkage analyses; (2) marker grouping by the spec-
tral clustering, wheremarkers are treated as nodes of a graph,
and the nodes are thenmapped to a low-dimensional space so
that they can be easily clustered; and (3) marker ordering by
the spectral ordering, where themarkers are treated as nodes
of a connected graph and the nodes are thenmapped to a one-
dimensional space [i.e., Fielder vector (Fiedler 1973, 1989)]
so that they can be easily ordered. We choose the spectral
clustering and ordering to construct an initial map, mainly
because they are fast and their results are independent of
input marker ordering. In the following, we focus on prepar-
ing the input weight matrix, see File S1 for the details of the
spectral clustering and ordering.

Cosegregation binning: Cosegregation binning is the sameas
marker binning in thefirst stage butwith a different adjacency
matrix A. The matrix element aij is set to 1 if the estimated
recombination fraction between markers i and j is zero and
the corresponding linkage LOD score is larger than Cbin, and
otherwise it is set to zero.

Spectral clustering: We group the representative markers by
the spectral clustering approach (Shi and Malik 2000; von
Luxburg 2007). The inputs of the spectral clustering include
the number of groups to construct and a weight matrix. Let
Clinkage and Cindep be the LOD score thresholds for linkage
analysis and independence test, respectively. We obtain the
input weight matrixW from the similarity matrix S by setting
the matrix element to zero if its linkage LOD score <Clinkage

and its independence LOD score <Cindep.
The matrix W ¼ fwijg is transformed into a similarity

graph; twomarkers are connected only if the weight between
them is positive. Assuming that Clinkage ¼ Cindep, we estimate

Table 1 The running time (seconds) for map construction in the real datasets

Population #founders #offspring #markers #groups missing f magicMap

Arabidopsis RIL 2 148 846 5 0.006 572a

Apple CP 2 87 1,903 17 0.050 1,508b

Arabidopsis MAGIC 19 703 1,228 5 0.020 8,339
Barley MAGIC 5 916 357 7 0.015 2,355
Tomato MAGIC 8 238 1,482 12 0.052 2,551
Maize MAGIC 8 303 41,473 10 0.081 243,532
Maize US-NAM 26 4699 1,144 10 0.078 47,723
Maize EU-NAM 11 841 34,223 10 0.021 308,352
a 25 sec for MSTmap.
b 253 sec for Lep-MAP3.
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the threshold LOD score from the connectivity of the similar-
ity graph. For a given LOD score threshold, we delete the
connected components with the number of markers
being ,5. We estimate the threshold by maximizing it
while minimizing the number of deleted markers and keep-
ing the remaining graph connected.

Spectral ordering: Within a linkage group, we order markers
by the spectral ordering approach (Ding and He 2004). The
input of the spectral ordering is a weight matrix. For a linkage
group, we recalculate the weight matrix, rather than use the
weight matrix from the spectral clustering. We obtain the
weight matrix by reducing the noise in the similarity matrix
in twoways. First, a similaritymatrix element is set to zero if its
linkage LOD score <Clinkage or its independence LOD score
<Cindep. By default, the LOD thresholds are the same as those
for marker grouping. Second, we make the resulting matrix
further sparse by taking only the knn nearest neighbors for each
marker, where the closeness between twomarkers ismeasured
by the similarity. Here, knn is set to be the square root of the
number of markers in the group, and it is increased to a value
until the corresponding similarity graph is connected.

Map refinement

The initial linkage map was refined via simulated annealing
(Kirkpatrick et al. 1983). A proposal genetic map differs from
the current map in either one intermarker distance or local
ordering within a small window. The twomaps are compared
in term of logmarginal likelihood, which is obtained from the
standard forward-backward algorithm of the HMM by inte-
grating all latent ancestral origins (Rabiner 1989). The pro-
posal map is accepted with probability minð1; eDlogl=TÞ, where
Dlogl is the change of log likelihood by the proposal map
(positive for a “good” map), and T is the current temper-

ature. See File S1 for an efficient calculation of Dlogl in
the HMM.

The proposal of marker ordering is critical for map re-
finement. Besides the commonly used ordering proposal in a
window of fixed size (Figure 2A), we develop a new ordering
proposal based on the neighborhood obtained in two-locus
linkage analyses. According to the pairwise similarity matrix,
10 nearest neighbors for each marker are saved in the initial
map. In a neighbor-based update window, the rightmost
marker is randomly chosen among the 10 neighbors of the
leftmost marker, and the two markers become neighbors in
the proposal (Figure 2B).

Differing from the standard simulated annealing, we in-
troduce an additional temperature parameter, Tc, so that
heating iterations ðT.TcÞ focus on ordering improvement
and freezing iterations ðT#TcÞ focus on distance improve-
ment. Above Tc, temperature T decreases linearly toaT (a, 1)
after each iteration, the marker ordering is updated by slid-
ing a window from left to right along chromosomes using
both types of proposals (Figure 2), and the intermarker dis-
tance is updated by a log-normal proposal distribution that is
parametrized so that the accept ratio being �0.44 (Gelman
et al. 2013). Below Tc, we speed up the algorithm conver-
gence by decreasing temperature T to a3T after each itera-
tion, update marker ordering using only the proposals with
fixed window sizes (Figure 2A), and update intermarker dis-
tances by maximizing the likelihood using the Brent’s numer-
ical method (Brent 1973).

The updates of intermarker distances andmarker ordering
areconditional on founderhaplotypes.Weperformed founder
imputation for inbred founders, and both founder imputation
and linkage phasing for outbred founders. In addition, we
performed genotyping error correction for offspring in het-
erozygous populations. To save computational time, we per-
form theseupdates in every third iteration, and the algorithms
have been described (Zheng et al. 2018a).

Chromosome direction is reversed in every iteration, pri-
marily to overcome the asymmetry of the neighbor-based
update windows. After five iterations of refining, the skeleton
map consists of representatives of cosegregation bins, and all
markers within each bin are introduced and set to the same
position as the representative, and the algorithm continues to
refine the enlargedmap. The algorithm stops if the increase of
marginal likelihood is,1 or the number of freezing iterations
ðT#TcÞ reaches nfreeze. The map refinements for linkage
groups are carried out in parallel.

Map enlargement

The refined map is enlarged in the last stage by setting all
binnedmarkers in the first stage to the same positions as their
representatives. Themarkerswithin each bin are permuted so
that the input marker ordering has no effect.

Data simulation

We simulate genotypic data as three types of population: F2,
CP, and eight-way RIL with four generations of selfing. The

Figure 1 Overview of magicMap for map construction in multiparental
populations. (A) Examples of multiparental crosses. The cross schemes of
the tomato MAGIC and the maize MAGIC are similar to the eight-way
cross. (B) Workflow of the algorithm magicMap.
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eight-way RIL population has a funnel scheme so that each
offspring is produced, with the eight inbred founders being
randomly permuted. For each population type, we consider
three population sizes: small, medium, and large. They are set
to 50, 100, and 200 for the F2 and the CP, and 200, 400, and
800 for the eight-way RIL.

The simulation accounts for missing genotypes and allelic
errors in founders and offspring. We set the following param-
eter setup as a baseline: founder allelic error probability
eF ¼ 0:005, offspring allelic error probability e ¼ 0:005, miss-
ing fraction of founder genotypes fF ¼ 0:1, and missing frac-
tion of offspring genotypes f ¼ 0:1. To study the effect of
allelic errors, we vary e ¼ 0, 0.01, 0.02, 0.05, 0.075, and
0.1, keeping the other parameters constant. To study the
effects of missing genotypes, we vary f ¼ 0, 0.1, 0.2, 0.35,
0.5, and 0.75, keeping the other parameters constant. There
are, in total, 108 combinations of population type, population
size, allelic error probability e, and missing fraction f. Each
dataset is simulated by dropping founder haplotypes on a
simulated breeding pedigree. An offspring gamete is pro-
duced by chromosomal crossovers between two parental
chromosomes, where the number of crossovers in a gamete

follows a Poisson distribution, with the mean being the chro-
mosome length in Morgan, and the positions of crossovers
are distributed uniformly across the chromosome (see Zheng
et al. 2015, 2018a for detailed descriptions).

The founder haplotypes for each population type are spec-
ified as follows. The four parental haplotypes for the two
outbredparents ofCPareprovidedby thefirst four founders of
the Arabidopsis MAGIC (Kover et al. 2009). There remain
715markers after removingmonomorphicmarkers, and their
genetic map is set by multiplying the physical map with a
constant recombination frequency of 4.17 cM/Mbp. The
same set of markers and their genetic map are used for the
F2 and the eight-way RIL. The two founder haplotypes of F2
are set to be polymorphic, and the eight founder haplotypes
of the eight-way RIL are set to the first eight founders of the
Arabidopsis MAGIC (Kover et al. 2009).

Algorithm evaluation and map accuracy

We evaluate magicMap by simulated data and eight real
datasets in various mapping populations (Table 1), see File
S1 for the preparation of the real datasets. The algorithm
magicMap is compared with MSTmap in biparental popula-
tions, with Lep-MAP3 in the CP, and with mpMap in the
eight-way RIL. We do not compare with the popular JoinMap
because it is nonscriptable for extensive evaluations through
computationally automatic construction. See Wu et al. (2008)
for the comparisons of MSTmap with RECORD, CarthaGène,
and JoinMap, Rastas et al. (2016) for the comparisons of Lep-
MAP2 with HighMap and JoinMap, and Rastas (2017) for the
comparisons of Lep-MAP3 with Lep-MAP2 and MSTmap.

The genetic map estimated from magicMap is compared
with the truemap in the simulation or the othermap, in terms
of grouping, ordering, and spacing. For marker grouping,
isolated markers such as singletons are pooled as a single
group, and we calculate grouping accuracy by the pair count-
ingF-measure ranging from0 to1, a symmetricmeasureof the
similarity between two groupings (Pfitzner et al. 2009).

The accuracy of ordering within a linkage group is mea-
sured by Kendall t, a nonparametric correlation coefficient.
Since the chromosome direction is nonidentifiable, we can
always obtain non-negative t by reversing estimated order-
ing. The overall ordering accuracy can be obtained by aver-
aging over linkage groups of the estimated map.

The performance ofmarker spacingwithin a linkage group
is summarized by the estimation of total chromosome length.

Algorithm implementation and setting

The algorithm magicMap is implemented as an automatic
pipeline, so that it exports a final genetic map from the
required input marker data and population design informa-
tion. On the other hand, the five stages of magicMap are
implemented independently as functions, and they are linked
by input and output text files, so that each function can be
rerun or called by other software packages.

We set up magicMap with the following parameters: eF , e,
Csave, Cbin, Clinkage, Cindep, T0, Tc, a, and nfreeze, where the LOD

Figure 2 Illustration of the proposals for local ordering in simulated
annealing. The arrows denote ordered markers. (A) Update window of
fixed size. The rightmost marker is chosen based on a prefixed window
size. (B) Neighbor-based update window. The rightmost marker is ran-
domly chosen among the leftmost marker’s neighbors, which are deter-
mined from two-locus linkage analyses.
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score thresholds Clinkage and Cindep are estimated internally by
magicMap. The many other options are used mainly for test-
ing magicMap, and it is generally unnecessary to change
them. We set allelic error probabilities eF ¼ e ¼ 0:005, and
smaller values may be used for stringent filteredmarker data.
A pair of markers are dissimilar or noninformative if either
the linkage LOD or independence LOD is no greater than the
LOD score threshold Csave, which is set to 1 and should be
smaller than Clinkage and Cindep. We set by Cbin ¼ N so that
cosegregation binning in the initial map construction is not
performed by default, and it should be set to be a positive
value to increase computational efficiency in the case of high
density marker data.

For map refinement, we set a low initial temperature,
T0 ¼ 2; and a small cooling constant, a ¼ 0:85; to increase
computational efficiency. A high T0 value between 5 and
10 may be set in the case of a bad initial map, but too high
T0 valuemay destroy the ordering of a good initial map, and a
large cooling constant amay then be needed. We set freezing
temperature Tc ¼ 0:5; and the maximum number of freezing
iterations nfreeze ¼ 15; the map length usually becomes stable
after several freezing iterations. A reasonably good map can
often be obtained from a fast map refinement by setting two
heating ðT0 ¼ Tc=a2;a ¼ 0:5Þ and three freezing ðnfreeze ¼ 3Þ
generations; the default setting takes �20 iterations. By de-
fault, the parental imputation and phasing are performed if
the missing fraction in founders is #0.05 or founders are
outbred, offspring imputation is not performed, and the error
correction in offspring is performed only for heterozygous
populations (see also Discussion).

We use the default parameter values formagicMap, except
that for themaizeMAGICand themaizeEU-NAMdatasetsCbin

is estimated internally to be 10 or larger so that the resulting
number of bins is no less than one-third of the number of the
markers in two-locus analyses; a large Cbin is used to ensure
cosegregating. For marker grouping using MSTmap and Lep-
MAP3, we estimate cut off P-value or LOD score threshold
roughly so that the grouping accuracy is high for the simu-
lated data or the grouping is close to that of magicMap for the
real data. Haldane’s mapping function is used for MSTmap,
Lep-MAP3, andmpMap. See File S1 for the running setups for
magicMap, MSTmap, Lep-MAP3, and mpMap.

Data availability

The algorithm magicMap is currently implemented in Mathe-
matica 11.0 (Wolfram Research Inc. 2016), and has been in-
cluded as a function in the RABBIT software. RABBIT is
available from the web site: https://github.com/chaozhi/
RABBIT.git, and is offered under the GNUAffero general public
license, version 3 (AGPL-3.0). AMathematica license is required
to run the RABBIT software. Example scripts for simulating
genotypic data and constructing linkage map are included.

The marker data for the Arabidopsis RIL are available from
http://www.atgc.org/XLinkage/MadMapper/ath_sfp_map_
example/, and the physical positions of the markers were
obtained from Arabidopsis annotation version 4, TIGR re-

lease May 2003 (http://elp.ucdavis.edu/data/analysis/
sfp_map/sfp_map.html). The marker data for the Arabidopsis
MAGIC are available at http://mtweb.cs.ucl.ac.uk/mus/www/
magic/. Themarker data for themaize US-NAMare available at
https://www.panzea.org/. The marker data for the apple CP,
the barleyMAGIC, the tomatoMAGIC, themaizeMAGIC, and
EU-NAM are available in the supplementary materials of
Bauer et al. (2013), Gardner et al. (2014), Dell’Acqua et al.
(2015), Pascual et al. (2015), and Liller et al. (2017), respec-
tively. The available physical maps from the corresponding
marker data were also downloaded and used for evaluating
magicMap. Supplemental material available at Figshare:
https://doi.org/10.25386/genetics.8243180.

Results

Simulation evaluation

Marker grouping: Figure 3 shows that the grouping of mag-
icMap is more robust to genotyping errors and missing geno-
types than MSTmap, Lep-MAP3, and mpMap in the F2, the
CP, and the eight-way RIL, respectively. In the medium and
large populations, the grouping accuracies of magicMap are
close to 1, except for the large missing fraction, f ¼ 0:75. In
contrast, the grouping accuracies of MSTmap and Lep-MAP3
drop dramatically when e>0:05 or f>0:2, and the grouping
accuracies of mpMap in the eight-way RIL gradually decrease
with e and f.

The worse performance of MSTmap and Lep-MAP3 is
partly because both methods are based on a single hard
threshold in two-locus linkage analysis, and partly because
it becomes difficult to correctly estimate the number of groups
from a decreasing amount of accurate genotypic data; mag-
icMap andmpMap require an input for the number of groups.
The outperformance of magicMap over mpMap is because
magicMap deletes isolated markers, whereas mpMap groups
all markers by hierarchical clustering, and becausemagicMap
selects informative eigenvectors before performing hierarchi-
cal clustering; the outperformance of mpMap over magicMap
at f ¼ 0:75 for small and medium population sizes is proba-
bly because magicMap deleted too many markers.

Marker ordering: Figure 4, A and B show that the ordering of
magicMap is more robust to genotyping errors and missing ge-
notypes than MSTmap in the F2. Figure 4, C and D show that
Lep-MAP3 is slightly more accurate than magicMap, probably
because magicMap does not delete markers during ordering
while the fraction of markers that are deleted by Lep-MAP3
increases up to 40% with e and f (see Figure S1). Figure 4, E
and F show that the ordering of both magicMap and mpMap is
robust to genotyping errors and missing genotypes in the eight-
way RIL, but magicMap is always more accurate than mpMap.
See Figure S2 for the illustrative comparisons between esti-
mated ordering and the true ordering.

Figure S3 shows that the ordering improvement of map
refinement over spectral ordering increases with the number
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of founders in the mapping populations. The amount of
relative improvement increases from � 1% in the biparental
F2, to � 4% in the CP (pseudo 4-way cross), and to � 7% in
the eight-way RIL. This is probably because the similarity
matrix of spectral ordering calculated from the pairwise link-
age analysis is less accurate when there are more founders.

Figure S4 shows that the inclusion of error correction
during map refinement increases the ordering accuracy
when there are at least some genotyping errors ðe$ 0:02Þ.
The error correction slightly decreases the ordering accu-
racy for the datasets with various missing fractions and
e ¼ 0:005. The error correction slightly decreases the order-
ing accuracy in the eight-way RIL, because the erroneous
heterozygous genotypes have been deleted and the error
probability from one homozygous genotype to the other is
very small ðe2Þ.

Marker spacing: Figure 5 shows that the spacing of magi-
cMap is more robust to genotyping errors and missing geno-
types than MSTmap in the F2 and mpMap in the eight-way
RIL; the ratio of estimated map length to the true value is
always�1.0 for magicMap. The ratio fromMSTmap in the F2
increases up to �25 with e increasing up to 0.1, while it
decreases gradually with f. The ratio from mpMap in the
eight-way RIL is �1.5, almost independent of e and f. In

the CP, both magicMap and Lep-MAP3 are robust to genotyp-
ing errors and missing genotypes, although the ratio from
magicMap increases slightly with e.

The large inflation ofmap length byMSTmap is because its
estimation of intermarker distance is based on two-locus
linkage analysis, while magicMap, Lep-MAP3, and mpMap
use various multilocus approaches. For magicMap in the CP,
the slight increase of map length with e may be because the
ordering accuracy decreases with e (Figure 4C). Similarly for
mpMap in the eight-way RIL, the large inflation of map
length may be due to the low ordering accuracy.

Figure S5 shows that the inclusion of the error correction
prevents the inflation of map length in the F2 and CP, but it
slightly deflates the map length in the eight-way RIL. This is
because most erroneous heterozygous genotypes in the ho-
mozygous populations have been deleted beforehand and the
error correction may change small recombinant haplotypes
into nonrecombinant.

Evaluation by real data

Biparental RIL: The high quality data of 864 single feature
polymorphic markers in the biparental population were
obtained by stringent filtering criteria (West et al. 2006).
Figure 6, A and C show the comparisons among magicMap,
MSTmap, and the physical map in the Arabidopsis RIL (West

Figure 3 Simulation evaluation of marker group-
ing. The left panels show the effects of allelic error
probability, and the right panels for the effects of
missing fraction. The solid lines denote the results of
magicMap, and the dashed lines denote the results
of the alternative methods, which are MSTmap,
Lep-MAP3, and mpMap for the F2 (A and B), the
CP (C and D), and the eight-way RIL (E and F), re-
spectively. The gray circles (s), red diamonds ð)Þ,
and blue rectangles (h) refer to small, medium, and
large population sizes, respectively; the x-coordi-
nates are jittered to avoid overlapping.
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et al. 2006). For both magicMap and MSTmap, two markers
are inconsistently grouped, and two markers have a large
inconsistency of ordering. The Kendall’s t coefficients are
0.978 between magicMap and the physical map, 0.980 be-
tween MSTmap and the physical map, and 0.986 between
magicMap and MSTmap. The total genetic length of 419 cM
obtained by magicMap is shorter than the 489 cM by
MSTmap.

CP population: The CP marker data were prepared by
Gardner et al. (2014) for using JoinMap; the number of
markers is decreased by two orders of magnitude after sev-
eral stringent filtering steps. Figure 6, B and D show the
comparisons among magicMap, Lep-MAP3, and the physical
map in the apple CP (Gardner et al. 2014). The physical map
is derived from the “Golden Delicious” v1.0 reference ge-
nome (Velasco et al. 2010); the two outbred parents in the
apple CP are “Golden Delicious” and “Scarlet Spur.” In com-
parison with the physical map, 362 markers are inconsis-
tently grouped by magicMap, and 360 markers by Lep-
MAP3, similar to 364 by JoinMap4 (Gardner et al. 2014).
Excluding the inconsistently grouped markers, the Kendall’s
t coefficients are 0.893 between magicMap and the physical
map, 0.902 between Lep-MAP3 and the physical map, and
0.897 between magicMap and Lep-MAP3. The total genetic
length is estimated to be 1086 cM by magicMap, shorter

than the 1120 cM by Lep-MAP3 and the 1272 cM by Join-
Map (Gardner et al. 2014).

MAGIC populations: Figure 7, A–D show the comparisons
between magicMap and the physical maps in the Arabidopsis
MAGIC (Kover et al. 2009), the barley MAGIC (Liller et al.
2017), the tomato MAGIC (Pascual et al. 2015), and the
maize MAGIC (Dell’Acqua et al. 2015); the reference map
provided by Liller et al. (2017) is based on the POPSEQ
map (Ariyadasa et al. 2014). There are only several un-
grouped or inconsistently grouped markers out of <2000
markers in the Arabidopsis, the barley, and the tomato
MAGIC. And there are 161 ungrouped and 87 inconsistently
grouped markers out of 41,473 markers in the maize MAGIC.
The Kendall’s t between magicMap and the physical or ref-
erence maps are 0.985, 0.961, 0.961, and 0.958 for the
Arabidopsis, the barley, the tomato, and the maize MAGIC,
respectively.

Pascual et al. (2015) constructed the genetic map of the
tomato MAGIC using mpMap and the physical map. The total
genetic length obtained from mpMap is 2156 cM, around
twice as long as the biparental maps (Sim et al. 2012). In
comparison, the genetic length from magicMap is 1075 cM.

Dell’Acqua et al. (2015) derived the genetic map of the
maize MAGIC using the physical map and the biparental map
(Ganal et al. 2011), and the resulting genetic map length is

Figure 4 Simulation evaluation of marker ordering.
The left panels show the effects of allelic error prob-
ability, and the right panels show the effects of the
missing fraction. The solid lines denote the results of
magicMap, and the dashed lines denote the results
of the alternative methods, which are MSTmap,
Lep-MAP3, and mpMap for the F2 (A and B), the
CP (C and D), and the eight-way RIL (E and F), re-
spectively. The red diamonds ð)Þ and blue rectan-
gles (h) refer to medium and large population sizes,
respectively.
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1711 cM. For magicMap, the genetic map length increases from
1637 cM for randomly selected 2000 markers to 2929 cM for
the full dataset of 41,473 markers, while the ordering accuracy
slightly decreases from 0.970 to 0.958 (Figure S6).

NAM populations: Figure 7, E and F show the comparisons
between magicMap and the physical maps in the maize
US-NAM (McMullen et al. 2009) and the maize EU-NAM
(Bauer et al. 2013). There are two ungrouped and seven in-
consistently grouped markers out of 1144 markers in the
US-NAM, and there are 364 ungrouped markers out of
34,223 markers in the EU-NAM. The Kendall’s t between
magicMap and the physical maps are 0.993 and 0.923 for
the US-NAM and the EU-NAM, respectively.

McMullen et al. (2009) constructed the genetic map for
the US-NAM using MAPMAKER 3.0 (Lander and Green
1987). The Kendall’s t between magicMap and MAPMAKER
map is 0.995. The genetic map length obtained from MAP-
MAKER is 1399 cM, similar to the 1330 cM frommagicMap.

Giraud et al. (2014) constructed the genetic map for the
EU-NAM using the physical map. The resulting genetic map
length is 1344 cM. For magicMap, the genetic length in-
creases from 1506 cM for randomly selected 2000 markers

to 1863 cM for the full dataset of 34,223 markers, while the
ordering accuracy stays �0.92 (Figure S6).

Running time: Table 1 shows the running time of map con-
struction for the eight real datasets on a standard desktop
computer with 32 GB memory; a large memory is required
for the large marker data with tens of thousands of markers.
The MSTmap package is applicable only to the Arabidopsis
RIL data and Lep-MAP3 is applicable only to the apple CP
data, and they are faster than magicMap.

Figure 8 shows thatmagicMap spent.95% of computational
time in the second stage of two-locus analysis and the fourth
stage of map refinement in the maize MAGIC and the maize
EU-NAM. Because the number of bins in the first stage increases
sublinearly with the input number n of markers, the time t2 used
in the second stage increases subquadratically with n, and the
time t4 used in the fourth stage increases linearly with n.

Discussion

Comparisons with previous algorithms

Marker grouping: The evaluations by simulation and real
data show that the magicMap grouping is robust, because it

Figure 5 Simulation evaluation of marker spacing.
The y-axis denotes the ratio of estimated chromo-
some length to the true value. The left panels show
the effects of allelic error probability, and the right
panels show the effects of the missing fraction. The
solid lines denote the results of magicMap, and the
dashed lines denote the results of the alternative
methods, which are MSTmap, Lep-MAP3, and
mpMap for the F2 (A and B), the CP (C and D),
and the eight-way RIL (E and F), respectively. The
red diamonds ð)Þ and blue rectangles (h) refer to
medium and large population sizes, respectively.
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combines several different ways to reduce the impact of data
noises. First, noisy connections and isolated markers are de-
leted by using a low threshold that is internally estimated.
Second, the spectral clustering algorithm discards noninfor-
mative eigenvectors. Lastly, hierarchical clustering groups
markers using the selected eigenvectors. In comparison, most
software packages such as JoinMap,MSTmap, and Lep-MAP3
useahigh threshold for grouping, the currentmpMapchanges
into hierarchical clustering, and HighMap searches hierarchi-
cal clustering under many different hard thresholds.

Spectral ordering: The magicMap ordering algorithm com-
bines spectral ordering and local ordering improvement via
simulatedannealing. Before spectral orderingusinga similarity
matrix, we keep only some nearest neighbors of each marker
because of the linear structure of chromosomes and the poten-
tial noise in distant neighbors. Spectral ordering results in a
good long-range ordering, probably because the Fiedler vector
(Fiedler 1973, 1989), the eigenvector associatedwith the non-
zero smallest eigenvalue, reflects the global property of the
graph Laplacian obtained from similarity matrix.

Cheon et al. (2016) described a Laplacian ordering approach
for the loci-ordering via the Fiedler vector, which requires an
input of similarity matrix and does not perform marker spacing.
The authors groupedmarkers from a sparse similaritymatrix that
is obtained by choosing appropriately k nearest neighbors for
each marker. Such grouping is still sensitive to the choice of k
according to our preliminary simulation studies. For each linkage
group, Cheon et al. (2016) then performed a similar spectral
ordering after rechoosing appropriately k nearest neighbors,
whereas magicMap chooses k in a very loose way.

Iterative refining: From the initial map that is constructed
based on two-locus analysis, map refinement is often neces-
sary, which is also computationally intensive. Many packages
such as mpMap and MapDisto rely on rippling for improving

local ordering, which is inefficient because of simultaneously
comparing all possible permutations within a small sliding
window (of size � 5). The algorithm magicMap performs
map refinement via the simulated annealing with a low initial
temperature ðT0 ¼ 2Þ, whereas a much high initial tempera-
ture ðT0 ¼ 20Þ is often required in the simulated annealing
for map construction (Jansen et al. 2001; Hackett et al.
2003).

In the iterative improvement of magicMap, a proposal of
local ordering is based on operations such as reversion (2-opt)
and node insertion that are commonly used in traveling
salesman problems (TSP) (Reinelt 1994), as do the most
software packages for map construction such as CarthaGène,
MSTmap, and Lep-MAP3. The update windows in these TSP-
like proposals are often randomly chosen (see Figure 2A).
However, magicMap includes neighbor-based update win-
dows (Figure 2B), which turn out to be very effective so that
it is more likely to accept the proposal within a larger
window.

Both marker spacing and local ordering are updated in the
iterative improvement of magicMap, so that the multilocus
likelihood of the genetic map increases with decreasing
annealing temperature. For a given marker ordering, we
update the intermarker distances one by one by themaximum
likelihood approach, which has advantages over the expecta-
tion-maximization (EM) algorithms (Lander et al. 1987; Tong
et al. 2010; Rastas et al. 2013). First, we estimate genetic
distances directly instead of recombination fractions, be-
cause, generally, no explicit mapping function exists, even
under the assumption of no genetic interference. Second,
our spacing algorithm converges within a few iterations,
much more rapidly than the EM algorithms.

Guidelines for using magicMap

Assumptions: The algorithm magicMap takes several key
assumptions from the previous HMM framework (Zheng

Figure 6 Evaluation of magicMap performances by
the real Arabidopsis 2-way RIL (A and C) and the
apple CP (B and D). The gray grid lines denote the
chromosome boundaries, and the dots with nega-
tive y-values denote the ungrouped markers. (A and
B) Genetic map constructed by magicMap vs. the
physical map. (C) Genetic map constructed by
MSTmap vs. the physical map. (D) Genetic map con-
structed by Lep-MAP3 vs. the physical map.
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et al. 2014, 2015, 2018a,b; Zheng 2015). First, we assume
that there is no genetic interference. However, it is not
expected to be important under a high marker density.
Second, we assume that there is no segregation distortion.
Our calculation of similarity matrix accounts for indepen-
dent tests that are robust to segregation distortion, although
we did not study the effects of segregation distortion on map
construction. It is suggested to delete markers with severe
distortion by using the chi-squared test with a low significant
level (e.g., 0.01 divided by the number of markers), or by
deleting markers with minor allele frequency below a certain
threshold, since severe distortion may be caused by genotyp-
ing errors in founders or offspring.

Last, but not least, sampled offspring are assumed to be in-
dependent, conditional on phased founder haplotypes, which
substantially reduces the computational load. Population designs
with a very small population size in an intermediate generation
wouldgeneratestrongdependenciesamongoffspring,resultingin
biased estimations of recombination fractions and difficulties in
grouping markers. It is thus recommended to use bottleneck
generation as the founder population.

Missing data: Unlike other methods such as mpMap, magi-
cMap allows missing genotypes in founders. However, it is
suggested to delete markers with too many missing founder
genotypes (e.g., $ 5), since the number of founder haplo-

types increases exponentially with the number of missing
genotypes. By default, magicMap does not impute missing
offspring genotypes, because the genetic map length would
otherwise be increasingly underestimated with missing frac-
tion. This indicates that offspring imputation by a maximum
likelihood approach suppresses recombination events.

Genotypic errors: Hackett and Broadfoot (2003) have re-
ported that the maximum likelihood criterion results in a
substantial inflation of map length in the presence of geno-
typing errors, which has been confirmed in our results (Fig-
ure S5). We have solved this problem by the error correction
algorithm (Zheng et al. 2018a), where suspicious genotyping
errors are corrected during iterative map refinement. In the
simulation studies, the error correction can increase the ac-
curacies of the map length in heterozygous populations,
whereas it slightly underestimates the map length in homo-
zygous populations where most heterozygous errors have
been removed (see Figures S4 and S5); the map deflation
may because genotyping errors and short recombinant seg-
ments are confounded. Figure S6 shows that the genetic map
length gradually increases with the number of markers in-
creasing up to tens of thousands, in contrast to only �1000
markers in the simulation evaluation.

The increase in map length with the number of markers
may be because of the increasing number of genotyping errors

Figure 7 Evaluation of magicMap perfor-
mances by the real multiparental populations.
Panels (A–F) refer to the Arabidopsis MAGIC,
the barley MAGIC, the tomato MAGIC, the
maize MAGIC, the maize US-NAM, and the
maize EU-NAM, respectively. The gray grid lines
denote the chromosome boundaries, and the
dots with negative y-values denote the un-
grouped markers. The dots in the last column
of the grid in (E) the denote unmapped markers
in the physical map.
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even with a small genotypic error probability, because of the
difficulties in ordering the increasing number of markers
within cosegregation bins, or because of the increasing num-
ber of detected recombination events. Since the recombinant
segments from higher marker density data contain more
markers, and they become less likely confounded with gen-

otyping errors, it is suggested to perform the error correction
in heterozygous populations and in homozygous populations
with a large number of markers (e.g., .5000).

Limitations: One main limitation of magicMap is that it is
computationally intensive, especially in the stage of map
refinement. One solution is to translate magicMap into the
Julia language, a high-level high performance dynamic lan-
guage for technical computing (Bezanson et al. 2017). Cur-
rently, the translation of the functions such as magicImpute
into Julia is under progress; these functions are called by
magicMap. In addition, we can improve magicMap for map
integration in multiple mapping populations (e.g., the NAM),
where the HMM adopts a joint state space for all founders; a
more efficient way is to account for the population structure
since the state space of the HMM in a subpopulation is usually
much smaller than the joint state space.

Conclusion

Wehavedemonstrated thegenerality ofmagicMap forgenetic
map construction, in the sense that it is not restricted to
specific breeding designs, and is applicable to both inbred
and outbred founders. Furthermore, we have shown that
magicMap is more accurate and robust to missing genotypes
and genotyping errors than commonly used packages.
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