
| INVESTIGATION

Heritability in Plant Breeding on a
Genotype-Difference Basis

Paul Schmidt,* Jens Hartung,* Jörn Bennewitz,† and Hans-Peter Piepho*,1

*Biostatistics Unit, Institute of Crop Science and †Institute of Animal Science, University of Hohenheim, Stuttgart, 70599 ,Germany

ORCID ID: 0000-0003-1528-2082 (P.S.)

ABSTRACT In plant breeding, heritability is often calculated (i) as a measure of precision of trials and/or (ii) to compute the response to
selection. It is usually estimated on an entry-mean basis, since the phenotype is usually an aggregated value, as genotypes are
replicated in trials, which stands in contrast with animal breeding and human genetics. When this was first proposed, assumptions
such as balanced data and independent genotypic effects were made that are often violated in modern plant breeding trials/analyses.
Due to this, multiple alternative methods have been proposed, aiming to generalize heritability on an entry-mean basis. In this study,
we propose an extension of the concept for heritability on an entry-mean to an entry-difference basis, which allows for more detailed
insight and is more meaningful in the context of selection in plant breeding, because the correlation among entry means can be
accounted for. We show that under certain circumstances our method reduces to other popular generalized methods for heritability
estimation on an entry-mean basis. The approach is exemplified via four examples that show different levels of complexity, where we
compare six methods for heritability estimation on an entry-mean basis to our approach (example codes: https://github.com/PaulSchmidtGit/
Heritability). Results suggest that heritability on an entry-difference basis is a well-suited alternative for obtaining an overall heritability
estimate, and in addition provides one heritability per genotype as well as one per difference between genotypes.
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THE idea behind measures of heritability as used in plant
breeding is relatively simple: they express the proportion

of the total phenotypic variance that is attributable to the
average effects of genes, which in turn determines the degree
of resemblance between relatives (Falconer and Mackay
2005, chapter 10). Lourenço et al. (2017) phrase it as “the
extent to which a phenotype is genetically determined.” A
phenotype is the composite of an organism’s observable
traits. It results from (i) the expression of the organism’s ge-
notype, (ii) the influence of environmental factors, and (iii)
the interactions between both. Thus, heritability investigates
the relationship between observed/phenotypic values with
phenotypic variance s2

p and their respective underlying true
genotypic values ðgÞ with genotypic variance s2

g . We can

furthermore dissect g and s2
g into additive, dominance, and

epistasis components to extract average effects of alleles and
breeding values ðaÞ, with variance s2

a. Depending onwhether
genotypic values or breeding values are considered, we refer
to broad-sense heritability ðH2Þ or narrow-sense heritability
ðh2Þ, respectively (e.g., Xu 2013). Accordingly, there is a clear
distinction between H2 and h2. However, note that the ap-
proach presented in this article is relevant for both measures,
which is why we will refer to heritability in general through-
out this article, unless it is necessary to refer to one of the two
specifically. The true genotypic/breeding values (and their
variances) are of course unknown, but can be estimated/
predicted from phenotypic data.

Piepho and Möhring (2007) pointed out that heritability
was originally proposed in the context of animal breeding
where the observations are collected from individuals, and
are used in mixed models to estimate genetic parameters or
breeding values by utilizing the additive genetic relationship
of all individuals. It is important to note that in animal breed-
ing, each individual usually has its own and unique geno-
type. Hence, an animal and a genotype refer to the same
thing: a single individual. Naturally, this means that
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genotypes/animals cannot be truly replicated in or across
environments. Instead, the same genotype/animal may only
be measured repeatedly over time (Mrode and Thompson
2014, chapter 1.3.2) and/or via its progeny/relatives
(Mrode and Thompson 2014, chapter 3.4). Repeated obser-
vations of individuals are either modeled by adding a ran-
dom uncorrelated permanent environment effect to the
mixed model or by treating repeated observations as differ-
ent traits.

However, inplantbreeding,weusuallyhave cropcultivars/
lines/varieties that are represented by a large group of indi-
vidual plants with exactly the same genotype. This is mainly
because most crop cultivars are clones, inbred lines, or hy-
brids. Thus, in contrast to animal breeding, a genotype in plant
breeding does not refer to just a single individual, but to all
individual plants belonging to the same cultivar and thus
sharing the same genotype. In other words, a genotype in
animal breeding is a single, genetically unique individual,
whereas a genotype in plant breeding is usually a group of
genetically identical individuals (though there are exceptions;
see the Discussion). This allows for true replication of a geno-
type in and acrossmultiple environments, even at a single time
point and thuswithout repeatedmeasurements in time. Notice
that plant breedersmay also decide to have repeatedmeasures
over time and/or account for observations of related geno-
types, but the salient feature of plant genotypes as opposed
to animal genotypes is the availability of true replication.

As a consequence, the multiple observations of the same
cultivar are usually aggregated to obtain a single phenotypic
value. Levels of aggregation range from individual plants to
means of many plants, with the same genotype tested across
several locations andyears indesignedexperiments. Theneed
for this aggregation in plant breeding results is an additional
step that is not necessary in animal breeding. Since we do not
consider analyses of individual plants in this article, the
phenotypic value for a genotype will always be assumed to
be some sort of mean value. In this context, heritability is
referred to as heritability on an entry-mean (i.e., genotype-
mean) basis, which stands in contrast with heritability in
animal breeding and human genetics. This difference can
also be deduced from the level of the heritability, which is
usually much lower for complex traits in humans and animals
compared to the entry-mean heritability of complex traits in
plant breeding. Nowadays, the aggregation of the multiple
observations into a mean phenotypic value per genotype
is usually either done by best linear unbiased estimation
(BLUE) or best linear unbiased prediction (BLUP). Note that
the use of BLUPs here is not the same as in the framework of
breeding value estimation typical for animal breeders (see
Materials and Methods). The choice between BLUE and BLUP
in plant breeding depends on the goal of the analysis and
both are commonly used in practice [see Piepho et al.
(2008), for more information and a review on the decision-
making].

In earlywork onmeasures of heritability for plant breeding
trials (e.g., Hanson and Robinson 1963), it was assumed that

(i) the trial design is completely balanced/orthogonal, (ii)
genotypic effects are independent, and (iii) variances and
covariances are constant, so that the arithmetic mean across
all observations for a genotype is the natural choice to aggre-
gate to a single phenotypic value. We will from now on refer
to such a scenario as the simple, balanced setting. Only in a
simple, balanced setting does heritability havemultiple direct
interpretations. Specifically, H2 is (I) the ratio of genetic var-
iance to phenotypic variance, (II) the slope coefficient of a
linear regression of the genotypic values on the phenotypic
values ½gap�, (III) the squared correlation between genotypic
values and phenotypic values ½r2ap�, and (IV) the ratio of
response to selection ½DG� to selection differential ½S� [see
Falconer and Mackay (2005), pages 160 and 186]. For the
simple, balanced setting, these interpretations can be repre-
sented by

H2 ¼ s2
g

s2
p

z}|{I
¼ ggp
z}|{II

¼ r2gp
z}|{III

¼ DG
S

z}|{IV

; (1)

where DG is often also referred to as the genetic gain and S is
the mean phenotypic value of the selected genotypes,
expressed as a deviation from the populationmean. Note that
when heritability is estimated via (1)-IV, it is referred to as
the realized heritability, as it requires DG to be known, which
means that selection has already occurred and that the off-
spring have been observed. By rewriting (1)-IV, we obtain the
more directly interpretable breeder’s equation:

DG ¼ H2S; (2)

which allows the prediction of the expected response to
selection and is the key reason why heritability plays such
an important role in plant (and animal) breeding.Hanson and
Robinson (1963, page 128) get to the heart of it: “Heritability
has value primarily as a method of quantifying the concept of
whether progress from selection for a plant character is rel-
atively easy or difficult to make in a breeding program. A
plant breeder, through experience, can perhaps rate a series
of characters on their response to selection. Heritability gives
a numerical description of this concept.”

The standard method of estimating H2 for phenotypic
mean values is by plugging estimates for s2

g and s2
p into

(1)-I. Given the simple, balanced setting, these variances
can easily be estimated from mean squares and their re-
spective expected mean squares of a conventional ANOVA
(Yan 2014, chapter 1). For a single environment, where
ng genotypes are tested in nr replicates in a completely
randomized design (CRD), the observed data may be
modeled as

yik ¼ mþ gi þ eik; (3)

where yik is the kth observation of the ith genotype, m is the
intercept, gi is the effect for the ith genotype, and eik is the
plot error effect corresponding to yik. The phenotypic value of
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genotype i can be obtained as the arithmetic mean across
replicates, �yi�, which is also the BLUE in this simple, bal-
anced setting. Assuming that gi and eik are random, with
independent distribution, zero mean, and variances s2

g
and s2

e , respectively, we can calculate the phenotypic vari-
ance of �yi� as:

s2
p ¼ s2

g þ
s2
e

nr
: (4)

When genotypes are tested in a multienvironment trial
(MET), where an environment denotes a year-by-location
combination and CRDs are used at all environments, the
observed data may be modeled as

yikt ¼ mþ gi þ et þ ðgeÞit þ eikt; (5)

where yikt is the kth observation of the ith genotype at the tth
environment, m is the intercept, gi is the main effect for the
ith genotype, et is the main effect for the tth environment,
ðgeÞit is the itth genotype-by-environment interaction ef-
fect, and eikt is the plot error effect corresponding to yikt.
Again, since we have a simple, balanced setting, we can
obtain phenotypic values as �yi�� ¼ BLUEðmþ giÞ. Assuming
that gi, et, ðgeÞit, and eikt are random, with independent
distributions, zero mean, and variances s2

g , s2
e , s2

ge and
s2
e , respectively, one may then calculate the phenotypic

variance as

s2
p ¼ s2

g þ
s2
ge

ne
þ s2

e

nenr
; (6)

where ne is the number of environments (Hallauer et al.
2010, page 59). This approach assumes a single variance
for genotype-by-environment interactions ðg3 eÞ, even
when multiple locations were tested across multiple years.
In the latter case, one may instead model the environmental
effects via separate year, and location main and interaction
effects as

yikmq ¼ mþ gi þ fm þ lq þ ðflÞmq þ ðgfÞim þ ðglÞiq þ ðgflÞimq

þ eikmq;

(7)

where yikmq is the kth observation of the ith genotype in the
mth year and the qth location, m is the intercept, gi is
the main effect of the ith genotype, fm is the main effect
for the mth year, lq is the main effect for the qth location,
ðflÞmq is the mqth year-by-location interaction effect, ðgfÞim
is the imth genotype-by-year interaction effect, ðglÞiq is the
iqth genotype-by-location interaction effect, ðgflÞimq is the
imqth genotype-by-year-by-location interaction effect, and
eikmq is the plot error effect corresponding to yikmq. Once
more, we have the phenotypic values for each genotype as
�yi��� ¼ BLUEðmþ giÞ. Assuming gi, fm, lq, ðflÞmq, ðgf Þim, ðglÞiq,
ðgflÞimq, and eikmq are random, with independent distribu-
tion, zero mean, and variances s2

g , s
2
f , s

2
l , s

2
fl, s

2
gf , s

2
gl, s

2
gfl,

and s2
e , respectively, we can calculate the phenotypic vari-

ance as:

s2
p ¼ s2

g þ
s2
gl

nl
þ
s2
gf

nf
þ

s2
gfl

nlnf
þ s2

e

nlnf nr
; (8)

where nf and nl are the number of years and locations, re-
spectively (Becker 2011; Yan 2014). Note that when aMET is
conducted either at multiple locations within a single year or
at a single location but across multiple years, (8) simplifies to
(6). We will refer to heritability estimates involving (4), (6),
or (8) and (1)-I as the standard heritability ðH2

StdÞ.
By examining (4), (6), and (8), it can be seen that the

calculation of s2
p always involves the genotypic variance and

all g3 e variances. However, it does not incorporate purely
environmental variance components, such as s2

e in the con-
text of (6), and s2

f , s
2
l , and s2

fl in the context of (8) [but see
Yan (2014, page 3)]. Hence, referring to s2

p as the phenotypic
variance may be considered misleading, as it neglects the
purely environmental effects and therefore is definitely not
the variance of phenotypic mean values. However, a key fea-
ture of the perspective on heritability put forward in this
paper is that s2

p, as defined in (3)–(8), actually coincides with
half the variance of a difference between two phenotypic
mean values in the simple, balanced setting. Taking (5) as
an example, the variance of a genotype mean is

varð�yi��Þ ¼ s2
g þ

s2
e

ne
þ s2

ge

ne
þ s2

e

nenr
6¼ s2

p ; (9)

whereas the variance of a difference between means of ge-
notypes i and j is varð�yi��Þ þ varð�yj��Þ2 2covð�yi��; �yj��Þ, which in
this simple, balanced setting reduces to

varð�yi�� 2 �yj��Þ ¼ 2

 
s2
g þ

s2
ge

ne
þ s2

e

nenr

!
¼ 2s2

p : (10)

It can be argued that this focus on genotype “differences”
makes more sense than a focus on genotype means or effects
themselves, since the goal is to select the best-performing
genotype(s) to maximize DG and the ranking of genotypes
is uniquely determined by all pairwise differences, whereas
the individual genotypic effects and the absolute (mean) per-
formance level as such do not inform about the ranking
(Searle et al. 1992; Piepho et al. 2008). Accordingly, the cor-
rect ranking of genotypes and thus the precision of estimating
genotype differences is more relevant than the precision of
the genotype effect estimates. Furthermore, we found that
especially in some older publications, the definitions of her-
itability refer to differences: Knight (1948) defines heritabil-
ity as “the portion of the observed variance for which
differences in heredity are responsible,” while Hanson and
Robinson (1963, page 125) state that the “concept of herita-
bility originated as an attempt to describe whether differ-
ences actually observed between individuals arose from the
differences in genetic makeup between the individuals or
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resulted from different environmental forces.” Finally, it is no co-
incidence that two published alternative heritability estimation
methods also involve the variance of a difference between geno-
types: Cullis et al. (2006) proposed to calculate heritability as

H2
Cullis ¼ 12

�vBLUPD��
2s2

g
; (11)

where �vBLUPD�� is the mean variance of a difference of two BLUPs
for the genotypic effect and s2

g is the genotypic variance. The
BLUE counterpart was suggested by Piepho and Möhring
(2007) as

H2
Piepho ¼

s2
g

s2
g þ �vBLUED�� =2

; (12)

where �vBLUED�� is the mean variance of a difference of two ge-
notypic BLUEs and s2

g is the genotypic variance. Both mea-
sures reduce to H2

Std in the simple, balanced setting.
These considerations suggest that heritability is best de-

fined in terms of pairwise comparisons among genotypes, and
this is in fact the key perspective taken in this paper.We aim to
provide two things. First, an elaboration of how a heritability
on an entry-difference basis ðH2

D=h
2
DÞ can be defined. Second,

a comparison of how the application of H2
D=h

2
D compares to

other published methods for estimating heritability on an
entry-mean basis. To do so, we give a derivation of H2

D and
subsequently apply it alongside six other heritability mea-
sures in four example analyses with real data.

Materials and Methods

Mixed model theory

We assume a standard linear mixed model for the observed
data vector y, which is of the form

y ¼ Xbþ Zuþ e; (13)

where b and u are vectors of fixed and random effects, re-
spectively, X and Z are the associated designmatrices, and e is
a vector of random residual errors. The random effects u
and e are assumed to be independently distributed as u �
MVNð0;GÞ and e � MVNð0;RÞ, such that y � MVNðXb;VÞ,
where MVNð:; :Þ denotes the multivariate normal distribution
with a mean vector given as the first argument and a variance–
covariance matrix as the second. To obtain estimates for b

as well as predictions for u, the mixed model equations
(Henderson 1986; Searle et al. 1992) can be solved as�

BLUEðbÞ
BLUPðuÞ

�
¼ C

�
X9R21y
Z9R21y

�
; (14)

where

C ¼
�
C11 C12
C21 C22

�
¼
�
X9R21X X9R21Z
Z9R21X Z9R21Z þ G21

�2
: (15)

Note that we will explicitly use thewords “estimate/estimator”
and “predict/predictor” for BLUEs and BLUPs, respectively.
In the context of variety trials, genotype effects g may be
considered to be fixed or random. The choice between these
two options depends on the goal of the analysis and both are
commonly used in practice [see Piepho et al. (2008) for a
review on decision-making as well as Appendix A]. Accord-
ingly, we consider both as complementing cases in this
article.

If g is assumed to be afixed effect, we obtain genotypic BLUEs
ðĝBLUEÞ as a subset of BLUEðbÞ with varðĝBLUEjgÞ ¼ C11ðgÞ as the
submatrix ofC11 associatedwithg. Ifg is assumed tobea random
effect, we obtain genotypic BLUPs ðĝBLUPÞ as a subset of BLUPðuÞ
with varðĝBLUPjgÞ ¼ C22ðgÞ as the submatrix of C22 associated
with g. Note that in the case where g is the only fixed/random
effect in the model, its estimators/predictors and their variance
matrices are not subsets of, but equal to, BLUEðbÞ=BLUPðuÞ and
C11=C22, respectively. Notice further that BLUPs can always be
computed from entry means (BLUEs) using a stage-wise ap-
proach (see Appendix A). Only in the simple, balanced setting
is the correlation of genotypic BLUEs and BLUPs equal to unity,
and thus the ranking of genotypes does not change. On a side
note, it should be mentioned that one may want to use linear
combinations of BLUEðbÞ, such as, e.g., least squares means
(SAS Institute Inc. 2013) or estimated marginal means
(Searle et al. 2012) as phenotypic mean values instead.While
this certainly results in different estimated values and
(co)variances, it does not affect the heritability measures
proposed in this article. This is because for all methods that
rely on ĝBLUE, the focus lies on differences, and any additional
variance brought in via the linear combination with nonge-
netic effects cancels out when computing differences.

Example data sets

Toexemplify theapproachproposed in this article,weuse four
examples that showdifferent levels of complexity. Inexamples
1 and 2, a single-environment data set (Wright 2017) is an-
alyzed, while in example 3 a subset (i.e., a single environ-
ment) of theMET data set in example 4 (Hadasch et al. 2016)
is analyzed.

Example 1: The R-package agridat (Wright 2017) provides
yield data from an oat trial at a single environment. The trial
had 24 genotypes and was laid out as an a-design, with three
complete replicates and six incomplete blocks of size four
within each replicate. Yet, in this first example, we will ana-
lyze the data as if the trial were laid out as CRD, and thus
ignore the information about the complete replicates and in-
complete blocks. Therefore, the model is simply

yik ¼ mþ gi þ eik; (16)

where yik is the kth observation of the ith genotype, m is the
intercept, gi is the effect for the ith genotype, and eik is the
plot error effect corresponding to yik with varðeÞ ¼ I72s2

e .
Accordingly, this example is a simple, balanced setting.

994 P. Schmidt et al.



Example 2:Here,weanalyzed the samedata set as in example
1, but included effects accounting for the trial’s design in the
model

yiko ¼ mþ gi þ rk þ bko þ eiko; (17)

where yiko is the observation of the ith genotype in the oth
block of the kth replicate, m is the intercept, gi is the effect for
the ith genotype, rk is the effect for the kth replicate, bko is the
effect for the oth block in the kth replicate, and eiko is the plot
error effect corresponding to yiko with varðeÞ ¼ I72s2

e . To re-
cover interblock information, bko was modeled as random
with varðbÞ ¼ I18s2

b , whereas rk was taken as fixed.

Example 3: This data set was taken from Hadasch et al.
(2016). It comprises plot data of 89 lettuce varieties (i.e.,
“geno1”–“geno89”) tested at three environments (i.e.,
“env1”–“env3”), each laid out as a randomized complete
block design (RCBD). The measured trait was resistance to
downy mildew scored on a scale ranging from 0 to 5. We
note that despite the acknowledged discreteness of this
response variable, residual plots did not indicate an appre-
ciable deviation of residuals from the normal distribution.
All 89 varieties were genotyped with a total of 300 markers
[i.e., 95 single nucleotide polymorphisms and 205 ampli-
fied fragment length polymorphism markers, see Hayes
et al. (2014) for details] so that a marker matrix M893300

was provided. The biallelic marker Miw for the ith geno-
type, and the wth marker with alleles A1 (i.e., the reference
allele) and A2, was coded as 1 for A1A1, 21 for A2A2,
and 0 for A1A2 and A2A1. The kinship matrix K was
obtained as

K ¼ MM9: (18)

We note that for our purposes, the scaling of M is largely
immaterial, but see Appendix D for different scaling options
ofM and the associated interpretations of genetic variance. In
this example, we analyzed only the second environment
(“env2”) and thus have 89 genotypes at a single environment
laid out as RCBD with three replicates, which we modeled as

yik ¼ mþ ai þ rk þ eik; (19)

where yik is the observation of the ith genotype in the kth
replicate, m is the intercept, ai is the additive effect for the ith
genotype, rk is the effect for the kth replicate, and eik is the
plot error effect corresponding to yik with varðeÞ ¼ I267s2

e . For
simplicity, we assume here that there are no genetic effects
for dominance or epistasis, but an extension of the model to
cover this case is straightforward (Wellmann and Bennewitz
2011; Dias et al. 2018; Viana et al. 2018).

Example 4: In contrast to example 3, we here analyzed all
three environments jointly. The data set is not completely
balanced, as (i) environment env1 has two complete repli-
cates,while environmentsenv2andenv3have three, (ii) there

are no observations for genotypes geno38 and geno49 at
environment env1, and (iii) there are no observations for
genotype geno81 at either env1 or env3. The linear mixed
model used for this analysis was

yikt ¼ mþ ai þ et þ ðgeÞit þ rkt þ eikt; (20)

where yikt is the observation of the ith genotype in the kth
replicate at the tth environment, m is the intercept, ai is the
additive effect for the ith genotype, et is the effect for the tth
environment, ðgeÞit is the itth genotype-by-environment in-
teraction, rkt is the effect for the kth replicate at the tth
environment, and eikt is the plot error effect corresponding
to yikt. We allowed for heterogeneous error variances be-
tween environments, assuming varðeÞ ¼ 4ne

t¼1InobsðtÞs
2
et ,

where 4 is the direct sum operator, and nobsðtÞ and s2
et are

the number of observations and plot error variance at the tth
environment, respectively. Finally, et and rk were taken
as fixed effects, while ðgeÞit was taken as random with
varðgeÞ ¼ I263s2

ge.

Modeling of genotypic main effect in all examples: Note
that some of the heritability measures used in this article
require estimates from both the model with a fixed genotype
main effect aswell as themodelwith a randomgenotypemain
effect. For example,H2

Piepho in (12) needs an estimate for �vBLUED��
as well as for s2

g. Thus, in this article we always fit both
potential models in parallel, and accordingly obtain both
ĝBLUE and ĝBLUP for the same example. For models where g
is assumed to be a random effect, we assume varðgÞ ¼ Ings

2
g .

Additionally, we make use of the marker information in ex-
amples 3 and 4, and thus estimate additive genotypic effects
a by assuming varðaÞ ¼ Ks2

a.
Further, notice that for each example the variance compo-

nents in the model with the fixed genotype main effect are
fixed to the corresponding estimates in the model where g is
assumed to be a random effect. This is done to rule out the
potential influence of an estimation error on variance com-
ponent estimation between the two models (Schmidt et al.
2019).

Pairwise heritability

As shown in (1), heritability can be interpreted and thus
estimated in multiple ways. To derive a pairwise heritability
or heritability on an entry-difference basis ðH2

D=h
2
DÞ, we can

exploit and slightly alter (1)-III so that it applies to pheno-
typic and genotypic differences instead of their respective
mean values. We here first derive H2

D under the assumption
of independent genotypic effects with constant variance and
afterward generalizeH2

D to correlated genotypic effects with
nonconstant (co)variances. For both scenarios, we differen-
tiate between ĝBLUE and ĝBLUP.

Independent genotypic effects with constant variance:
Given independent genotypic effects with constant variance
s2
g (as in the simple, balanced setting), and irrespective of
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whether ĝBLUE or ĝBLUP is used, the variance of the true dif-
ference between genotypes i and j is

varðgi 2 gjÞ ¼ 2s2
g : (21)

As stated before, the conditional variance, or prediction
error variance, of the predicted BLUPs given the observed
data is varðĝBLUPjgÞ ¼ C22ðgÞ. However, notice that the mar-
ginal variance of ĝBLUPis varðĝBLUPÞ ¼ GðgÞ 2C22ðgÞ, where
GðgÞ is the submatrix of G associated with g (see Searle
et al. 1992, chapter 7.4.d.). As a result, we find that the
variance of a difference between two BLUPs of genotypes i
and j is

var
�
ĝBLUPi 2 ĝBLUPj

� ¼ 2s2
g 2 vBLUPDij ; (22)

where vBLUPDij is the prediction error variance of a difference
between BLUPs of genotypes i and j, and can be obtained via
C22ðgÞ. Furthermore, we find the covariance to be

cov
�
gi 2 gj; ĝ

BLUP
i 2 ĝBLUPj

� ¼ 2s2
g 2 vBLUPDij : (23)

Hence, making use of (21), (22), and (23), the squared
correlation between the true difference and its predictor,
which is the heritability of the predictor of the difference
ðgi 2 gjÞ, is found to be

H2
DijBLUP ¼

2s2
g2vBLUPDijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2s2
g
�
2s2

g2vBLUPDij

�q
0B@

1CA
2

¼
2s2

g 2 vBLUPDij

2s2
g

: (24)

This pairwise heritability is a quantity that explicitly accounts
for unbalanced data, is analogous to the coefficient of de-
termination (CD) (Piepho 2019), and can be reported in its
own right. Yet, as the number of genotypes increases, the
number of genotype differences nD can quickly get very large
ðnD ¼ ng½ng 21�=2Þ. Thus, it is not a convenient statistic to
report. However, the statistic can be averaged per genotype,
so that a genotype-specific average heritability is obtained,
i.e.

�H2
Di�BLUP ¼

1
ng2 1

X
j6¼i

H2
DijBLUP : (25)

Note that (25) is similar in spirit to the repeatability for an
individual genotype’s BLUP as is commonly reported in ani-
mal breeding (Laloë 1993; Mrode and Thompson 2014). Fi-
nally, if we go further and instead average (24) across all
pairs of genotypes, we obtain a single average pairwise her-
itability as

�H2
D��BLUP ¼

2
ngðng2 1Þ

X
i

X
j, i

H2
DijBLUP : (26)

Hence, �H2
D��BLUP has the interpretation of an arithmetic mean of

all pairwise heritabilities H2
DijBLUP and is (given independent

genotypic effects with constant variance) the algebraically
equivalent simplification of H2

Cullis, since the pairwise herita-
bility in (24) has a constant denominator.

If ĝBLUE is used, we take the marginal variance of a differ-
ence between two BLUEs of genotypes i and j as

var
�
ĝBLUEi 2 ĝBLUEj

� ¼ 2s2
g þ vBLUEDij ; (27)

where vBLUEDij is the variance of a difference between BLUEs of
genotypes i and j, and can be obtained via C11ðgÞ. Moreover,

cov
�
gi 2 gj; ĝ

BLUE
i 2 ĝBLUEj

� ¼ 2s2
g : (28)

Analogous to (24), only this time applying (21), (27), and
(28), the squared correlation between the true difference and
its estimator, which is the heritability of the estimator of the
difference ðgi 2 gjÞ, is found to be

H2
DijBLUE ¼

2s2
gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2s2
g
�
2s2

g þ vBLUEDij

�q
0B@

1CA
2

¼ 2s2
g

2s2
g þ vBLUEDij

: (29)

In accordance with (25) and (26), we could now take the
arithmetic mean of H2

DijBLUE per genotype and across all pairs.
However, the inconvenient difference compared to �H2

D��BLUP in
(24) is that the pairwise heritabilities in (29) do not have a
constant denominator. As a result, taking the arithmetic
mean across all H2

DijBLUE does not lead to the algebraically
equivalent simplification of H2

Piepho. However, if we take the
harmonic mean instead of the arithmetic mean for all pair-
wise heritabilities as

�H2
D��BLUE ¼

ngðng2 1Þ
2
P

i
P

i, j
1

H2
DijBLUE

; (30)

the resulting average does indeed coincide with H2
Piepho. Cor-

respondingly, we take the harmonic mean per genotype as:

�H2
Di�BLUE ¼

ng2 1P
i, j

1
H2

DijBLUE

: (31)

Notice that since we here assume independent genotypic
effects with constant variance, both �H2

D��BLUP and �H2
D��BLUE can,

in fact, also be obtained by averaging the numerator and de-
nominator in (24) and (29) separately across pairs (see Ap-
pendix B).

Generalization to correlated genotypic effects with non-
constant variances: So far, we have assumed independent
genotypic effectswith constant variances2

g . Yet, the approach
outlined above naturally extends to the case where effects
have nonconstant variance, (i.e., varðgiÞ ¼ s2

gði;iÞ) and/or are
correlated (i.e., covðgi; gjÞ ¼ sgði;jÞ), e.g., due to pedigree- or
marker-based kinship. The variance of the true difference
between genotypes i and j then becomes
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varðgi2 gjÞ ¼ s2
gði;iÞ þ s2

gðj;jÞ 2 2sgði;jÞ: (32)

When BLUP is used, the pairwise heritability in (24) accord-
ingly generalizes to

H2
DijBLUP ¼

varðgi2 gjÞ2 vBLUPDij

varðgi 2 gjÞ

¼
s2
gði;iÞ þ s2

gðj;jÞ 2 2sgði;jÞ 2 vBLUPDij

s2
gði;iÞ þ s2

gðj;jÞ 2 2sgði;jÞ
: (33)

When BLUE is used, the pairwise heritability in (29) gener-
alizes to

H2
DijBLUE ¼

varðgi2 gjÞ
varðgi 2 gjÞ þ vBLUEDij

¼
s2
gði;iÞ þ s2

gðj;jÞ 2 2sgði;jÞ
s2
gði;iÞ þ s2

gðj;jÞ 2 2sgði;jÞ þ vBLUEDij
: (34)

These pairwise heritabilities can be averaged as before,
i.e., as per Equations (25) and (26) for BLUP, and Equa-
tions (31) and (30) for BLUE, to obtain H2

Di� and H2
D��. Un-

fortunately, the average over all pairwise heritabilities
cannot generally be simplified algebraically for either
BLUE or BLUP, since in both cases neither the denomina-
tor nor the numerator of the pairwise heritability
is constant. But a simplification is forthcoming if, as
an approximation, we average the numerator and de-
nominator of the pairwise heritability separately (see
Appendix C).

Other proposals to compute heritability

BesidesH2
Std,H

2
Cullis (11), andH2

Piepho (12), we calculated three
additional generalized heritability measures that are in com-
mon usage.

H2 Oakey: An alternative measure of heritability, which is
sometimes referred to as the generalized heritability, can be
traced back to Laloë (1993) and was proposed by Oakey
et al. (2006) in the context of plant breeding. It has gained
popularity due to its ability to account for heterozygosity/
covariances in GðgÞ (e.g., Mathews et al. 2008; Rodríguez-
Álvarez et al. 2018). In this approach, contrasts of the true
and predicted genotypic effects are defined as c9g and
c9ĝBLUP, respectively. Note that, unlike for H2

D where all dif-
ferences/contrasts between genotype pairs are considered,
the contrast vector c can be any linear combination of ge-
notypic effects where the elements of c sum to 0. This allows
different genotypic effects to have different heritabilities,
while at the same time reducing to a single scalar quantity.
Similar to our derivation, they make use of (1)-III, with the
difference that it applies to c9g and c9ĝBLUP, and thus repre-
sents the squared correlation between the true and pre-
dicted genotypic contrasts defined by c. The vector
c is then chosen so that this squared correlation (i.e., the

heritability) is maximized. Components of the full heritability
are defined as

l ¼ cov
�
c9g; c9ĝBLUP

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðc9gÞvarðc9ĝBLUPÞ

q
0B@

1CA
2

¼
c9GðgÞ

�
Ing 2G21

ðgÞC22ðgÞ
�
c

c9GðgÞc
¼ c9GðgÞDc

c9GðgÞc
; (35)

where c is an eigenvector of the matrix D ¼ Ing 2G21
ðgÞC22ðgÞ

with constraint c9GðgÞc ¼ 1 and l is the associated eigen-
value. The largest among the eigenvalues, lz
ðz ¼ f1; . . . ; nlgÞ, equals the maximized squared correla-
tion of c9g and c9ĝBLUP. Note that nl ¼ ng and due to con-
straints on ĝBLUP, nz , ng eigenvalues will be zero. The
generalized heritability is then defined as the mean of
all nonzero eigenvalues:

H2
Oakey ¼

Png

z¼1lz

ng 2 nz
¼
Png

z¼nzþ1lz

ng2 nz
: (36)

In more recent work, Rodríguez-Álvarez et al. (2018) show
how random spatial variation in plant breeding experiments
can be analyzed using tensor product P-splines, which is a
two-dimensional smoothing technique. In this context, they
denote the trace of D as the effective dimension of the geno-
typic effects and reexpress H2

Oakey as:

H2
Oakey ¼

traceðDÞ
ng 2 nz

: (37)

They point out that the notion of effective dimension is well
known in the smoothing context, where it can be interpreted
as a complexity measure for a givenmodel and its component
effects.

Simulated: This method was proposed by Piepho and
Möhring (2007), and is also based on the squared correlation
between g and ĝBLUP in (1)-III. It first defines the variance–
covariance matrix of all random effects u and the target ge-
notypic effects g as

var
	
g
u



¼
	
GðgÞ U
U9 G



; (38)

so that U ¼ covðg;uÞ. They then define V as the variance–
covariance matrix of the joint distribution of the true and
predicted genotypic effects:

V ¼ var
	

g

ĝBLUP




¼
 

GðgÞ FG21ðG2C22ÞG21F9
FG21ðG2C22ÞG21F9 FG21ðG2C22ÞG21F9

!
;

(39)
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where F ¼ �GðgÞ U
�
. Subsequently, V can be decomposed

as V ¼ GG9 by singular value decomposition or Cholesky
decomposition. Finally, values for g and ĝBLUP can be simu-
lated (i.e., gsim and ĝBLUPsim ) for an experiment, with the same
design and genotypic relationships as those underlying the
actual data y, as

dsim ¼
 

gsim

ĝ BLUP
sim

!
¼ Gzsim; (40)

where zsim is a vector with 2ng simulated random indepen-
dent standard normal deviates. Thus, for each of the
nsim ¼ f1; . . . ; sg simulation runs, a new vector zsim of in-
dependent standard normal deviates is randomly generated,
so that we can obtain dsim, and compute the squared sample
correlation ðr2s Þ of gsim and ĝBLUPsim . By running a large number
of simulations, we can obtain the simulated expected squared
correlation of predicted and true genotypic effects as

H2
sim ¼ 1

nsim

Xnsim

s¼1

r2s : (41)

Notice that even in the simple, balanced setting, this method is
not exactly identical to H2

Std, but it is asymptotically equiva-
lent for an increasing number of genotypes:

H2
sim ¼ E

�
r2g;ĝ
�
� covðg; ĝBLUPÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðgÞvarðĝBLUPÞ
q

0B@
1CA

2

¼ H2
Std: (42)

It can be argued that H2
sim is preferable over, e.g., H2

Piepho or
H2

Cullis, as it captures the entire variance–covariance structure
in the data in a more comprehensive manner (Piepho and
Möhring 2007; Schmidt et al. 2019). Further notice that this
approach also allows direct simulation of the response to
selection (see Appendix E).

Reliability: In animal breeding and thusmostly in the context
of a single observation per genotype, the reliability ðr2Þ, also
known as the CD, is a popular statistic expressing the squared
correlation between predicted and true breeding value, and
is closely related to heritability (Laloë et al. 1996; Laloë
and Phocas 2003; Kuehn et al. 2007; Piepho 2019). We can

estimate the reliability for the (genotypic/breeding value of
the) ith entry as

r2i ¼ 12
var
�
ĝ
BLUP
i

�
varðgiÞ ; (43)

where varðĝBLUPi Þ is the ith diagonal element of the C22ðgÞ
matrix and varðgiÞ is ith diagonal element of the GðgÞ matrix
(Mrode and Thompson 2014, chapter 9.3.4.). Accordingly, r2i
does not account for the off-diagonal elements of either C22ðgÞ
or GðgÞ [but see Mrode and Thompson (2014), Appendix D].
We can further obtain the mean reliability as

�r2� ¼ 1
ng

Xng

i¼1

r2i : (44)

Computation of heritability measures: As summarized in
Table 1, we computed eight overall heritability measures
(H2

Std,�H
2
D��BLUE , H2

Piepho, �H2
D��BLUP , H2

Cullis, H2
Oakey, �r

2
� , and H2

Sim),
three genotype-wise heritability measures (�H2

Di�BLUE ,
�H2
Di�BLUP ,

and r2i ), and two pair-wise heritability measures (H2
DijBLUE

and H2
DijBLUP) for each of the four examples. When assuming

varðaÞ ¼ Ks2
a for examples 3 and 4, we are estimating nar-

row-sense heritabilities, otherwise broad-sense heritabilities
were computed. The former is not possible for H2

Std, H
2
Cullis,

and H2
Piepho, however, as these measures implicitly assume a

constant genotypic variance and no covariances. We there-
fore based estimates of these heritability measures on the
alternative model that assumes varðgÞ ¼ Ings

2
g and accord-

ingly completely ignores marker information. Finally, we
used an ad hoc solution to compute H2

Std via (6) in example
4, where we had slightly unbalanced data and environment-
specific error variance estimates. Although only 86 out of
89 genotypes were present at all three environments, and
one environment only had two replicates instead of three,
we considered ne ¼ nr ¼ 3: Thus, we took the respec-
tive maximum value, which is often done in practice. Fur-
thermore, we computed the mean error variance as
s2
e ¼Ps2

et=ne.

Software:All statistical analyseswere done byREMLwith the
mixed model package ASReml-R version 3.0 (Gilmour et al.

Table 1 Summary of heritability measures

Heritability measure Accounts for heteroscedasticity/covariances

Overall Per genotype Per pair In GðgÞ In C11ðgÞ In C22ðgÞ

H2
Std — — No/no No/no —

�H
2
D��BLUE

�H
2
Di�BLUE H2

DijBLUE
Yes/yes Yes/yes —

H2
Piepho

— — No/no Yes/yes —

�H
2
D��BLUP

�H
2
Di�BLUP H2

DijBLUP
Yes/yes — Yes/yes

H2
Cullis

— — No/no — Yes/yes

H2
Oakey

— — Yes/yes — Yes/yes

�r2�
r2i — Yes/no — Yes/no

H2
sim

— — Yes/yes — Yes/yes
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2009) in the R Statistical Computing Environment (R Core
Team 2015) and SAS 9.4 (SAS Institute Inc. 2013).

Data availability

The data used in examples 1 and 2 are the “john.alpha” data
set provided in the R package agridat (Wright 2017), which is
available at https://cran.r-project.org/web/packages/agridat/
index.html. Supplementalmaterial and thedataused in examples
3 and 4 are available at https://figshare.com/articles/Lettuce_
trial_phenotypic_and_marker_data_/8299493. R code is avail-
able at https://github.com/PaulSchmidtGit/Heritability.

Results

In this section, we present overall heritability estimates first,
followed by genotype-wise and finally pairwise heritability
estimates. The results are accompanied by minimal interpre-
tations, whereas an elaboration on general reasons for differ-
ences between estimates of the different methods is provided
in the Discussion.

Overall heritability

Figure 1 shows estimates for overall heritability obtained via
all eightmethods for all examples. As expected for the simple,
balanced setting of example 1, all estimates are identical,
except for the slightly smaller estimates obtained for �r2� and
H2

sim. A similar picture is found for example 2, with the ex-
ception of H2

Std displaying a notably larger estimate than the

rest, which is due to the method’s inability to account for the
variance of the random incomplete block effect. Examples
3 and 4 show a more heterogeneous picture, with h2Oakey dis-
playing estimates that are strikingly lower than the rest.

Genotype-wise heritability

In example 1, estimates for the pairwise heritability measures
H2

DijBLUE and H2
DijBLUP were constant across all pairs (�0.580),

and hence equal to �H2
Di�BLUE ,

�H2
Di�BLUP ,

�H2
D��BLUE , and

�H2
D��BLUP , which

in turn were equal toH2
Std,H

2
Cullis, andH2

Oakey. Analogously, the
slightly lower r2i estimates were also constant (�0.556)
across genotypes and, therefore, equal to �r2� .

In example 2, estimates for genotype-wise heritability mea-
sureswereno longerconstant, neitherbetweennorwithineach
method. Instead, eachmethod found twounique, but relatively
similar, estimates and each one for half of the genotypes,
respectively, i.e., 0.80792 and 0.80801 for �H2

Di�BLUE, 0.80911
and 0.80916 for �H2

Di�BLUP, and 0.77537 and 0.77547 for r2i .
Figure 2 details the heritability estimates per genotype for

examples 3 and 4. It can be seen that the estimates are much
more heterogeneous compared to examples 1 and 2. In fact,
all of the 89 genotype-wise estimates per method were dif-
ferent from each other in both example 3 and example 4. In
both of the latter, and irrespective of the heritability method,
genotypes geno49, geno82, and geno88 showed noticeably
lower estimates than the rest. This is related to the fact that
the additive variances of these three genotypes stand out
with a size of only �30% of the average (results not shown).

Figure 1 Overall heritability esti-
mates for each method and exam-
ple. For clearer comparison, (i)
estimated values are shown above
each symbol and (ii) within each ex-
periment identical values show the
same symbol. Black symbols indicate
that varðaÞ ¼ Ks2

a was assumed for
the estimation, whereas for white
symbols varðgÞ ¼ Is2

g was assumed.
BLUE, best linear unbiased estima-
tion; BLUP, best linear unbiased
prediction; CRD, completely ran-
domized design; Ex, example; RCBD,
randomized complete block design.
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We additionally found relatively low estimates for geno49
and geno81 (i.e., two of the genotypes with missing observa-
tions) in example 4 (Figure 2).

In example 3, estimates between the three methods all
showed correlations larger than 0.9, with �h

2
Di�BLUP and r2i dis-

playing the highest correlation of �0.959. In example 4, the
correlation between these two was still high (�0.932), while
the other two correlation estimates dropped below 0.76
(Figure 2).

Pairwise heritability

Figure 3 details the estimated pairwise heritability measures
for all examples. As mentioned above, estimates for H2

DijBLUE
and H2

DijBLUP in example 1 were constant across all nD ¼ 276
genotype pairs (�0.580). In example 2, estimates for
each method split into two clusters, respectively, yet even
the overall estimate ranges were relatively small (0.802–
0.817 for H2

DijBLUE and 0.803–0.818 for H2
DijBLUP). The

heterogeneous estimates in example 2 are due to the re-
covery of interblock information via the random incom-
plete block effect in (17). It results from the varying
number of times two genotypes (or even their neighbor-
ing genotypes) appear together in the same incomplete
block and thus can be compared directly (John and
Williams 1995).

Estimates in example 3mostly forma single cluster for both
methods, respectively, ranging from �0.70–0.88 for H2

DijBLUE
and 0.80–0.92 for H2

DijBLUP, so that the cluster is located left

of/above the diagonal in Figure 3. There are three excep-
tionally low estimates for both methods, which are those
of the differences geno49–geno82, geno49–geno88, and
geno82–geno88, i.e., the three genotypes with relatively
small additive variances as mentioned before. Generally
speaking, genotype pairs with a lower additive genotypic
covariance covðgi; gjÞ tend to show higher estimates for both
H2

DijBLUE and H2
DijBLUP (Figure 3).

In most aspects, results from example 4 are similar to
those in example 3. The most striking difference is the
second cluster of lower pairwise heritability estimates. As
highlighted in Figure 3, this cluster consists only of the
88 differences from/to genotype geno81, i.e., the geno-
type present only at a single of the three environments.
Notice that while not highlighted, the differences from/
to the two genotypes present at only two of the environ-
ments (i.e., geno38 and geno49) also form similar clus-
ters, but they are merely located at the lower left
border of the main cluster and thus do not stand out as
drastically. Furthermore, the main cluster here lies
more or less on the diagonal. Finally, the range of esti-
mates for covðgi; gjÞ is smaller than in example 3. This is
mostly due to the g3 e variance that for example 4 in (20)
could be estimated separately via the genotype-by-
environment interaction effect ðgeÞit as varðgeÞ ¼ I263s2

ge,
whereas fo example 3 the g3 e variance is confounded
within the variance of the genotype main effect, since
there is no genotype-by-environment interaction effect

Figure 2 Summary plot for genotype-wise heritability estimates for example 3 (left) and example 4 (right). Plots on the bottom left show scatter plots
with simple linear regression lines and genotype-labels for outlying estimates. The plots on the diagonal show histograms for the respective column. The
upper right corner displays the Pearson correlation estimate. BLUE, best linear unbiased estimation; BLUP, best linear unbiased prediction; Corr,
correlation.
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in (19), as data from only a single environment are
present.

Discussion

Variations of the mixed model for replicated plant data

A consequence of having multiple individuals represent the
same genotype is that the definition of the genetic variances2

g
requires careful consideration; rather unproblematic are ge-
netically completely homogeneous cultivars such as inbred
lines, doubled-haploid (DH) lines, clones, or hybrids. Yet, it
should be noted that when it comes to genetically heteroge-
neous population cultivars in rye, for example, the matter is
no longer straightforward (Bernal-Vasquez et al. 2017). Note
that estimates for �h

2
D��BLUE,

�h
2
D��BLUP increased with decreasing

covariance covðgi; gjÞ as seen in the Results section for pair-
wise heritability. Note further that when we assumed
varðaÞ ¼ Ks2

a for the (additive) genotype main effect in the
analysis of example 4, for simplicity we did not correspond-
ingly make use of K for modeling the genotype–environment
interaction effect, but instead assumed varðgeÞ ¼ I263s2

ge.
Yet, to account for marker-by-environment interaction, one
may instead assume e.g., varðgeÞ ¼ K5I3s2

ge, where 5 de-
notes the Kronecker product. Although Schulz-Streeck et al.
(2012) found that the improvement of accounting for
marker-by-environment interaction can be negligible, the

reader may easily decide to include K for random geno-
type-interaction effects and it may actually be advisable if
the variances for those effects are expected to be relatively
large (Bernal-Vasquez et al. 2017).

Relatedness of heritability methods

When both GðgÞ and C22ðgÞ are proportional to identity matri-
ces, all heritability measures give identical estimates. How-
ever, this only holds for a linear random model, since even a
single fixed effect [e.g., m in (16)] results in nonzero off-
diagonal elements in C22ðgÞ. Yet, it should be noted that such
a purely random model is not practically relevant in plant
(and animal) breeding.

When GðgÞ ¼ Ings
2
g and C22ðgÞ have compound symmetry

structure (i.e., simple, balanced setting), all methods except
H2

Sim and �r2� give identical estimates, which we confirmed in
the simple, balanced setting of example 1. Furthermore, both
H2

D methods display that same value across all genotypes and
pairs. Since we always had to assume GðgÞ ¼ Ings

2
g for H2

Std,
H2

Piepho, and H2
Cullis, example 3 technically reduces to a simple,

balanced setting for thesemeasures as well, since it involves a
single environment laid out as RCBD with balanced data.
Accordingly, these three methods yielded identical estimates
in that scenario as well (Figure 1). The estimates for �r2� differ,
because off-diagonal elements are ignored in its estimation.
However, notice that with increasing ng, the off-diagonal

Figure 3 All pairwise heritability
estimates. Color indicates covari-
ance in GðgÞ for the respective pair.
Circles with blue border are pairs
with genotype “geno81,” which is
only present at a single environ-
ment. Vertical and horizontal gray
lines represent �H

2
D��BLUE and �H

2
D��BLUP

for examples 1 and 2, and �h
2
D��BLUE

and �h
2
D��BLUP for examples 3 and 4.

BLUE, best linear unbiased estima-
tion; BLUP, best linear unbiased
prediction; CRD, completely ran-
domized design; Ex, example;
MET, multienvironment trial; RCBD,
randomized complete block design.
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elements of C22ðgÞ approach 0, and thus �r2� approaches the
other measures and, as stated before, so does H2

Sim.
In the case where GðgÞ ¼ Ings

2
g and C22ðgÞ is an unstruc-

tured matrix, �H2
D��BLUP and H2

Cullis give identical estimates. This
is analogously true for �H2

D��BLUE and H2
Piepho, and for C11 (rather

than C22ðgÞ) being an unstructuredmatrix. Rodríguez-Álvarez
et al. (2018) show a connection between �r2� and H2

Oakey. They
point out that given GðgÞ ¼ Ings

2
g , the mean reliability can

be expressed as �r2� ¼ 1
ng

Png
i¼1

r2i ¼ traceðIng 2G21
ðgÞC22ðgÞÞ=ng ¼

traceðDÞ=ng and thus as a special case of H2
Oakey, ignoring

the number of zero eigenvalues. This is in agreement with
Laloë (1993), and our results confirm this relationship for ex-
amples 1 and2 (results not shown). However, we did not find it
to be true for examples 3 and 4, where GðgÞ 6¼ Ings

2
g . Note that

in their article Rodríguez-Álvarez et al. (2018) refer to the
mean reliability ð�r2� Þ as H2

C in Cullis et al. (2006), even though
the latter method is based on differences [see (11)], whereas
the former is based on individual genotypes [see (43)].

Interestingly, though not practically very relevant, r2i and
�H2
Di�BLUP give identical estimates per genotype for diagonalGðgÞ

and C22ðgÞ.
Finally, when GðgÞ displays covariances (e.g., as

GðgÞ ¼ Ks2
g) and C22ðgÞ is an unstructured matrix, none of

the five measures that are appropriate for this case (i.e.,
�h
2
D��BLUE ,

�h
2
D��BLUP , h

2
Oakey, �r

2
� , and h2Sim) give identical results. Nev-

ertheless, with the exception of h2Oakey, heritability estimates
within examples 3 and 4 were relatively similar (Figure 1).
This is true even for the methods that did not include kinship
information (i.e., H2

Std, H
2
Piepho, and H2

Cullis). Yet, when Ould
Estaghvirou et al. (2013) simulated phenotypic and marker
data for a single location, they found that these three meth-
ods gave lower estimates than the rest.

The most striking results are those for h2Oakey in examples
3 and 4. Notice that Lourenço et al. (2017) also found out-
standingly low estimates for h2Oakey in models withGðgÞ ¼ Ks2

g
for two real data sets and one simulated data set. This raises
the question whether H2

Oakey is suited for cases where
GðgÞ ¼ Ks2

g . While it is true that H2
Oakey estimates are equal

to H2
Std in the simple, balanced setting (of example 1), this is

only a necessary, but not a sufficient, condition for H2
Oakey to

be generally applicable also with correlated genotypes. It can
be argued that H2

Oakey and �H2
D�� are similar in the sense that

both are based on contrasts between genotypes. However, the

important difference is that for �H2
D�� the contrasts of interest

(i.e., all genotype pairs) are chosen according to the breeders’
goals, while the contrasts inH2

Oakey are determined by the data
set. Laloë (1993) shows that the smallest and largest nonzero
eigenvalues, lz, are the lower and upper limit for the herita-
bility of all possible contrasts of genotypes. Accordingly, they
are also the lower and upper limit for all H2

Dij=h
2
Dij, which is

confirmed by our results (Figure 4). Itmay benoted thatH2
Oakey

is a simple average of “canonical” heritabilities (eigenvalues)
corresponding to canonical contrasts and derived from the
canonical decomposition of covariance matrices. As such,
low heritabilities indicate a low design efficiency, as the small-
est eigenvalue appears to be a good indicator of the robustness
of the design and a measure of the part of the genetic trend
that can be predicted (Laloë and Phocas 2003). In contrast, a
pairwise difference is a combination of low and high heritabil-
ity contrasts that corresponds to the weighted mean of canon-
ical heritabilities. Thismay go someway toward explaining the
observed discrepancies in estimates of h2Oakey and the alterna-
tives considered here.

Genotype-specific information gained from H2
D

Figure 2 and Figure 3 are good examples of how H2
D=h

2
D can

give a more in-depth insight into the outcome of a plant
breeding trial. More precisely, the results show that investi-
gating genotype-specific, or even genotype-contrast-specific,
heritabilitymeasures can (i) summarize how variable/ambig-
uous an overall heritability estimate is and (ii) point out in-
dividual genotypes that stand out.

The first point may seem obvious by now, but it must be
realized that whenever only a single (overall) heritability
estimate is obtained, there is no information whatsoever
about the dispersion of that estimate, only about its central
tendency. We argue that investigating �H2

Di�=�h
2
Di� and/or

H2
Dij=h

2
Dij gives more comprehensive insight, since they ex-

plicitly show the variability across genotypes and thus,
bringing us to the second point, point out exceptional ge-
notypes such as geno38, geno49, geno81, geno82, and
geno88 in example 4. Notice that we identified two sepa-
rate reasons for why these five genotypes were exceptional
(low additive variance and missing observations; see
Results section). Moreover, looking at the cluster of esti-
mates for geno81 in example 4 in Figure 3, it becomes clear
how a single genotype can display notably lower pairwise
heritability estimates than the rest. These estimates are
obviously decreasing the overall heritability estimate for
this example, which would be especially unfavorable in a
scenario where the breeder does not have great interest in
this particular genotype. In the end, none of this would
become apparent by only looking at overall heritability
estimates (Figure 1).

What do we really want heritability for and how does
H2

D help?

There are twomain reasonswhyheritability onanentry-mean
basis is of interest in plant breeding.Ononehand, it is plugged

Figure 4 Individual estimates and boxplots for h2DijBLUP ,
�h
2
Di�BLUP , and lz (i.e.,

eigenvalues needed for h2Oakey ) from example 4. The zero eigenvalue is
denoted by the symbol 3. BLUP, best linear unbiased prediction.
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into the breeder’s Equation (2) to predict the response to
selection. On the other hand, it is a descriptive measure
used to assess the usefulness and precision of results from
cultivar evaluation trials. In the simple, balanced setting,
heritability is suited for both purposes. However, when-
ever we depart from the simple, balanced setting, H2

Std is
no longer suited for either of the two purposes. Further-
more, any alternative measure can ultimately only aim to
generalize heritability as a descriptive measure. Regarding
the purpose of heritability as a mean to estimate the re-
sponse to selection, we reiterate the view of Piepho and
Möhring (2007): instead of trying to approximate herita-
bility using some ad hoc measure, one should simulate
the response to selection directly. As stated before, this
can be done via the same simulation-based approach used
to obtain H2

Sim and is exemplified in their work (also see
Appendix E).

In terms of the descriptive function of heritability, we
believe that H2

D is a valuable extension of heritability on an
entry-mean basis, because its genotype-wise and pair-wise
estimates give more detailed insight, and ultimately allow
for better decision-making by the breeder. Furthermore, we
would like to argue that its derivation, calculation, and
interpretation is rather intuitive, which makes us optimis-
tic about its acceptance in practice. Our view is further
supported by Laloë (1993), who also suggested extending
reliability to pairwise contrasts in the animal breeding
framework.

Conclusions

Irrespective of whether a breeder ultimately decides to apply
H2

D, we think that understanding the idea behind it alone
raises awareness for the mentioned problems with heritabil-
ity outside the scope of simple, balanced settings and thus can
potentially improve the use of heritability in breeding pro-
grams. In the end, all heritability measures aim to inform
about the same underlying subject matter, and, albeit via
different methodologies, they all do. What should therefore
be held above all, especially given the mentioned ambiguity
problems in a nonsimple, unbalanced setting, is to report
how heritability was estimated. Hanson and Robinson
(1963, page 612) put it in this crucial context of reproduc-
ible science by pointing out that “One must extrapolate in
the real world, and one must use estimates of heritability
derived by someone else, especially with new crops in new
environments. Therefore, it is important to specify ex-
actly how published estimates were obtained in order
that others may extrapolate.”
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Appendix

Appendix A: Computing ĝBLUP From ĝBLUE in a Stage-Wise Approach

Consider the analysis of a series of trials where the aim is to obtain ĝBLUP. One may use a single-stage analysis with a random
genotypemain effect. Alternatively, it is also possible to use a stage-wise analysis, where the first stage obtains ĝBLUE fromwhich
ĝBLUP are predicted in the second stage. Both approaches are equivalent, if variance components are known. In practice, small
differences are encountered, as variances need to be estimated (Piepho et al. 2012a).

Single-stage analysis

Assume that we can write the general single-stage model in (13) as

y ¼ XAbA þ ZAuA þ ZBuB þ ZWuW þ e; (45)

wherebA is a vector of fixed across-environment effects (subscript A), uA is a vector of random across-environment effects with
uA � ð0;GAÞ, uB is a vector of random between-environment effects (subscript B) with uB � ð0;GBÞ, uW is a vector of random
within-environment effects (subscriptW) with uW � ð0;GWÞ, e is a vector of plot errors with e � ð0;RÞ, and y is the observed
data vector with y � ð0;VÞ, where V ¼ ZAGAZT

A þ ZBGBZT
B þ ZWGWZT

W þ R [see Piepho et al. (2012a)]. Thus, G here is a block
diagonal matrix with blocks GA, GB, and GW on its diagonal. Given a MET similar to example 4, XAbA would be a general
intercept, uA the random genotype main effect (i.e. g), uB the random environment main effect and random genotype-by-
environment interaction effect, uW the random block effect at each environment, and e the plot error. Accordingly, GA would
correspond to the kinship matrix K, whereas GB and GW would be proportional to identity matrices.

Two-stage analysis

Model (45) has a two-stage representation, with the first stage model given by

y ¼ XA1bA1 þ ZBuB þ ZWuW þ e1; (46)

where effects are defined as in (45), while the subscript 1 denotes that the corresponding parameters are estimated in this first
stage and thus V1 ¼ ZBGBZT

B þ ZWGWZT
W þ R1. Notice that in contrast to (45), ZAuA is missing here, since the genotype main

effect needs to be taken as fixed at this stage (Piepho et al. 2012a) and is therefore comprised in XA1bA1. For simplicity, we can
assume that here the genotypic main effects are the only fixed effects so that bA1 are the genotype means. Accordingly, we can
obtain genotypic BLUEs as

BLUEðbA1Þ ¼ ĝBLUE ¼
�
X9
A1 V21

1 XA1

�21
X9
A1V

21
1 y; (47)

with variance

var
	
ĝBLUE



¼
�
X9
A1V

21
1 XA1

�21 ¼ R2: (48)

In the second stage we then have

ĝBLUE ¼ XA2bA2 þ ZA2uA þ e2; (49)

where e2 � ð0;R2Þ and just like in (45), the random genotype main effect g ¼ uA � ð0;GAÞ where GA corresponds to the
kinship matrix K. Notice that XA2bA2 ¼ 1ngm and ZA2 ¼ Ing. Accordingly, we have V2 ¼ ZA2GAZT

A2 þ R2 and for the mixed
model equations we find "

X9
A2R

21
2 X9

A2 X9
A2R

21
2 ZA2

Z9A2R
21
2 XA2 Z9A2R

21
2 ZA2 þ G21

A

#2"
b̂A2

ĝBLUP

#
¼
"
X9
A2R

21
2 ĝBLUE

Z9A2R
21
2 ĝBLUE

#
: (50)
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It is important to note that we can write

XA ¼ XA1XA2 (51)

and

ZA ¼ XA1ZA2: (52)

Finally, plugging in (48) and (49) into (50), while making use of (51) and (52), it can be seen that the mixed model equation
solutions for the second stage are equivalent to those for the single-stage analysis.

Appendix B: An Alternative Estimation for �H
2
D�� in the Case of Independent Genotypic Effects with Constant

Variance by Averaging Separately Across Numerator and Denominator

Given independent genotypic effectswith constant variance, averagingnumerator anddenominator ofH2
DijBLUP in (24) separately

first leads to the algebraically equivalent simplification

�H2
D��BLUP ¼

P
i
P

j, ivarðgi 2 gjÞ2 vBLUPDijP
i
P

j, ivarðgi 2 gjÞ ¼
2s2

g 2
2

ngðng 21Þ
P

i
P

j, iv
BLUP
Dij

2s2
g

¼ 2s2
g 2�vBLUPD��
2s2

g
¼ 12

�vBLUPD��
2s2

g
¼ H2

Cullis: (53)

Analogously, we find for H2
DijBLUE in (29) that

�H2
D��BLUE ¼

P
i
P

j, ivarðgi2 gjÞP
i
P

j, ivarðgi 2 gjÞ þ vBLUEDij
¼ 2s2

g

2s2
g þ 2

ngðng 21Þ
P

i
P

j, iv
BLUE
Dij

¼ 2s2
g

2s2
g þ �vBLUED��

¼ s2
g

s2
g þ �vBLUED�� =2

¼ H2
Piepho: (54)

Appendix C: An Approximation for �H
2
D�� in the General Case

It can be shown (Ould Estaghvirou et al. 2013, Additional Files 1) thatX
i

X
j, i

vBLUEDij ¼ trace
�
ngPmC11ðgÞ

�
; (55)

where Pm ¼ Ing 2 n21
g 1ng1

T
ng

with 1ng being a vector of ones. Thus, Pm is a matrix that centers for the overall mean, such that
�vBLUED�� ¼ 2

ngðng 2 1Þ traceðngPmC11ðgÞÞ. Analogously, we haveX
i

X
j, i

vBLUPDij ¼ trace
�
ngPmC22ðgÞ

�
; (56)

such that �vBLUPD�� ¼ 2
ngðng 2 1Þ traceðngPmC22ðgÞÞ and finally

X
i

X
j, i

varðgi 2 gjÞ ¼ trace
�
ngPmGðgÞ

�
; (57)

such that �vgD�� ¼ 2
ngðng 2 1Þ traceðngPmGðgÞÞ. By inserting (55), (56), and (57) into (34), we get

�H
2
D��BLUE ¼

trace
�
PmGðgÞ

�
trace

�
PmGðgÞ

�
þ trace

�
PmC11ðgÞ

�; (58)

where, loosely speaking, traceðPmGðgÞÞ captures the genotypic variance, traceðPmC11ðgÞÞ captures the environmental variance,
and hence traceðPmGðgÞÞ þ traceðPmC11ðgÞÞ captures the phenotypic variance. Notice that (58) coincides with Method 4 of Ould
Estaghvirou et al. (2013). Based on (33), we find correspondingly

�H
2
D��BLUP ¼

trace
�
PmGðgÞ

�
2 trace

�
PmC22ðgÞ

�
trace

�
PmGðgÞ

� : (59)
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Appendix D: A Standardization of M To Directly Capture the Total Genotypic Variance

As shown in Appendix C, �vgD�� captures the average genotypic variance of a difference between two genotypes. In accordancewith the
notion of this article, we could obtain half the average variance of a difference as an estimate for the total genotypic variance. Notice
that this approach is in line with the average semi variance ðs2

gðasvÞÞ used by Piepho (2019) and can be defined as

s2
gðasvÞ ¼ 0:5�vgD�� ¼

trace
�
PmGðgÞ

�
ng2 1

: (60)

In the case of GðgÞ ¼ MM9s2
a ¼ Ks2

a, we can do some useful rearrangements:

s2
gðasvÞ ¼

trace
�
PmMM9

�
s2
g

ng2 1
¼ trace

�
PmPmMM9

�
s2
g

ng2 1

¼ trace
�
PmMM9Pm

�
s2
g

ng2 1
¼

trace
�
~M ~M9

�
s2
g

ng2 1
;

(61)

where ~M ¼ PmM is columnmean-centered. Notice that ~M is equal to what is referred to as Z in VanRaden (2008) (page 4416).
Notice further that the standardization presented here works for an arbitrary coding of markers and arbitrary scale. As a result,
the trace of ~GðgÞ ¼ ~M ~M9fs2

a ¼ ~Kfs2
a directly returns ŝ2

gðasvÞ. We can standardize further:

�M ¼
~Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

trace
�
~M ~M9
�

ng 21

r (62)

and define �GðgÞ ¼ �M �M9s2
a ¼ �Ks2

a. Now the total genotypic variance simplifies to

s2
gðasvÞ ¼ traceðPm

�M �M9s2
aÞ

ng 2 1
¼ s2

a; (63)

which simplifies (58) and (59) to

�h2DBLUE ¼ s2
a

s2
a þ trace

�
ngPmC11ðgÞ

� (64)

and

�h2DBLUP ¼
s2
a 2 trace

�
ngPmC22ðgÞ

�
s2
a

: (65)

Thus, if �M is standardized as shown above, the genotypic variance we are trying to capture is conveniently estimated directly as
the variance for a. However, it should be noted that both ~K and �K are singular, and thus may lead to problems depending on the
statistical software being used: ASReml-R 3.0 (Gilmour et al. 2009) will show an error message, while PROCMIXED in SAS 9.4
(SAS Institute Inc. 2013) will effectively compute a modified version of the mixed model equations (Piepho et al. 2012b; SAS
Institute Inc. 2017).

We would like to point out that neither ~K nor �K are equal to the genomic relationship matrices proposed in VanRaden
(2008). Their first method obtains the general relationship matrix as:

KVanRaden1 ¼
~M ~M9Pnm

w¼12pwð12pwÞ
; (66)
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where pw are the mean frequencies of the second allele across all genotypes at marker w ¼ f1; . . . ; nmg and can also be
expressed as pw ¼ 1TngM

2ng
. Their second method obtains the matrix as KVanRaden2 ¼ ~ML ~M9 where L is a diagonal with elements

Lw;w ¼ 1
nm½2pwð12pwÞ�

: (67)

Since we have ~K ¼ ~M ~M9, we find that opposed to ~K and therefore �K, (66) and (67) additionally require a division involving
allele frequencies. It may also be pointed out that in a population with Hardy–Weinberg equilibrium, traceðMM9Þ corresponds
to the heterozygosity of the markers. However, it should be kept in mind that completely genetically homogeneous cultivars—
such as inbred lines, DH-lines, clones, or hybrids—are definitely not in Hardy–Weinberg equilibrium. Finally, note that if we
approximate �h

2
D��BLUE via (59) and implement ŝ2

gðasvÞ into h
2
Piepho, wefind that

�h
2

D��BLUE ¼ h2Piepho even in the general case. Analogously, we
have �h

2

D��BLUP ¼ h2Cullis.

Appendix E: Directly Simulate Response to Selection

As proposed by Piepho andMöhring (2007), onemay directly simulate the response to selection via the same approach used to
obtainH2

Sim in this article. Since in (40) we simulate ng pairs of true ðgsimÞ and predicted ðĝBLUPsim Þ genotypic values, we can select
a subset with the best values for ĝBLUPsim and compute the response to selection for the sth simulation run as

Rs ¼
P

i2us
gsim

nsel
; (68)

where us is the selected subset of genotypes in the sth simulation run and nsel is the number of selected genotypes (i.e.
nsel # ng). Analogous to (41), we can then obtain the simulated expected response to selection as

Rsim ¼ n21
sim

Xnsim

s¼1

Rs: (69)

Note that, in principle, the simulation-based approach could also be adapted to simulate the joint distribution of true ðgsimÞ and
estimated ðĝBLUEsim Þ genotypic values. Furthermore, one could then compare the simulated expected response to selection values
from both simulation approaches to determine whether to ultimately model the genotypic main effect as fixed or random. Yet,
not least because of the ability to account for kinship information, we generally expect an analysis with random genotypic
effects to be more useful than one with fixed genotypic effects [see Piepho et al. (2008)].
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