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Abstract

Species and ecosystems usually face more than one threat. The damage caused by these

multiple threats can accumulate nonlinearly: either subadditively, when the joint damage of

combined threats is less than the damages of both threats individually added together, or

superadditively, when the joint damage is greater than the two individual damages added

together. These additivity dynamics are commonly attributed to the nature of the threatening

processes, but conflicting empirical observations challenge this assumption. Here, we use a

theoretical model to demonstrate that the additivity of threats can change with different mag-

nitudes of threat impacts (effect of a threat on the population parameter, like growth rate).

We use a harvested single-species population model to integrate the effects of multiple

threats on equilibrium abundance. Our results reveal that threats do not always display con-

sistent additive behavior, even in simple systems. Instead, their additivity depends on the

magnitudes of the impacts of two threats, and the population parameter that is impacted by

each threat. In our model specifically, when multiple threats have a low impact on the growth

rate of a population, they display superadditive dynamics. In contrast, threats that impact

the species’ carrying capacity are always additive or subadditive. These dynamics can be

understood by reference to the curvature of the relationship between a given population

parameter (e.g., growth) and equilibrium population size. Our results suggest that manage-

ment actions can achieve amplified benefits if they target low-amplitude threats that affect

the growth rate, since these will be in a superadditive phase. More generally, our results

suggest that cumulative impact theory should focus more than previously on the magnitude

of the impact on the population parameter, and should be cautious about attributing additive

dynamics to particular threat combinations.

Introduction

Species and ecosystems across the globe are exposed to a large variety of threats. Coral reefs,

for example, face a variety of threats, including direct marine threats such as fishing; land-

based threats such as water quality; and global threats such as coral bleaching [1, 2]. When
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threats occur in conjunction, the total damages caused can interact and display nonlinear

behaviors [3], where the presence of a given threat can be magnified, reduced, or erased by the

presence of another threat. These cumulative threat dynamics have important implications for

the benefits of management actions [2, 4, 5].

Since we cannot investigate all moving components simultaneously, we narrow down the

issue to a single population faced by several threats. When a threat on a population occurs it

passes through several stages before we see the damage (Fig 1). In this paper, we distinguish

between the terms “threat”, “impact” and “damage”. We use the term threat categorically, to

refer to the nature of the process that affects our population, such as fishing, or eutrophication.

The impact is defined as the actual reduction of a population parameter that the threat causes

(Table 1). The damage is defined as the change in the population size that results from that

impact. For example, we could have a cyclone (a threat) occurring at a reef. This cyclone might

reduce the amount of habitat available for the fish population, i.e. the carrying capacity is

reduced. This reduction of the fishes’ carrying capacity is the actual impact on the population.

Damage on the other hand is the effect of the cyclone that we can measure at some point after

the threat has occurred, usually this is a population reduction. While these two concepts are

often used interchangeably, they need to be distinguished to avoid confusion and also mis-

matches between the results of different studies. As this paper will show additive impacts does

not always lead to additive damages. This can especially be an issue when considering conser-

vation since management goals are usually based on population sizes (i.e. damages are of inter-

est) and not population internal parameters (i.e. impacts).

When multiple threats occur simultaneously [6], the damage they cause to a species’ popu-

lation (or ecosystem feature such as species richness) is a result of each individual threat, and

Fig 1. Schematic diagram of the stages through which threats impact populations.

https://doi.org/10.1371/journal.pone.0211444.g001
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the interaction between them [5–7]. Interactions can occur in a variety of ways; here, we focus

solely on interactions that occur within a single population. The accumulated damage of multi-

ple threats are not always additive, meaning two threats occurring simultaneously aren’t always

the same as the individual damages added together. The existence of non-additive threat inter-

action dynamics has been shown repeatedly [7–10]. Since threats act onto several stages within

a population (impact and damage), non-additive interactions can also occur on both of these

stages. This means that we can have both interactions in the impacts or interactions in the

damages. Both of these are treated separately in this study.

Some experimental studies measure a process within the population like the growth rate

and try to determine whether the damages of two threats on this rate are additive, or non-addi-

tive. This is a study of the impacts. However, when we have an observational study that mea-

sures the reduction in population size over a certain time period in the presence and absence

of different combinations of threats then we are concerned with the non-additivity of the dam-

ages. In this paper, we fix the interaction within the threat impact (either additive or multipli-

cative) and measure the interaction of the damages (additive, subadditive or superadditive).

Subadditivity (often called compensatory effects) occurs when the damages caused by the com-

bined threat impacts, D(A&B), are smaller than the sum of the damages of the individual

threat impacts, D(A&B) < D(A)+D(B) [11]. Similarly, superadditivity (often called synergistic

effects) is defined as the joint damage being larger than the sum of the individual damages, D

(A&B) > D(A)+D(B) [11].

The majority of studies on threat interactions rely on experimental or observational meth-

ods. The main aim of these studies is to identify which threat combination (e.g., deceased salin-

ity and elevated temperature) displays which type of additivity. However, the studies often

disagree about the type of additivity, even when considering the same study species and

threats. Crain and Kroeker [7] reviewed 202 studies on these interaction types in marine sys-

tems and found that 26% of threat combinations create additive damages, while 36% are super-

additive and 38% are subadditive. Note here that these studies did not differentiate between

impacts and damages. There was also variation within threat combinations: all threat combi-

nations that had been thoroughly investigated displayed all three additivity types [7]. For

example, 34 independent factorial experiments that investigate the additive behavior of UV

light and fishing found additive behavior in 17 cases, subadditive behavior in 5 cases and

superadditive behavior in 12 cases [7]. So far, this variation has been explained by context

dependence [7], including the number of threats considered and the trophic level of the species

experiencing the threat. Here, we investigate an alternative explanation for the observed varia-

tion: additivity of joint damages of threats can change with varying the magnitude of impacts.

Table 1. Definition and connection of commonly used terms in this paper.

Term Definition

Impact Impact is the proportion of the population parameter (in this study, growth rate and carrying

capacity) that is reduced by the threat. This is sometimes investigated in experimental studies

Joint impact Joint impact is the combined impact that two threats have on one of the population parameters.

Damage (D) Damage is the change in the population equilibrium that is caused by one or more threats. A

change in equilibrium population size is what is often approximated in long-term observational

studies.

Joint damage

(D1,2)

Joint damage is the reduction in population equilibrium size that can be measure after two

threats have occurred.

Additivity index The additivity index gives a characteristic of the joint damage in relation to the damages caused

by a single threat. It ranges from -1 to 1 and can be categories as additivity types: superadditive

(−1�A<0), additive (A = 0) or subadditive (0<A�1).

https://doi.org/10.1371/journal.pone.0211444.t001
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Investigating different magnitudes of threat impacts is difficult in both observational and

experimental studies because it would require a large amount of data or a very complicated

and extensive experimental design, with the species or community being exposed to the threats

individually and in combination, across a range of impact magnitudes. For example, Schlöder

and D’Croz [12] investigated the damage caused by temperature and nitrate on two coral spe-

cies, Pocillopora damicornis and Porites lobate. In this experiment, 60 coral pieces were grown

for 30 days in isolation and the frequency and volume of their zooxanthellae was measured.

The magnitude of the threat impacts was only classified in two (nitrate) or three (temperature)

categories, resulting in six possible scenarios and leaving five replicates per species. Even an

increase to three levels in nitrate would result in an increase of the combinations to nine com-

binations and 90 coral fragments if keeping the replication constant. This makes the investiga-

tion of many different magnitudes of threat impacts very challenging; modelling studies need

to be used to address these kind of questions more holistically. Simulations of threats at many

trophic levels, including all of their types and magnitudes of impacts, as well as utilising large

sample sizes can be analysed to draw more general conclusions. In contrast, models can evalu-

ate threats and their management in situations where manipulation or experimentation is

challenging [5, 13, 14].

In this study, we analyse the conditions within a population and their threats that lead to

superadditive and subadditive behavior in damages. Our aim is to theoretically investigate the

additivity of joint threat impacts, and to offer a more nuanced understanding of the factors

that influence additivity. We are especially interested in understanding how additivity varies

with different magnitudes of impacts, and how it depends on the parameters impacted by

those threats. We use a suite of single-species population models to simulate damages caused

by threats in isolation and combination to identify the interaction behavior. Then, we identify

and explain the conditions that lead to super- and subadditivity damages. Finally, possible

management actions are simulated and their relative benefits depending on the additivity are

compared.

Methods

Our analyses are based on a single-species population model–the harvested logistic model (Eq

1)–which allows us to derive analytical results, and to more easily interpret them in the context

of cumulative threat theory. Impacts are modelled as proportional reductions (a and b) in two

population parameters: the growth rate (r), and the carrying capacity (K) respectively. So the

logistic model

dN
dt
¼ rN 1 �

N
K

� �

� hN ðEq 1Þ

becomes

dN
dt
¼ 1 � aið ÞrN 1 �

N
ð1 � biÞK

� �

� hN ðEq 2Þ

in the presence of threat i.

We note that in this model, a single threat i can impact both our population parameters.

For example, in coral reef ecosystems sedimentation simultaneously reduces the habitat avail-

able to corals (K), and increases coral mortality (r). Our approach would therefore allow this

single threat to interact with itself. In Eq 1 and Eq 2, r = growth rate, ai = impact of threat i on

the growth rate, K = carrying capacity, bi = impact of threat i on carrying capacity, h = harvest

rate, also 0�ai�1,0�bi�1,0�r�1,0�h�1 and h<r. A value of zero for either ai or bi therefore
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indicates no impact of threat i on the parameter, while a value of one indicates a total loss of

the process represented by the parameter. Our analyses focus on the equilibrium population in

the face of two threats that each impact one or both a population parameters to create a new

population equilibrium,

N� ai; bið Þ ¼ 1 �
h

ð1 � aiÞr

� �

1 � bið ÞK: ðEq 3Þ

If N�(ai,bi)<0, we consider the population to be extinct and set N�(ai,bi) = 0. In the figures a

line is added that separates extinct from extant populations.

Furthermore, we define the damage (D) to be the reduction in population size caused by

the threat:

D ¼ N�ð0; 0Þ � N�ðai; biÞ: ðEq 4Þ

We could model the impact of two threats (later referred to as threat 1 and threat 2) on a

single parameter in two ways: multiplicative (1−b1)� (1−b2) or additive
ð1� b1Þþð1� b2Þ

2
. Both of

these are reasonable. Additive impacts would indicate that the two impacts occur indepen-

dently and simultaneously with no influence on one another, for example, a new port being

build, removing a certain amount of the coral reef habitat. At the same time an oil tanker spills

nearby and more habitat becomes unlivable. Both of these threats (port and oil spill) act inde-

pendently so impact the population process of carrying capacity without regard for one

another. Multiplicative impacts would indicate that they change the impact of one another, for

example, if they acted consecutively, the impact of threat 2 therefore affects a parameter that

has already been impacted by threat 1. In our previous example this would mean that the oil

spill occurs close to (and potentially after) the new port, so that only the habitat remaining

after threat 1 (port construction) is impacted by threat 2 (oil spill). Which model is most

appropriate depends on the threats and how they affect the surroundings and physiology of

the modelled organisms. Here we present the results of the additive model, however the analy-

sis for the multiplicative version can be found in the supplementary materials. Furthermore,

the supplementary materials also provide the results for the equivalent analysis for the Bever-

ton-Holt (S2 File) and the Ricker model (S3 File).While there are slight differences in the

results, all major conclusions in this paper are supported by the results of all analyses.

To categorise the joint damage caused by multiple threats we have created an additivity

index (A). It is based on the population equilibria in the presence and absence of the threats.

Basically, the additivity index is equal to the sum of the damage caused by each threat and its

impacts separately, minus the damage caused by both threats simultaneously,

A ¼ D1 þ D2 � D1;2: ðEq 5Þ

When A is negative the joint damage is superadditive; when A is positive then the joint

damage is subadditive.

We consider four different types of interacting threats (Table 2). In our first two cases, both

threats impact only one parameter, either the carrying capacity (a1 = a2 = 0,b1,b26¼0) or the

growth rate (a1,a26¼0,b1 = b2 = 0). In case three and four, threats impact both parameters. Case

three only considers interactions between parameters (a1,b16¼0,a2 = b2 = 0) while case four

considers both interactions between and within both parameters (a1,a2,b1,b26¼0).

Analytical analysis of these equations is difficult to interpret, consequently, we use simula-

tions to further investigate the conditions for additivity through simulations. We simulate 106

random populations (randomly chosen values for r from a uniform distribution between 0

and 1) at different magnitudes (0 to 1) of the impact over 1000 timesteps, to reach the

Additivity of multiple threats
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equilibrium population size. Since the harvesting ratio h
r

� �
changes the magnitude of the

impact at which the additivities occur, we have chosen specific values for the harvesting ratio

and split the simulations according to those values, to enable better visualisation. Those values

are h
r ¼ 0:2; hr ¼ 0:5 or h

r ¼ 0:8. Since r is chosen randomly, h is assigned to each simulation so

that h
r equals the value specified for each group. Equilibria are re-calculated three times for

each random population with three different treatments: each one of the threats acting sepa-

rately, and then the two threats interacting. The additivity index of the two threats for each

population is calculated (Eq 4).

Finally, we simulated the effects of management on all four cases by decreasing the impact

of one or both threats by 5% and recalculating the long-term population equilibrium. Manage-

ment actions could be designed to reduce the threat as a whole, for example reducing fishing

pressure, or to reduce the impact on one population parameter, for example fishing technique

is changed so that less habitat destruction is caused. For simplicity, it is assumed here that a

management action reduces the impact of a threat on both population parameters simulta-

neously and equally. The benefit is recorded for random populations and across the magnitude

of threat impacts of all cases (~100,000 data points per case)

Benefit ¼
N�ða managed; b managedÞ � N�ða; bÞ

N�ð1; 1Þ
ðEq 6Þ

Results

The results of the simulations agree with the results of the analytical analysis; consequently

both are appropriate for analyzing the threat interactions. However, caution has to be given to

the defined parameter space to prevent negative population sizes.

Cases 1 and 2 both concentrate on one of the population parameters (Fig 2). These two

cases show very different patterns in the joint damages. Two impacts on the carrying capacity

always cause a joint damage that is additive until the extinction line (at which point at least

one threat can cause extinction) where the joint damage becomes necessarily subadditive. The

impacts on the growth rate, however, display a joint damage that is additive at low impacts and

superadditive at high impacts. Within the area of extinctions there is subadditive joint damage.

Generally, it can be said that the additivity index decreases from zero towards -1 until it hits

the extinction line, then the additivity index starts to increase until it reaches +1. As harvest

Table 2. Statistics summarising all of the simulations used for Fig 4 divided according to the cases and extinction status after the management on the threats.

Statistic Case 1 Case 2 Case 3 Case 4

Including extinct populations

Minimum 0.28 0 0 0

Q1 3.773 0 0 0

Median 5.25 0 4.48 0

Q3 6.71 003.153 6.71 2.22

Maximum 100 2894.1 4374.7 295.59

Excluding extinct populations

Minimum 0.28 4�10−4 4�10−4 1.5�10−3

Q1 3.773 5.63 4.31 3.191

Median 5.25 12.17 5.41 5.499

Q3 6.71 18.95 7.79 8.912

Maximum 100 2894.1 1803.7 186.74

https://doi.org/10.1371/journal.pone.0211444.t002
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Fig 2. Additivity indices for 106 simulations of random values for h and r split into three cases depending on the parameter impacted by the threats. The four

cases represent: a-c: Case 1; Two threats that only impact the carrying capacity (a1 = a2 = 0,b1,b26¼0); d-f: Case 2; Two threats that only impact the growth rate (a1,a26¼0,

Additivity of multiple threats
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levels increase (Fig 2), the extinction line moves closer towards the origin, as extinction occurs

at lower threat impact levels.

b1 = b2 = 0); g-i: Case 3; Each parameter is only impacted by one threat (a1,b16¼0,a2 = b2 = 0); j-l: Case 4; Both threats impact both parameters (a1,a2,b1,b26¼0). The

columns indicate the level of harvest relative to the population growth rate. Between the origin and the extinction line, the population of organisms persists in the

present of the threats, from the extinction line onwards, the population will go extinct in the presence of at least one threat in isolation. The interpretation of an

additivity index of zero has to be done carefully, since the graph aligns all values in the range −0.02<0<0.02 as zero.

https://doi.org/10.1371/journal.pone.0211444.g002

Fig 3. Relationships between the threat impacts on (A) growth rate, (B) carrying capacity, (C&D) growth rate and carrying capacity and the population equilibrium.

Part A. shows a concave relationship between the threats impacting the growth rate and the population equilibrium for all levels of the carrying capacity. Part B shows a

linear relationship between magnitude of impact on the carrying capacity and the population equilibrium for all magnitudes of the growth rate. Part C shows a contour

graph of the population equilibrium with varying threats impacting the growth rate and the carrying capacity. Furthermore, slices are highlighted (lines) that are

displayed in Part D. The x-axis in part D represents the magnitude of the impact of the threats on the growth rate. The threats impacting the carrying capacity are also

varied and can be identified using the appropriate linear function to calculate b. Part D shows that depending on the slice we choose from Part C both concave and

convex (here piecewise linear) relationships can be found when all threat impacts are varied.

https://doi.org/10.1371/journal.pone.0211444.g003
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Case 3 demonstrates the joint damage when both parameter are impacted. This case dis-

plays only additive and subadditive damage similar to case 1. However, subadditivity now also

occurs without the presence of extinction. Furthermore, it is interesting to note that changes

to the impact on the growth rate (a1) and changes to the impact on the carrying capacity (b1)

do not cause the same change in the additivity index.

In case 4, both threats impact both the carrying capacity and the growth rate. This means

that we can compare it directly with case 1 and 2, since they are basically a subset of the simula-

tions displayed within case 4. The only difference is that the results are collapsed into a lower

dimensional space. For example, case 1 shows the impact of threat 2 on the carrying capacity

on the y-axis and the impact of threat 1 on the carrying capacity on the x-axis. In case 4, both

impacts are displayed on the y-axis by simple addition. This means that when the impact on

the growth rate is very low in case 4 (a1+a2 = 0), then case 4 is equivalent to case 1. Similarly

we can find the results from case 2 in case 4 by setting the impact on the carrying capacity

close to zero (b1+b2 = 0). The rest of the case 4 compromises a mixture of sub- and superaddi-

tivity. Superadditivity occurs only at high impacts on the growth rate, while subadditivity

mainly occurs at medium impacts on both the growth rate and carrying capacity. The absolute

magnitude of the additivity index still increases towards the extinction line with increasing

impacts of one or either population parameters.

Next, we consider the relationship between the population parameter and the population

equilibrium (Fig 3). When increasing the impacts of threats (e.g. from 0 to 1) on the growth

rate we can see a decrease in the population equilibrium (Fig 3A). This decrease is first slow

then becomes steeper resulting in a concave relationship. On the other hand, when increasing

the impacts on the carrying capacity the population equilibrium decreases linearly (Fig 3B).

Finally, when we increase the impact on both parameters at different levels (Fig 3C), we can

identify all three; slightly convex (red line), piecewise linear so also convex (dark blue line), lin-

ear (light blue line) and concave (green line) relationships (Fig 3D).

Management benefit per 5% impact change displays a large variation from as low as 0%

increase of the no threat population equilibrium up to 4300% increase (Table 2). Both

extremes occur when the equilibrium populations are close to zero before management.

Several factors influence the management benefit experienced by a population when partic-

ular threats are decreased. First, there is the magnitude of the impact. The impact on the

parameter growth rate shows some variation with benefit being higher in the extreme case

(high and low magnitude) versus the medium magnitude (Fig 4A). On the other hand, the

impact on the carrying capacity shows a clear decrease of management benefit with a decrease

in magnitude. The lowest impact doubles or even triplets the management benefit experienced

(Fig 4B). The largest amount of variation is explained when we consider the additivity together

with the benefit (Fig 4C). More superadditive behavior lead to over ten times the benefit com-

pared to cases where very subadditive damage is displayed.

Discussion

This study explored the interaction behavior of two threats acting upon two population param-

eters in theoretical populations. We found that, contrary to orthodox assumptions, the additive

Fig 4. Management benefit (±1.96�SE) when reducing both threat impacts simultaneously according to the four

cases. The results for the cases are split on the x-axis. Panel a) splits the benefit for different magnitudes of threat

impact on the parameter carrying capacity. Panel b) splits the benefit for different magnitudes of threat impacts on the

growth rate. Low impact< 0.25; 0.25<Medium-Low impact< 0.5; 0.5<Medium-High impact< 0.75; High

impact> 0.75. Panel c) splits the benefit depending on the additivity type. High superadditivity< -0.5; -0.5< Low

superadditivity< 0; 0< Low subadditivity< 0.5; High subadditivity> 0.5.

https://doi.org/10.1371/journal.pone.0211444.g004
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dynamics are not inherent to the particular threat combination [7, 9]. Even in a simple, one-

species model, the additivity can exhibit qualitative changes, depending on the affected param-

eter, and the magnitude of the impact on a threat. Our results therefore suggest that studies or

reviews should be careful when they attribute the qualitative type of additivity to particular

combinations of threats [4], and be aware that the parameters affected and the magnitude of

the impact could be driving the additive dynamics.

In our models, superadditivity only occurs if there are several impacts on the growth rate.

This can be explained by the concave relationship between the intrinsic growth rate and the

equilibrium population size (Fig 3A). Following this curve toward the origin, we see that the

slope increases as the magnitude of the impact increases. A threat with twice the impact will

therefore cause more than double the damage to the equilibrium population size. In contrast,

the joint damage of threats will be additive when the slope is constant, i.e. a linear relationship

between the population parameter and the population equilibrium (Fig 3B). When we con-

sider the multiplicative model of impacts, this relationship becomes convex indicating subad-

ditivity (see supplementary materials S1 File).

During this study, we found a few occasions where concavity does not predict all of the

interactions that we can find, i.e. this generalization seems to contradict our results. For exam-

ple, at high magnitude of impacts there are subadditive interactions. On closer examination,

we found that all of these subadditive data points were associated with extinctions. This subad-

ditivity can only be found in the simulation results, the analytical analysis results in negative

population sizes, which are not ecologically defined. Consequently, the data points resulting in

extinction (negative population sizes, subadditivity) lay outside the realm of definition of the

concave function.

Interestingly, reducing both parameters simultaneously can cause both super- and subaddi-

tivity at varying magnitudes of threat impacts. This is also reflected in the parameter-equilib-

rium relationships that can be both convex and concave (Fig 3C and 3D). This means that at

high levels of the growth rate and the carrying capacity the curve is concave, causing superad-

ditivity and at low levels convex, causing subadditivity without extinction. This confirms our

results and leads to the conclusion that we can infer the additive behavior from the curvature

of the applicable curve.

It is interesting to note that we found more differences in additivity of damages due to the

magnitude and parameters affected by impacts rather than defining the impacts as additive or

multiplicative. This highlights the importance of differentiating between impacts and damages

in any studies concerning threats.

Additivity of multiple threats has been considered in terms of conservation and manage-

ment of populations repeatedly. In many cases, the opinion is that superadditivity is the worst

case for the population [15, 16]. However, superadditivity can also be the best case scenario

when considered from the perspective of management [17]. Our results support this since

threats with measured superadditivity result in the largest proportional management benefit.

This can be especially true when we consider local versus global, manageable versus unman-

ageable, threats. Superadditivity can mean that by reducing a manageable threat we can simul-

taneously achieve a reduction in the damage caused by the unmanageable threat [5]. On the

other hand subadditivity would mitigate the benefit from the management of a single threat

and, consequently, the management action would be of less use than an equivalent superaddi-

tive situation. Generally speaking the management benefits are easiest to predict for an addi-

tive threat combination [9], however, if we know and respect the underlying additive

dynamics as described in this paper, predictions for other situations can become more

accurate.
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These results in combination with the commonly-conducted cumulative threat mapping [6,

18] can be used to prioritise management actions. Prioritising management is especially

important in ecosystems that spread over large areas where it is impossible to protect the full

extent of a species [19]. In such systems prioritising management actions is crucial. When

prioritising there are many aspects to consider, such as cost, risk, suitability and resulting ben-

efit [20]. The analysis shown here can aid in the assessment of the suitability for management

of different areas and likely benefit that can be achieved. Global threats are always difficult to

manage for local government so are less suitable. So if a global threat impacts all areas of con-

servation concern, but different local threats impact specific areas, then according to the analy-

sis here, we might want to protect the areas that impact in a fashion (magnitude and

parameter impacted) that cause superadditivity (all else being equal). Furthermore, the actual

benefit that a management action can result in is influenced by all threats to this system. The

analysis conducted here, i.e. knowledge of the parameters impacted by each threat can help to

estimate likely benefits. Therefore, these findings could streamline some aspects of manage-

ment prioritisations.

As with any theoretical analysis, this study is based on a number of simplifications. Most

importantly, it utilises a simple logistic model that considers one population is isolation. This

is not particularly realistic since species interactions are ubiquitous and important, and threats

can also interact with each other through those species. However, for this study a simple

model is used to highlight the complexities that interactions introduce. It is important to note

here that a more complex model will result in more complexities in the result not less. The

simple model also provides a framework to interpret and explain some of the phenomena that

are likely to still play role in more complex communities. The applicability of these results for

many populations is also confirmed through the use of the Beverton-Holt and the Ricker

model that both showed the same patterns of additivity (S1 File). Future work will aim to

transfer the conclusions and explanations from a single population in this study to more com-

plex community level models (connection between curvature and additivity in damages).

Second, our calculations are based on population equilibria when exposed to different com-

binations and magnitudes of impacts. Population equilibria are used regularly in many eco-

logical models, but are also countered by many [20–23]. The main criticism argues about the

oscillations around populations equilibria. While these are justified, it is often commented that

the usefulness of equilibria as a base assumption depends on the scale [24, 25]. At small spatial

scales the dynamics are more transient, while at large spatial scales dynamics stabilise to render

the equilibrium assumption realistic enough [26]. Used appropriately, investigations of the

equilibrium can provide useful insights.

Conclusions

This study has provided an overview of the complexity of behaviors that interacting threats

can display. Overall, the traditional idea of assigning different additive dynamics to particular

threat combinations, is expanded to also include the parameters impacted, and the magnitude

of those impacts. Besides the complexity revealed in this study, insights can be drawn about

the origins of superadditive behavior: in our models, this important dynamic only occurs

when multiple threats impact the growth rate of a population. More generally, the interaction

behavior can be predicted by the curvature of the relationship between the impacted parameter

and the equilibrium population size; a convex relationship implies subadditivity, and a concave

relationship implies superadditivity. Finally, this study urges ecologists to focus on identifying

the parameter and relative magnitude of impacts for each threat combination rather than just

the additivity type.
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