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Abstract

Erroneous information from sensors affect process monitoring and control. An algorithm with 

multiple model identification methods will improve the sensitivity and accuracy of sensor fault 

detection and data reconciliation (SFD&DR). A novel SFD&DR algorithm with four types of 

models including outlier robust Kalman filter, locally weighted partial least squares, predictor-

based subspace identification, and approximate linear dependency-based kernel recursive least 

squares is proposed. The residuals are further analyzed by artificial neural networks and a voting 

algorithm. The performance of the SFD&DR algorithm is illustrated by clinical data from artificial 

pancreas experiments with people with diabetes. The glucose-insulin metabolism has time-varying 

parameters and nonlinearities, providing a challenging system for fault detection and data 

reconciliation. Data from 17 clinical experiments collected over 896 hours were analyzed; the 

results indicate that the proposed SFD&DR algorithm is capable of detecting and diagnosing 

sensor faults and reconciling the erroneous sensor signals with better model-estimated values.
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Introduction

Accuracy in data collected by sensors is crucial for effective process monitoring and control. 

Data from sensors offer on-line information to assess the state of a process and to calculate 

the values of manipulated variables by the controller. Hence, sensor data quality and 

accuracy strongly affect product quality and process safety. Sensor signals need to be treated 

and reconciled to eliminate the effects of sensor faults on process operation. We use multiple 
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methods to detect sensor faults and provide estimates for erroneous sensor signal 

replacement to implement data reconciliation.

Sensor errors can be divided into two main categories: hard failure (complete hardware 

failure) and soft failure such as bias, drift, and outliers.1 Hard failures are typically easy to 

detect, though expensive to resolve since they may require hardware replacement. Soft 

failures, in contrast, can often be readily resolved through sensor fault detection, and data 

reconciliation (SFD&DR) systems at low cost, though handling soft sensor faults can be 

challenging if appropriate dynamic models are not available to exploit analytical 

redundancies.2

Early efforts in handling sensor faults mostly focused on detection and data reconciliation 

with linear models and steady-state operating conditions,3 and significantly expanded over 

the years to encompass nonlinear, dynamic, and stochastic conditions.4,5 Model uncertainty 

is of particular concern as process and measurement noise can obscure the sensor faults, 

resulting in sensor faults remaining undetected. To incorporate the stochastic elements of 

models in the fault handling schemes, the extended Kalman filter (KF) has been proposed to 

explicitly consider system uncertainty and modeling inaccuracies.6 The Akaike information 

criterion (AIC) minimization is often used as an objective function to evaluate the accuracy 

of sensor signal estimates.7 More recently, the outlier-robust Kalman filter (ORKF)8–10 is 

proposed as an on-line smoother to automatically remove inconsistent data from the sensor 

signals. Fault detection and data reconciliation (FD-DR) can be implemented by using either 

fundamental (first-principles) models that provide good predictive capability over wide 

operating ranges, or data-driven models that best characterize the data for specific operation 

ranges which are similar to the database used in model development. In contrast to first-

principles-model-based techniques, the data-driven approaches, such as subspace 

identification (SID)11,12, are more appealing when the model structure is complex or 

unknown. Data-driven models such as locally weighted partial least squares13,14 (LW-PLS) 

and kernel least squares15 (KLS) can also provide computationally efficient, robust, and 

accurate models with reliable prediction ability. More detailed discussion about the fault 

detection and diagnosis methods can be found in various review papers16–18.

As various models developed using different techniques possess unique advantages, FD-DR 

algorithms that simultaneously integrate multiple methods are proposed to pool their 

strengths. A bank of KFs is proposed where each filter is tuned to be sensitive to a particular 

type of sensor error.11, 19 One complication that arises from the aggregation of multiple 

models is the appropriate consolidation of the respective output predictions for FD-DR. For 

instance, faulty signal values should be reconstructed with the most accurate model 

estimates. One approach for integrating the various models is to employ machine learning 

techniques such as artificial neural networks (ANN) that can automatically analyze the 

residuals.20–22 As ANN algorithm development accelerated and improved network structure 

specification and training approaches have been proposed,23 ANNs have become more 

amenable to on-line use.24,25 The ANNs can therefore readily analyze the generated 

residuals to classify the operating conditions (normal or a certain type of fault) and reconcile 

the faulty measurements with the most accurate model predictions.
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Motivated by the above considerations, an SFD&DR algorithm for faults in sensor 

measurements is proposed in this work to leverage multiple data-driven models and generate 

residual signals that are analyzed by ANNs for FD-DR. Four different modeling techniques 

have been used in the SFD&DR algorithm: ORKF, LW-PLS, Predictor-Based Subspace 

method (PBSM), and approximate-linear-dependency-criterion-based kernel recursive least 

squares (ALD-KRLS). Each method has its unique characteristics, ORKF relies more on the 

smoothness of the current signal (if there is any abnormal rapid change). LW-PLS is based 

on historical data (if the current signal tendency is same as the historical reference in the 

database). PBSM can use subspace identification and recursive calculation to partially solve 

the system nonlinearity and the proposed algorithm include a stability check module to 

guarantee the stability of the model. And ALD-KRLS is able to provide a reclusively 

database update to include new features of sensor signal to the dictionary. The residuals (the 

differences between sensor data and predicted values) of all four methods are categorized by 

an ANN to different sensor signal conditions. Finally, the erroneous signals are substituted 

by estimated values by the models developed.

The performance of the SFD&DR algorithm is evaluated by using continuous glucose 

monitoring (CGM) sensor data collected from people with type 1 diabetes that used an 

artificial pancreas during clinical experiments. Overall 896 hours of CGM data in 17 clinical 

experiments were used, and the results indicate that the new SFD&DR algorithm is capable 

of detecting and categorizing the sensor faults and reconciling the erroneous sensor signals 

with the better model estimated values.

The remainder of the article is structured as follows. The four techniques (ORKF, LW-PLS, 

PBSM, and ALD-KRLS), and the SFD&DR algorithm using ANN and the four models are 

described. A case study and results of the SFD&DR algorithm performance with data from 

clinical experiments are given. Discussion of results and conclusions are provided in the two 

final sections.

Method

In a previous work, ORKF and LW-PLS were used to develop an SFD&DR algorithm.14 A 

predesigned threshold of one-step-ahead model error was used to determine whether a 

sensor signal is faulty. While a SFD algorithm based on one-step-ahead prediction error can 

reconcile the sensor signal at the same step when the sensor fault is detected, it is challenged 

if the sensor fault is a gradual bias such as drift change. Recursively updated models track 

better the dynamic change of a system with time-varying parameters. If the sensor fault is 

too small to be tracked at the beginning, the model may follow the wrong signal trend which 

will make the fault detection in the following samples more difficult. In this paper, instead of 

using a threshold for one-step-ahead prediction, a longer prediction horizon is used for each 

model as the input of an ANN to determine the condition (normal or a certain type of fault) 

of sensor signals and the beginning of the sensor fault if the condition is classified as faulty. 

Two more models, PBSM and ALD-RKLS have been added to the SFD&DR algorithm. 

These two methods use different ways of model identification, and their unique 

characteristics provide a more robust decision making when used in the SFD&DR 

algorithm. For example, the PBSM can provide a time-varying state space model which 
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guarantees the stability of the model, while the ALD-RKLS uses a kernel-based method 

which requires a large data size for model training but provides predictions with high 

accuracy.

Outlier-robust Kalman filter

ORKF detects an outlier when the sensor residual is beyond the expected sensor noise 

estimated by using past signal samples and the detected erroneous signals will have a 

smaller weight for updating the Kalman model. The ORKF method has been used to solve 

outlier-related sensor problems in various fields such as GPS data analysis8 and robotic 

systems9.

Sensor data yk ∈ ℜ
d1 can be described by Kalman filter equations with states xk ∈ ℜ

d2

where d1 and d2 are the dimensions of outputs (number of sensors) and state variables:

yk = Cxk + vk (1)

xk = Axk − 1 + sk (2)

where C ∈ ℜ
d1 × d2 is the observation matrix, A ∈ ℜ

d2 × d2 is the state transition matrix, 

vk ∈ ℜ
d1 × 1

 is the observation noise at time step k, and sk ∈ ℜ
d2 × 1

 is the state noise at time 

step k. vk and sk are assumed uncorrelated mean-zero Gaussian noise: 

vk  Normal 0, R  ,  sk  Normal 0, Q .  R ∈ ℜ
d1 × d1 and Q ∈ ℜ

d2 × d2 are covariance matrices 

for observation and state noise respectively. A, C, Q, and R are recursively calculated at each 

sampling time. The measurement error (yk − CAxk−1) is compared to the expected 

measurement error (Rk) so that if the measurement error is larger than expected, a smaller 

weight is assigned to this measurement and the model will not be updated to follow the 

wrong tendency14.

Locally weighted partial least squares

Locally weighted regression (LWR)26 constructs a local model by prioritizing samples in a 

database according to the similarity between them and a query sample. Many sample sets 

paired with their prediction values are stored in the database. Locally weighted partial least 

squares (LW-PLS) compares the current sample with samples in the database, gives a weight 

for each sample in the database according to its similarity with the query sample, and uses 

the weighted samples to generate a partial least squares (PLS) model to compute a 

prediction for the query sample.

LW-PLS14 can construct a model capable of providing accurate prediction over a long 

horizon if the conditions of the current signal samples is similar to the data in the database. 

The database of LW-PLS should be fault free. If it contains noisy signals, a denoising filter 
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such as Savitzky-Golay filter (SGF)27 can be used to filter the noise for building the LW-

PLS models offline.

Predictor-based subspace model

Subspace identification methods provide an efficient framework for identifying linear state-

space models from input and output measurements. A predictor-based subspace model 

(PBSM) implementing recursive model identification to track time-varying linear systems is 

proposed28. PBSM is modified with a constrained optimization solver to guarantee the 

stability of the recursive models29 and implemented in a multivariable artificial pancreas 

system.

Consider a vector auto-regressive model with exogenous variables (VARX):

y k k − 1 = ∑i = 0
P θ1

u k − i u k − i +∑i = 0
P θ1

y k − i y k − i (3)

where y k k − 1  is the predicted output for time instant k using the inputs at time instants k, 

…, k − p and the outputs at time instants k − 1,…, k − p, with p denoting the length of the 

past window. The coefficients θ1
u k − i  and θ1

y k − i  are estimated though recursive least 

squares (RLS) techniques at each sampling time.

The coefficients θ1
u k − i  and θ1

y k − i  are used to estimate the states in the Kalman filter 

through the following procedure:

Ωu k =

θ1
u k − p θ1

u k − p + 1 ⋯ θ1
u k − 1

0 θ1
u k − p ⋯ θ1

u k − 2

⋮ ⋮ ⋱ ⋮
0 0 ⋯ θ1

u k − f

(4)

Ωy k =

θ1
y k − p θ1

y k − p + 1 ⋯ θ1
y k − 1

0 θ1
y k − p ⋯ θ1

y k − 2

⋮ ⋮ ⋱ ⋮
0 0 ⋯ θ1

y k − f

(5)

x k = W Ωu k UP k + Ωy k YP k (6)
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where f is the future data window length and W is a weighting matrix28, x k ∈ ℜn denotes 

the predicted state vector. Let UP(k) = [u(k − p) u(k − p + 1) ⋯ u(k − 1)]T and YP(k) = [y(k 
− p) y(k − p + 1) ⋯ y(k − 1)]T.

After calculating x k , two recursive least squares (RLS) with stability check procedure are 

used to estimate the state-space matrices [C(k), D(k)] and [A(k), B(k), K(k)]:

x k + 1 = A k x k + B k u k + K k e k (7)

y k = C k x k + D k u k + e k (8)

where K(k) is the Kalman gain matrix and e k = y k − y k .

Approximate linear dependency criterion based kernel recursive least squares

A novel sparse filtering algorithm was recently proposed by integrating the approximate 

linear dependency (ALD) criterion with the kernel recursive least squares (KRLS) method.30 

The proposed approach leverages the concepts formalized by reproducing kernel Hilbert 

spaces, which are widely employed to transform linear algorithms expressed only in terms of 

inner products into their nonlinear versions. For example, kernels are used to develop 

nonlinear extensions for principal components analysis and Fisher discriminant analysis.

Let κ:𝒰 × 𝒰 ℝ be a kernel and ℋ be the associated reproducing kernel Hilbert space. The 

commonly used kernels include the Gaussian kernel and the polynomial kernel. The kernel 

is incorporated in the least-squares problem to determine a function ψ ·  of ℋ to transform 

the data ui into the feature space ψ(ui). Subsequent to the nonlinear mapping, the weight 

vector ωi is computed to minimize the sum of squares of the residuals between the samples 

di of the desired response and the corresponding data ui in the higher dimensional space 

ψ(ui) = 〈ψ(·), κ(·,ui)〉, which can be written as

minωi
∑ j = 1

i di − ωiψ ui
2 + λ ωi

2 (9)

where λ denotes the regularization parameter. The above least squares optimization problem 

needs to be solved recursively to capture the time-varying relationships among the data. 

However, the repetitive solution cannot be efficiently obtained because the dimensionality 

increases as the number of sampling instances increases. Specifically, the incremental 

augmentation of the kernel matrix at each sampling instance results in increased 

computational complexity and amplified memory requirements for information storage. 

Moreover, the higher dimension of the weight vector ωi may lead to overfitting. By 

combining the KRLS algorithm with the ALD sparsification criterion, the proposed ALD-

KRLS filtering algorithm can overcome the computational tractability drawbacks by 

effectively preventing the size of kernel functions from becoming prohibitively large.
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Several sparsification criteria for selecting a finite proper dictionary to define a summary of 

the training data are employed in KRLS algorithms. The sparse kernel can be written as

ψ · = ∑i = 1
m ωiκ ui, · (10)

where the sparsified dataset {u1,…,um} is a subset of the original dataset {u1,…,um} with m 
< n. The new finite dictionary is specified such that it is sufficient for capturing the 

relationships among the variables in the complete data. For this purpose, the ALD criterion 

is employed, which determines whether a newly available data sample ui+1 can be written as 

an approximate linear combination of the previous data {u1,…,um} as follows:

αi + 1 = minωi
κ ui + 1, · − ∑ j = 1

m ωiκ ui, ·
2

(11)

where αi denotes the ALD criterion that must be less than or equal to the threshold 

parameter ε for determining the level of sparsity. If the ALD condition holds, the new 

sample k(ui+1,·) can be approximated within a squared error ∈ by some linear combination 

of the current dictionary members. If αi > ∈, then the new sample should be included in the 

finite dictionary, with the oldest sample discarded to maintain the finite size m, while 

retaining the newest m samples that best represent the system. As such, the ALD-KRLS 

approach develops a kernel-based filtering algorithm that uses only a finite number of 

training samples for the recursive least squares estimation that are sufficient for 

characterizing the system using a linear model identified in the high dimensional kernel 

space.

Artificial neural networks for sensor signal characterization

Model prediction errors (MPE) which indicate the distance between the model prediction 

and the measured value are often used for sensor fault detection. A threshold method can 

report a fault if the magnitude of MPE is larger than a threshold. In order to track the 

dynamic changes in systems with time-varying parameters, the recursively updated models 

may be used to calculate the predictions. Using a simple threshold method may cause three 

challenges for sensor fault detection. First, it is hard to distinguish the real dynamic change 

in the system and sensor bias (type 2 error). Second, for a slowly changing sensor fault such 

as drift change, the recursive model may follow the erroneous signal trace without showing a 

large model prediction error. Third, it is often difficult to identify the type of the sensor fault 

directly through MPE. To address these problems, the ANN is used to further analyze the 

model prediction error and categorize the sensor signal into different conditions including 

normal condition and types of the sensor fault.

The category ANN (CANN) is a feedforward network with an input layer, a hidden layer, 

and an output layer. The input is multi-step MPE, and the output is the conditions of the 

sensor signal. The Neural Network Toolbox31 in MATLAB is used to design the CANN. 

The numbers of neurons in the input and output layer are determined by the prediction 
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horizon of the MPE and the numbers of conditions (normal operation and types of sensor 

error), respectively. The number of neurons in the hidden layer is selected in the training step 

to optimize the accuracy of classification. A separate CANN is designed for each model type 

used in fault detection. The output of each model is a scalar between 0 to 1 indicating the 

possibility of each condition. The CANN outputs from four different models are used in a 

voting algorithm (summation of the outputs) to decide the condition of the sensor signal (the 

condition is indicated by the largest output values). A missing signal is not analyzed by 

CANN since missing signal detection is trivial. A missing signal reading is automatically 

reported for data reconciliation. After a sensor fault is detected, a moving window method is 

used to evaluate which method has the best accuracy to replace the erroneous sensor signal 

with the value predicted by a model (Figure 1).

Implementation of SFD&DR in Artificial Pancreas

Artificial pancreas and continuous glucose monitoring—The artificial pancreas 

(AP) is a treatment alternative for people with type 1 diabetes (T1D) to maintain their blood 

glucose concentration (BGC) at a desired level. A typical AP has three components: a 

continuous glucose monitoring (CGM) sensor which measures the subcutaneous glucose 

concentration to infer BGC at high frequency (sampling time of 5 minutes32); a controller 

which uses the CGM signals as input to calculate the insulin infusion rate for regulating the 

BGC, and an insulin pump which delivers the insulin amount calculated by the controller to 

the patient. BGC dynamics in the body can be affected by many factors such as meals and 

exercise33 and their effects on the BGC may not be easy to quantify, can vary from patient to 

patient and also over time for the same patient.

The reliability and accuracy of CGM sensors directly influence the performance of an AP 

system. The CGM values reported may be affected by various types of sensor faults and 

interruptions in signal transmission (missing values). If the CGM sensor is biased, the 

controller may suggest less or more insulin which may cause hyperglycemia (high BGC) or 

hypoglycemia (low BGC), respectively. The sensor signal may also become noisy or be 

affected by pressure-induced sensor attenuations (PISA)34. Finally, if the signal is missing, 

the entire AP system may need to pause its operation or use old data.

The proposed SFD&DR algorithm is implemented in the AP system for CGM sensor signal 

fault detection and signal reconciliation. Seventeen clinical experiments with T1D subjects 

were conducted. Each experiment lasted continuously for 54 hours; each subject was 

wearing a CGM sensor (Dexcom G432), an insulin pump and an armband (BodyMedia35) 

which provides energy expenditure (EE) and galvanic skin response (GSR) information to 

the AP system. All data sets of CGM, EE, GSR, and insulin infusion rates were collected 

every 5 minutes.

Data processing

For LW-PLS, a database contains clinical data including CGM readings, change in CGM 

values, insulin infusion rate, EE, and GSR as input X and with NP steps into the future CGM 

as output Y. The nth column of X and Y are denoted by xn and yn, respectively:
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xn

=
Gk − α,  Gk − α + 1,  …,  Gk − 1,   Δ Gk − α,   Δ Gk − α + 1,  …,   Δ Gk − 1,  insk − α,  insk − α + 1,  …,  insk − 1,  

EEk − α,  EEk − α + 1,  …,  EEk − 1,   GSRk − α,  GSRk − α + 1,  …,  GSRk − 1

T

(12)

yn = Gk,  Gk + 1,  …,  Gk + NP − 1
T (13)

where Gk is the CGM value at time step k, ΔGk = Gk − Gk − 1, and insk, EEk, and GSRk are 

the insulin infusion rate, EE, and GSR at step k, respectively. The CGM sensor signals in the 

LW-PLS database should be noise free. The original CGM signal was first filtered with 

Savitzky-Golay filter27 (SGF) to generate the noise-free signal. The database of LW-PLS 

contains 5184 pairs of input and output samples.

CANN1 through CANN4 are trained by using the predictions and conditions of the CGM 

sensor signals from the corresponding estimation method. For each CANN, the input (INk
m) 

is the MPEs (14) from one kind of model identification method, and the output is a vector 

with all its elements ranging from 0 to 1 to indicate the possibility of conditions of CGM 

sensors. The CGM conditions information is defined as normal (Ck
1), signal stuck (Ck

2), spike 

(Ck
3), drift change (Ck

4), step change (Ck
5), and PISA (Ck

6).

MPEk k − t
m =

Gk k − 1
m − Gk t = 1

Gk − 1 k − 2
m − Gk − 1, Gk k − 2

m − Gk t = 2

Gk − t + 1 k − t
m − Gk − t + 1, Gk − t + 2 k − t

m − Gk − t + 2,  …,  Gk k − t
m − Gk t > 2

(14)

INk
m = MPEk k − 1

m ,  MPEk k − 2
m , …,  MPEk k − NP

m , T
(15)
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OUTk
m = Ck

1,  Ck
2,  …,  Ck

6 (16)

where Gk is the CGM sensor signal at step k. The superscript m indicates the model 

identification method (1: ORKF, 2: LW-PLS, 3: PBSM and 4: ALD-RKLS). Gk k − t
m  denotes 

the prediction of CGM value at step k by using method m based on the information available 

at step k − t. NP is the maximum prediction horizon that the models need to provide to 

generate the input of CANN. For the training data, at step k, one value of the OUTk
m is set 

equal to 1 and other elements are set to 0, depending on the known CGM fault in the training 

data.

Data sets from 8 clinical experiments were used to generate the training data of CANNs. 

First, the original CGM signals were filtered with SGF to generate the noise-free signal. 

Second, the noise-free signals were used by the four model identification methods to 

generate model predictions (Gk k − t
m ). It is very difficult to identify various types of faults in 

the original clinical data. Missing signals are obvious but, drifts, small biases, PISA are 

elusive. Hence, various types of errors are added to the noise-free signal to build a database 

that would enable the evaluation of the performance of the algorithms proposed. The 

following relations are used to generate CGM sensor signals with faults:

Signal stuck:

Ge, k,  Ge, k + 1, …,  Ge, k + Due − 1 = Gk,  Gk, …, Gk

s . t . Due ∈ 1,  2,  3,  4  

(17)

Spike:

Ge, k = Gk +  DieMeGk (18)

Drift change:

Ge, k,  Ge, k + 1, …,  Ge, k + Due − 1 = Gk,  Gk + 1, …,  Gk + Due − 1 + DieMeGk 1,  2,  …,  Due

/Due

s . t .  Due ∈ 2,  3,  4,  5  

(19)
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Step change:

Ge, k,  Ge, k + 1, …,  Ge, k + Due − 1 = Gk,  Gk + 1, …,  Gk + Due − 1 + DieMeGk

s . t .  Due ∈ 2,  3,  4,  5  

(20)

PISA34:

Ge, k + t =
Gk + t − Me* 1 − exp −5t

τ                              i f  t ≤ D
5

Gk + t+Me 1 − exp −5t + D
τ − Me 1 − exp −5t

τ   i f  D5 < t < Due

s . t .    Due = D + 3τ
5 ,     t ∈ 1,  Due ,     τ ∈ 5,  10,  15,  20 ,   D ∈ 15,  20,  25,  30

(21)

where Ge(k) is the faulty CGM measurement generated by the sensor error generator using 

the original CGM value G(k). Failures of CGM sensor are mainly due to sensor-receiver 

connection problem (missing signal and signal stuck) and biomechanical issues of the 

sensor-tissue interface36, such as motion of the subjects (spike and step change), scar tissue 

growth around the CGM sensor or degradation of sensor materials (drift change), and 

PISA34. The duration, direction (positive or negative) and magnitude of the errors are noted 

as Due, Die, and Me, respectively. These error types, magnitudes and durations are randomly 

selected, and the error appearance rate (EAR) is every 18 samples so that no fault will be 

overlapped. Note that the EAR used in training data is much higher than the frequency of 

errors in real life since the purpose of training data is to make CANN recognize as many 

different faulty situations as possible. In this way, each clinical data set will generate 50 

faulty CGM signals and the input and output of training data can be constructed by (14) – 

(16). Overall, the training data for each CANN contains 259,200 pairs of input and output 

samples.

After a certain type of fault is detected, a moving window of NMW sampling times is used to 

estimate the MPE for each method and the model with the best accuracy is used for data 

reconciliation. Assume the fault is continuously reported in Nf number of samples:

Scorek
m = ∑ j = 1

NMW MPE
k − N f − j k − 2N f − j
m (22)

Gk = G
k k − N f

m       such that     Scorek
m is the smallest (23)
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The size of moving window is determined by minimize the difference between the noise free 

signal and the estimated signal G
k k − N f

m  in the training dataset, the search range of NMW is 

[1, 2, 3, …, 12]. In this case, NMW = 8 is selected for the window length.

Voting algorithm

BGC level is directly related to carbohydrate consumption and plasma insulin concentration 

(PIC). The training data from clinical experiments includes several meal consumptions and 

insulin infusion rate adjustments that affect the PIC. Models without meal announcement 

may classify rapid CGM increases caused by carbohydrate consumption and rapid decreases 

driven by large PIC as sensor faults. The sensor signal based on a meal detection module37 

and a PIC estimation module38 developed in our research group can provide on-line meal 

information and PIC information, respectively. The meal signal and PIC are integrated into 

the voting algorithm to reduce the number of false positives (FP) caused by meal 

consumption and high PIC values. The detailed voting algorithm is described in the 

following procedure:

Mealk
m = 0.5 if  MPEk k − 1

m < 0 &Flagk
Meal = 1

0 otherwise

m ∈ ORKF,  LW − PLS,  PBSM,  ALD − KRLS

(24)

PICk
m = 0.5 if  MPEk k − 1

m > 0 & PICk > 25mU L−1

0 otherwise

m ∈ ORKF,  LW − PLS,  PBSM,  ALD − KRLS

(25)

SCk
V = find max ∑ OUTk

m + Mealk
m + PICk

m,  0,  0,   0,  0,  0 T

4

m = ORKF,  LW − PLS,  PBSM,  ALD − KRLS

(26)

where Flagk
Meal is a binary variable provided by the meal detection module37 indicates the 

meal effect (1: meal effect exists, 0: meal effect does not exist) at step k. And PICk at step k 

is indicated by the PIC estimation module38. SCk
V is the number of the largest element of the 

sensor condition vector. The first element of OUTk
m indicates the normal condition, 

additional values will be added to the normal condition when a meal is detected and MPE is 
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negative or PIC is high and MPE is positive. The reduction of FP by integrating meal 

detection and PIC estimation module in the voting algorithm is illustrated in Figure 2.

Figure 2a shows the results when no meal detection and PIC information is used. Without 

the meal detection module, the rapid increase in CGM caused by carbohydrate consumption 

from 6:00 PM to 7:00 PM, and the rapid reduction of CGM caused by the large value of PIC 

during 10:45 AM to 11:20 AM and 3:50 PM to 4:40 PM are detected as sensor faults and 

reconciled with model estimations. In Figure 2b, the voting algorithm with meal flag and 

PIC estimates generated by meal detection and PIC estimation modules eliminated these FPs 

after meals, while the real sensor fault around 2:10 PM to 2:40 PM can still be detected and 

reconciled.

To illustrate the contribution of CANN, PIC estimation and meal detection modules, the 

same testing data are used for four different SFD&DR algorithms: (1) without CANN, PIC 

estimation and meal detection modules; (2) with CANN but without PIC estimation and 

meal detection modules; (3) with PIC estimation and meal detection modules but without 

CANN; and (4) with CANN, PIC estimation and meal detection modules.

For SFD&DR algorithm with CANN but without PIC estimation and meal detection 

module, the voting algorithm in (26) is changed to (27):

SCk
V = find max ∑ OUTk

m

4

m ∈ ORKF,  LW − PLS,  PBSM,  ALD − KRLS

(27)

For SFD&DR algorithm without CANN, will use a threshold method to detect the sensor 

error, hence its condition report contains only two conditions, normal and faulty. The 

binominal index, threshold-based error (TBEk) equal to 1 or 0 indicates the sensor signal is 

faulty or normal, respectively:

Ek
m =

1,   i f    MPEk k − 1
m > Tm

0,   i f    MPEk k − 1
m ≤ Tm

m ∈ ORKF,  LW − PLS,  PBSM,  ALD − KRLS

(28)

TBEk =
1,   ∑

m
Ek

m ≥ 2

0,   ∑
m

Ek
m < 2

(29)
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The threshold Tm is set equal to MPEmean
m + MPEstd

m , where MPEmean
m  and MPEstd

m  are the 

mean and standard deviation of  MPEk k − 1
m , respectively. If the  MPEk k − 1

m  follow a 

standard normal distribution, the acceptable signal range is about 84%, since there is a 

voting algorithm for fault detection, the acceptable signal range will become even larger to 

reduce false alarms. For SFD&DR algorithm with PIC estimation and meal detection 

module and without CANN, Eqs. 28 and 29 are modified as:

Ek
m = 1, i f   MPEk k − 1

m > Tm   and    Mealk
m = 0   and    PICk

m = 0
0, otherwise   m ∈ ORKF,  LW − PLS,  PBSM,  ALD − KRLS

(30)

TBEk =
1,   ∑

m
Ek

m ≥ 2

0,   ∑
m

Ek
m < 2

(31)

Results

Eight datasets from the clinical experiments were used for building the database for LW-PLS 

and training the CANNs, and the other 9 data sets are used for testing. The testing data sets 

were analyzed by a clinical specialist with expertise on the effects of carbohydrates, 

exercise, insulin infusion rate, and PISA to label the changes in the CGM signal. The PISA 

is conducted by letting the subject lie on a towel-covered cardboard to simulate the pressure 

introduced to the sensor. The time for PISA is known to the clinical specialist but unknown 

to the SFD&DR algorithm. The sensor error conditions identified by the clinical specialist 

are listed as “condition announced” (CA). The conditions reported by SFD&DR algorithm 

are listed as “condition reported” (CR).

The results of the SFD&DR algorithm are illustrated with three parameters: type accuracy 

(TA), sensitivity (S), and false detection ratio (FDR). The formula for computing S, TA, and 

FDR percentages are

S = 100  TP
TP + FN % (32)

TA = 100 Samples where CR and CA are the same condition
SCA  % (33)
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FDR = 100 Samples that CR declared as one type o f   f ault but CA as normal
Samples that CR declared as one type o f   f ault  % (34)

where TP and FN are true positive and false negative for a certain type of fault (when CR 

and CA declare the same sensor fault, the sample is considered as TP) and SCA indicates 

samples that are announced by clinical specialist as normal or one type of sensor fault.

The summary of sensor signal condition classification of SFD&DR with CANN is displayed 

in Table 1 and Table 2 where the condition reported by the algorithm (CR), and the condition 

announced by the clinical expert (CA) are listed. For example, the value 15 in the array 

element for column ‘drift change’ and row ‘spike’ (row 2 column 1) indicates that 15 one-

sample errors that are reported as drift change were spikes in CGM values. The comparison 

between the performances of the four different SFD&DR is displayed in Figure 3.

Figure 4 illustrates the decisions reached by SFD&DR with CANN, PIC estimation and 

meal detection modules for one data set. Between 1:45 PM to 1:55 PM there is a large 

amount of insulin active in the body based on the PIC estimates, but there is no carbohydrate 

consumption (no meal flag) by the subject. As a result, the increase of CGM is diagnosed as 

a drift (sensor error), and the signals are reconciled with model estimations. Between 5:35 

PM to 6:05 PM, an induced PISA is recorded in the experiment notes. The SFD&DR reports 

the CGM data as a spike at the first sample and as PISA and drift at the second and third 

samples, respectively. Thereon, PISA is reported correctly for the fourth to sixth samples.

In Figure 4, the PISA is started at 5:40 PM. At the first sampling time, it is diagnosed and 

reported as a spike since a large reduction is detected. At the second and third sampling 

times, PISA and drift change are reported, respectively. At the beginning of PISA, the fault 

is similar to a decreasing drift. Starting with the fourth sampling time, the SFD&DR can 

confirm with more confidence that the type of sensor fault is PISA. For a continuous error 

such as PISA, the SFD&DR algorithm may not able to report the correct error at the 

beginning since some types of error may look similar at the onset. One way to improve the 

TA is to modify the error reports if the fault diagnosis reports indicate that the sensor signal 

has another type of error as the error persists. As an example, the following rules are added 

to SFD&DR with CANN, PIC estimation, and meal detection module:

At step k:

If SCk − 1
V 3 = 1 and SCk

V 1 ≠ 0:

SCk − 1
V = SCk

V

For j=[2,4,5,6]:

If ∑i = 0
2 SCk − i

V j = 3:

t = 2

While SCk − t
V 1 ≠ 1:
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t = t + 1,  SCk − t
V = SCk

V

At each step k, if a spike is reported at step k − 1 but the current signal is not at normal 

condition, the SCk − 1
V  will be changed to be the same as the current sensor signal condition, 

since a spike is a discrete sensor error. If for three consecutive sampling times the sensor 

signal conditions are reported as one type of continuous error, the previous sensor signal 

condition will be synchronized as the same type of sensor error one by one until SCk − t
V

indicates a normal condition. The summary of sensor signal condition classification of the 

modified SFD&DR is listed in Table 3.

Discussion

In Table 1 and Table 2, the TA and S for missing signal are 100% since it is easy to detect. 

The missing signal fault is reported when no sensor signal is received for one sampling time. 

The TA for the spike is relatively low because for many other sensor faults such as PISA the 

signal behavior is the same as a spike (a single signal jump) at the first sample.

As expected, drift change is the most difficult sensor fault to detect, because the sensor 

signal change is slow and it may look like an increase caused by carbohydrate consumption 

or by decreasing PIC especially when a drift change happens during the effective meal 

period. PISA can only happen when there is pressure introduced (induced) to the sensor, and 

it often lasts for multiple samples. Some normal CGM signals fluctuations are similar to 

parts of PISA samples which may cause incorrect classification. Introducing other sensors to 

indicate the body position may help in improving the detection accuracy. For example, if the 

subject is lying down, PISA is more likely to occur than if the subject is sitting or standing.

TA and S in Table 1 and Table 2 are almost the same (the difference is less than 1%), but the 

FDR is reduced significantly, especially for the spike, step change, and drift change 

decreased by more than half. Using PIC estimation and meal detection modules can provide 

additional information about the sensor signal dynamics, which reduced the number of FP 

reported by the SFD&DR algorithm. The PIC estimation and meal detection modules are 

providing additional known information about the dynamics of the sensor signals, and the 

CANN can determine some hidden relationships between the MPE and sensor. In Figure 3, 

both the use of CANN or PIC and meal modules can improve the sensitivity and reduce the 

FPs. The expected times between false alarms for four different SFD&DR algorithms, as the 

sequence of Figure 3 are 2.3h, 3.7h, 3.9h, and 4.5h. And the SFD&DR algorithm with 

CANN, PIC estimation, and meal detection modules achieve the best results by combining 

high sensitivity and low FDR. In previous work14, a more complicated threshold setting is 

proposed, but the FDR is still higher than SFD&FR algorithm with CANN. One the 

advantage of using CANN is to simplify the threshold determination.

Comparing Table 2 and Table 3, the TA for all the types of sensor faults except spike are 

shown to improve significantly after introducing rules for continuous sensor signal report 

modification. The TA of spike was reduced, because some of the TP of the spike may 

change to another type of error if followed by FPs. The additional rules will not change S 
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and FDR because it only changes the type of error reported, the number of negatives and 

positives reported by SFD&DR remain the same.

Observability should be checked before the sensor fault detection and data reconciliation 

system is developed. In this paper, the focus is on how to systematically use different 

methods for SFD&DR. All the four method is data driven model, we assume the input and 

output signals are significantly correlated so that the sensor signal can be estimated.

Conclusions

The proposed smart multiple-model SFD&DR combined four different model identification 

methods (ORKF, LW-PLS, PBSM, and ALD-KRLS) with CANN voting algorithm, and 

rules for continuous sensor error reporting and data reconciliation. This SFD&DR is able to 

detect and classify the faults and reconcile the erroneous sensor signal with model-estimated 

values. The performance of the SFD&DR is illustrated with CGM sensor faults in an AP 

system. The results illustrate that the SFD&DR is capable of successfully detecting most 

sensor faults with a small number of false alarms and reconciling the readings with model 

estimations that are closer to expected values.
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Notation

Die direction of faulty CGM measurement

Due duration of faulty CGM measurement

EEk energy expenditure at step k

FDR false detection ratio

Flagk
Meal: a binary variable provided by the meal detection module at 

step k (1: meal effect exists, 0: meal effect does not exist)

FN false negative

Gk CGM value at step k

Ge,k faulty CGM measurement at step k

Gk k − t
m : prediction of CGM value at step k by using method m

GSRk galvanic skin response at step k

insk insulin infusion rate at step k

INk
m: input of CANN at step k by using method m
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m index for different model identification method (1: ORKF, 

2: LW-PLS, 3: PBSM and 4: ALD-KRLS)

Me magnitude of faulty CGM measurement

MPEk k − 1
m : model prediction error of method m at step k

Nf steps of a fault continuously reported by SFD&DR 

algorithm

NP maximum prediction horizon that the models need to 

provide to generate the input of CANN

OUTk
m: output of CANN at step k by using method m

PICk PIC estimation at step k

S sensitivity

SCA samples that are announced by clinical specialist as one 

specific condition

Scorek
m: Score used to determine which model prediction will be 

used for signal reconciliation at step k

SCk
V: index for sensor condition report (1: normal, 2: signal 

stuck, 3: spike, 4: drift change, 5: step change, and 6: 

PISA)

Tm threshold of  MPEk k − 1
m

TA type accuracy

TBEk threshold-based error (1 or 0 indicates the sensor signal is 

faulty or normal)

TP true positive
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Figure 1. 
Flowchart of SFD&DR using four model identification methods and CANN
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Figure 2. 
Comparison between SFD&DR algorithm with and without PIC and meal detection module. 

(a) PIC and meal detection modules are not used, (b) PIC and meal detection modules are 

used, (c) PIC estimates.
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Figure 3. 
Comparison of sensitivity S and false detection ratio (FDR) for four different SFD&FR 

algorithms
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Figure 4. 
Example of SFD&DR with CANN, PIC estimation, and meal detection module
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Table 1.

Summary of Sensor Signal Condition Classification of SFD&DR with CANN but without PIC Estimation and 

Meal Detection Module

CR
CA Spike Drift 

Change Step Change Signal 
Stuck PISA Missing 

Signal Normal SCA TA (%) S (%)

Spike 81 15 32 0 6 0 31 165 49.09 81.21

Drift Change 15 189 5 0 18 0 50 277 68.23 81.95

Step Change 18 1 86 1 19 0 14 139 61.87 89.93

Signal Stuck 0 4 12 47 5 0 8 76 61.84 89.47

PISA 17 39 29 0 212 0 40 337 62.91 88.13

Missing Signal 0 0 0 0 0 33 0 33 100 100

Normal 40 142 49 12 67 0 3997 4307 92.80 ---

FDR (%) 23.39 36.41 23.00 20.00 20.49 0 --- --- --- ---
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Table 2.

Summary of Sensor Signal Condition Classification of SFD&DR with CANN, PIC Estimation and Meal 

Detection Module

CR
CA Spike Drift 

Change Step Change Signal 
Stuck PISA Missing 

Signal Normal SCA TA (%) S (%)

Spike 81 15 32 0 6 0 31 165 49.01 81.03

Drift Change 15 188 3 0 18 0 53 277 67.72 80.94

Step Change 18 1 86 1 19 0 14 139 61.49 89.64

Signal Stuck 0 4 12 47 5 0 8 76 62.07 89.66

PISA 16 37 29 0 212 0 43 337 62.84 87.16

Missing Signal 0 0 0 0 0 33 0 33 100 100

Normal 7 42 19 10 57 0 4214 4349 96.88 ---

FDR (%) 5.23 14.61 10.31 17.64 18.07 0 --- --- --- ---
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Table 3.

Summary of Sensor Signal Condition Classification of SFD&DR with Rules and CANN, PIC Estimation, and 

Meal Detection Module

CR
CA Spike Drift 

Change Step Change Signal 
Stuck PISA Missing 

Signal Normal SCA TA (%) S (%)

Spike 68 21 33 0 12 0 31 165 41.2 81.21

Drift Change 3 211 3 0 7 0 53 277 76.17 80.87

Step Change 7 1 111 1 5 0 14 139 79.86 89.93

Signal Stuck 0 4 8 51 5 0 8 76 67.11 89.47

PISA 0 15 14 0 265 0 43 337 78.64 87.24

Missing Signal 0 0 0 0 0 33 0 33 100 100

Normal 7 42 19 10 57 0 4214 4349 96.90 ---

FDR (%) 8.24 14.29 10.11 16.13 16.24 0.00 --- --- --- ---
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