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Abstract

Vecchia’s approximate likelihood for Gaussian process parameters depends on how the 

observations are ordered, which has been cited as a deficiency. This article takes the alternative 

standpoint that the ordering can be tuned to sharpen the approximations. Indeed, the first part of 

the paper includes a systematic study of how ordering affects the accuracy of Vecchia’s 

approximation. We demonstrate the surprising result that random orderings can give dramatically 

sharper approximations than default coordinate-based orderings. Additional ordering schemes are 

described and analyzed numerically, including orderings capable of improving on random 

orderings. The second contribution of this paper is a new automatic method for grouping 

calculations of components of the approximation. The grouping methods simultaneously improve 

approximation accuracy and reduce computational burden. In common settings, reordering 

combined with grouping reduces Kullback-Leibler divergence from the target model by more than 

a factor of 60 compared to ungrouped approximations with default ordering. The claims are 

supported by theory and numerical results with comparisons to other approximations, including 

tapered covariances and stochastic partial differential equations. Computational details are 

provided, including the use of the approximations for prediction and conditional simulation. An 

application to space-time satellite data is presented.

1 Introduction

The Gaussian process model has become very popular for the analysis of time series, 

functional data, spatial data, spatial-temporal data, and the output from computer 

experiments. Likelihood-based methods for estimating Gaussian process covariance 

parameters were popularized by the work of Mardia and Marshall (1984), but it was quickly 

realized that the O(n2) memory and O(n3) flop burden made these methods infeasible for 

large datasets, necessitating the use of computationally efficient approximations. This article 

studies one of the earliest such approximations, due to Vecchia (1988), which has a number 

of advantages. First, the approximation is embarassingly parallel, making it a good candidate 

for implementation on high performance computing systems. Second, the approximation 

corresponds to a valid multivariate normal distribution, meaning that the approximation can 

be used to generate ensembles of conditional simulations to characterize joint uncertainties 

in predictions. Third, the approximation enjoys the desirable statistical property that 

maximizing it corresponds to solving a set of unbiased estimating equations (Stein et al., 

2004). Lastly, the approximation is very accurate; we demonstrate that with the 

improvements described in this article, it far outperforms state-of-the-art methods such as 
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stochastic partial differential equation (SPDE) approximations Lindgren et al. (2011) and 

covariance tapering (Furrer et al., 2006; Kaufman et al., 2008).

Suppose that the n observation locations are labeled 1 through n, as in x1,...,xn ∈ ℝd. Define 

yi := y(xi) ∈ ℝ to be the observation associated with location xi and the vector y = 

(y1,. . .,yn). In a Gaussian process, the data y are modeled as Y ~ N(μ, Σ𝜃), where Σ𝜃 is a 

covariance matrix with (i,j) entry determined by covariance function Kθ(xi,xj) depending on 

a vector of covariance parameters 𝜃. Let : {1,...,n} → {1,...,n} be a permutation of the 

integers 1 through n, and define the permuted vector y𝜏, where yi
τ = yτ(i). For any 

permutation 𝜏, the joint density for the observations can be written as a product of 

conditional densities

pθ(y1, …, yn) = pθ(y1
τ) ∏

i = 2

n
pθ(yi

τ | y1
τ , …, yi − 1

τ ),

reflecting the invariance of the joint density to arbitrary relabeling of the observations. 

Vecchia’s approximation replaces the complete conditioning vectors (y1
τ , …, yi − 1

τ ), with a 

subvector. Specifically, let { ji1, …, jimi
} be a set of integers between 1 and i − 1, and define 

the approximation

pθ, τ, J(y1, …, yn) = pθ(y1
τ) ∏

i = 2

n
pθ(yi

τ | y ji1
τ , …, y jimi

τ ), (1)

where J = {J1,..., Jn} is collection of sets Ji ≔ { ji1, …, jimi
, i}, which we refer to as the 

neighbors of observation i (by convention every observation neighbors itself). Since 

Vecchia’s approximation is defined as an ordered sequence of valid conditional distributions, 

pe,τ,J forms a valid joint distribution. Also, its definition as a product of conditional 

distributions allows the approximation to be easily parallelized.

Clearly, the quality of the approximation depends on the choice of J since the approximate 

likelihood differs from the exact likelihood if any mi ≠ i − 1. The quality of the 

approximation also depends on the permutation τ, a fact acknowledged in the literature, but 

not yet carefully explored until now. Banerjee et al. (2014) outline some of the common 

criticisms of Vecchia’s approximation,

“However, the approach suffers many problems. First, it is not formally defined. 

Second, it will typically be sequence dependent, though there is no natural ordering 

of the spatial locations. Most troubling is the arbitrariness in the number of and 

choice of ‘neighbors.’ Moreover, perhaps counter-intuitively, we can not merely 

select locations close to si (as we would have with the full data likelihood) in order 

to learn about the spatial decay in dependence for the process. So, altogether, we do 

not see such approximations as useful approach.”
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This paper takes the stance that viewing order dependence as an aspect of the approximation 

that can be tuned-rather than as an inherent deficiency-is a fruitful avenue for improving the 

approximation. Datta et al. (2016a) conducted a simulation study to compare three 

coordinate-based orderings and concluded that the inferences are “extremely robust to the 

ordering of the locations.” On the contrary, default orderings based on sorting the locations 

on a coordinate are often badly suboptimal compared to even a completely random ordering 

of the points. On two-dimensional domains, the more carefully constructed maximum 

minimum distance ordering is a further improvement and can achieve greater than 99% 

relative efficiency for estimating covariance parameters with as few as 30 neighbors, chosen 

to be simply the 30 nearest previous points. These results address most of the concerns 

raised by Banerjee et al. (2014). Order dependence can be exploited to improve the 

approximation. For maximum minimum distance ordering, a simple choice of nearest 

neighbors is effective for this ordering. We prove that the quality of the model 

approximation is nondecreasing as the number of neighbors increases, so that the choice of 

the number of neighbors is governed by a natural tradeoff between computational efficiency 

and model approximation.

In addition to the results on orderings, this paper describes how the approximation can be 

computed more efficiently, both in terms of memory burden and floating point operations, 

by grouping the observations into blocks and evaluating each group’s contribution to the 

likelihood simultaneously. The grouped version of the approximation is particularly 

interesting because not only does it reduce the computational burden, but it is provably 

guaranteed to improve the model approximation. A computationally efficient algorithm for 

grouping the observations is described and implemented, and numerical studies supporting 

the theoretical results are presented.

The consideration of arbitrary orderings presents some computatational issues that are not 

problematic for coordinate-based orderings. First, obviously, is the issue of how to find the 

orderings. The maximum minimum distance ordering requires O(n3) floating point 

operations. To address this issue, we introduce an O(n log n) algorithm for finding an 

ordering that mimics the salient features of the maximum minimum distance ordering. 

Second, a naive search for ordered nearest neighbors requires O(n2 log n) flops. There are 

well-known computationally efficient methods for finding nearest neighbors, and this paper 

describes an adaptation of those methods to the case when the neighbors must come from 

earlier in the ordering. We also describe methods for profiling out linear mean parameters 

and using the approximation for spatial prediction and for efficiently drawing from the 

conditional distribution at a set of unobserved locations given the data, which is a useful way 

to quantify joint uncertainty in predicted values.

Several articles have investigated properties and extensions of Vecchia’s approximation. 

Pardo- Iguzquiza and Dowd (1997) describe Fortran 77 software for computing the 

approximate likelihood and compare a random ordering versus a sorted coordinate ordering 

on a small dataset of size 41. Stein et al. (2004) describe how Vecchia’s approximation can 

be extended to residual/restricted maximum likelihood estimation, how blocking can be used 

to speed the computations, and how conditioning on nearest neighbors can be suboptimal 

when points are ordered according to the coordinates. Sun and Stein (2016) use Vecchia’s 
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approximation to define several unbiased estimating equations for covariance parameters. 

Datta et al. (2016a) use Vecchia’s approximation as part of a hierarchical Bayesian 

specification of spatial processes, and Datta et al. (2016b) discuss interpretation of the 

approximation as an approximation to the inverse Cholesky factor of the covariance matrix 

and apply it to multivariate spatial data. Vecchia’s approximation has been used in various 

applications, including for seismic data (Eide et al., 2002) and space-time SPDE models 

(Jones and Zhang, 1997).

The paper is organized as follows. Section 2 outlines formal definitions for the orderings. 

Section 3 presents the computational and theoretical results related to grouping the 

observations, establishing that grouping observations simultaneously reduces computational 

effort and improves the model approximations. Section 4 addreses additional computational 

issues described above. Section 5 contains numerical and timing experiments studying the 

relative efficiencies for various orderings, Kullback-Leibler divergence for various orderings 

and for other proposed Gaussian process approximations, and timing results. Section 6 

includes an application of the methods to space-time satellite data, and the paper concludes 

with a discussion in Section 7.

2 Definitions of Orderings

In the numerical analysis literature on sparse matrix factorizations, it is widely recognized 

that row- column reordering schemes for large sparse symmetric positive definite matrices 

are essential for increasing the sparsity of the Cholesky factor (Saad, 2003). Finding an 

optimal such ordering is an NP-complete problem (Yannakakis, 1981), and so the algorithms 

in use are necessarily heuristic, but heuristic algorithms, such as the approximate minimum 

degree algorithm (Amestoy et al., 1996), have proven to be effective. The goals in Gaussian 

process approximation are related in that we search for an ordering that produces an 

approximately sparse inverse Cholesky factor. However, the problem at hand here is more 

difficult and perhaps less well-defined than sparse matrix factorization; our task is to find the 

best reordering of observations that produces accurate approximations to the joint density or 

an approximate likelihood function that delivers efficient parameter estimates, a criterion 

that depends on the derivative of the approximate and exact likelihood functions with respect 

to the covariance parameters. Thus, it is extremely unlikely that we will be able to find 

“optimal” orderings for large datasets. Nevertheless, as in the sparse matrix case, this paper 

shows that heuristically motivated orderings can offer significant improvements in statistical 

efficiency and model approximation over default orderings.

It appears that the default choice for Vecchia’s approximation is to order the points by 

sorting on one of the coordinates. This is the ordering used in Vecchia (1988), Sun and Stein 

(2016), and Datta et al. (2016a). Stein et al. (2004) use an ordering based on sorting the 

points on the sum of their coordinates, which is equivalent to ordering on one of the 

coordinates in a system rotated by π/4. We refer to such orderings as sorted coordinate 
orderings. Sorted coordinate orderings are based on a heuristic from one-dimensional 

examples that each location can be separated by previous locations in the ordering by its 

nearest neighbors.
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The numerical studies in Section 5 indicate that the following ordering scheme is effective 

for Matern covariance models in two dimensions. This ordering selects a point in the center 

first-the center being the mean location or some other measure of centrality, generically 

denoted as x -then sequentially picks the next point to have maximum minimum distance to 

all previously selected points, that is

τ(1) = arg min
i ∈ 1, …, n

‖xi − x‖,

τ( j) = arg max
i ∉ τ(1), …, τ( j − 1)

min
k ∈ 1, …, j − 1

‖xi − xτ(k)‖, j > 1.

The result is that for every k = 1,...,n, the first k points form a space-covering set, none of 

which are too near each other. We refer to this ordering as a maximum minimum distance 
(MMD) ordering, and any approximation to it as an approximate MMD (AMMD) ordering. 

The MMD ordering is based on a heuristic of making sure that each location is surrounded 

by previous locations in the ordering.

The numerical studies in more than two dimensions indicate that it can be beneficial to sort 

the points by their distance to some point in the domain. For example, the points can be 

sorted based on their distance to x. We use middle out ordering to refer to sorting based on 

distance to the center. The heuristic for middle out is similar to the sorted coordinate 

heuristic, with the difference that previous points fall inside a sphere with radius smaller 

than the radius of the current point. Finally, a completely random ordering is a draw from the 

uniform distribution on all permutations. Random orderings do not have a heuristic but tend 

to give orderings with the same surrounding heuristic as MMD and outperform sorted 

coordinate orderings in many cases. Examples of the four orderings are given in Figure 1.

3 Automatic Grouping Methods

In this section, a grouped version of Vecchia’s approximation is described and proven to be 

no worse (and possibly better) than its ungrouped counterpart in terms of Kullback-Leibler 

(KL) divergence. Moreover, this section outlines how an entire group’s contribution to the 

likelihood can be computed simultaneously, and it is demonstrated that if the grouping is 

chosen well, the simultaneous computation is lighter, both in terms of floating point 

operations and memory, which is important for implementation on shared memory parallel 

systems. Essentially, grouping gives us better approximations for free.

Stein et al. (2004) considered a blockwise version of Vecchia’s likelihood and demonstrated 

that blocking can reduce the computational burden. The grouping methods developed here 

differ in that they operate on the ordering and neighbor sets after they have been defined. 

This gives us the freedom to first choose an advantangeous ordering and neighbor sets, and 

then use grouping to reduce the computational effort and improve the model accuracy. The 

grouping scheme here is also more general in that observations within a group are not 

required to be ordered continguously, nor are observations within one group required to 

condition on all observations in another group.
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Let B = {B1,..., BK} be a partition of {1,..., n}, representing a grouping of the observations 

into blocks, and define Uk = ⋃b ∈ Bk
Jb, the union of all neighbors of all indices Bk, 

representing the set of all neighbors of all observations in block Bk. Suppose that i ∈ Bk, and 

define Ji as follows:

Ji = j ∈ Uk: j ≤ i ,

so that Ji is the union of all neighbors of the observations with index in Bk, subject to the 

requirement that all elements of Ji must be less than or equal to i. Thus Ji is a set of integers 

between 1 and i that includes i. Therefore Ji conforms to our convention and pθ, τ, J is an 

approximation in the form of (1). Note that Ji depends on the original neighbor choices 

J1,...,Jn and the partition B. I refer to pθ, τ, J as the grouped version of the ungrouped 

approximation pθ,τ,J. Figure 2 gives an example of how Ji is constructed for a group 

containing two points.

3.1 Improved Model Approximations

To gain an intuition for why grouping observations improves the accuracy of the model 

approximation, I briefly review one interpretation of the inverse Cholesky factor of a 

covariance matrix (Pourahmadi, 1999). Suppose Y = (Yi,. ..,Yn)T is a mean-zero multivariate 

normal vector with E(YYT) = Σ, which has Cholesky decomposition Σ = LLT. Let Γ = L-1. 

The transformation Z = ΓΥ is decorrelating and can be interpreted as follows; for any i = 

2,...,n,

Zi = ∑
j = 1

i
Y j = Γii Yi − ∑

j = 1

i − 1 −Γi j
Γii

Y j ,

is the standardized residual of the projection of Yi onto (Y1,...,Y_i), Γii is the reciprocal of 

the residual standard deviation, and −Γij/Γii are the coefficients of the projection. The 

coefficients can also be interpreted as those defining the best linear unbiased predictor 

(BLUP) of Yi using (Y1,..., Yi-i), an interpretation which can be extended to the case of a 

linear mean function (Stein et al., 2004). Defining z = Γy, the conditional density for Yi 

given Y1,..., Yi-i can be written as

logpθ(yi | y1, …, yi − 1) = − 1
2log2π + logΓii − 1

2 zi
2,

and thus the ith row of Γ encodes the conditional density for Yi given Y1,..., Yi-1.

Vecchia’s approximation replaces Γ with a sparse approximation Γ, since Yi is projected 

onto a subset of (Y1,..., Yi_1), and thus Γi j is zero if Yj is not in the conditioning set for Yi. 

Because of the BLUP interpretation, Γii ≤ Γii for every i. Taking this a step further, suppose 
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Γ1 and Γ2 represent two approximations that use the same ordering with different 

conditioning sets given by J1 and J2. If Ji
1 is contained in Ji

2 for every i, then Γii
1 ≤ Γii

2, 

because the variance of the BLUP cannot increase when additional variables are added to the 

conditioning set.

The Kullback-Leibler (KL) divergence from pi to p0 is defined as KL(p0║pi) = E(log(po/

p1)), where the expectation is with respect to p0. The following theorem establishes that the 

KL divergence is nonincreasing as observations are added to the conditioning sets. This 

result is needed to show that the grouped approximation is no worse than its ungrouped 

counterpart (and could be better).

Theorem 1.—If Ji
1 ⊂ Ji

2 for every i = 1,...,n, then KL(pθ‖p
θ, τ, J2) ≤ KL(pθ‖p

θ, τ, J1).

Proof.: Let Σ1 and Σ2 be the covariance matrices under p
θ, τ, J1 and p

θ, τ, J2. The difference 

between the KL-divergences is given by

KL(pθ‖p
θ, τ, J1) − KL(pθ‖p

θ, τ, J2) = 1
2(E(YT(Σ1)−1

Y) − E(YT(Σ2)−1
Y) − logdet(Σ1)−1 + logdet(Σ2)−1) .

Let rk be the inverse Cholesky factor of Σk. According to Vecchia’s approximation, Γk is 

sparse and has entries constructed as follows. Let A be the covariance matrix for the vector

(Y ji1
, …, Y jim

, Yi)
T ,

and let C be the inverse Cholesky factor of A. Row m +1 (the last row) of C contains the 

coefficients for the projection of Yi onto (Y ji1
, …, Y jim

). The ith row of Γk has entries

Γi jiℓ
k = Cm + 1, ℓ, Γii

k = Cm + 1, m + 1, Γi j
k = 0 otherwise.

Define Zk=ΓkY. Then Zi
k is

Zi
k = ∑

j = 1

i
Γi j

k Y j = ∑
ℓ = 1

m
Cm + 1, ℓY jiℓ

+ Cm + 1, m + 1Yi = Cm + 1, m + 1 Yi − ∑
ℓ = 1

m −Cm + 1, ℓ
Cm + 1, m + 1

Y jiℓ
.

From the last expression it is evident that Zi
k is the residual from the BLUP of Yi given 

(Yj,i,1,..., Yj,i,m), scaled by the standard deviation of that residual, and so Zi
k has mean zero 

and variance 1. This ensures that E(YT(Σk)−1
Y) = E(∑i (Zi

k)2) = n, and thus both quadratic 

form terms are equal to n and cancel each other.
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The determinant of Σk
−1 can be computed by taking the square of the product of the entries 

of Tk Since Ji
1 ⊂ Ji

2 for every i, we have that 0 ≤ Γii
1 ≤ Γii

2 for every i, so logdet(Σ1)−1 < 

logdet(Σ2)−1, and thus KL(pθ‖pθ, τ,J2) ≤ KL(pθ‖p
θ, τ, J1), as desired.

Corollary 1 follows from Theorem 1 when we note that, by definition, Ji contains Ji, since i 

2 Bk and all elements of Ji are less than or equal to i.

Corollary 1.—The grouped approximation has smaller KL divergence than its ungrouped 

counterpart, i.e.

KL(pθ‖pθ, τ, J) ≤ KL(pθ‖pθ, τ, J)

3.2 Simultaneous Computation

Recall that Uk is the set of all neighbors of observations in block Bk. Let Ak be the 

covariance matrix for observations with indices in Uk, with observations ordered increasing 

in their indices. If we define Ck to be the inverse Cholesky factor of Ak, each row of Ck 

encodes the conditional distribution of an observation with index in Uk given those ordered 

before in Uk. Since Ji contains precisely those indices ordered before i in Uk, we can 

calculate the contribution of observations with indices i ∈ Bk to pθ, τ, J simultaneously, by 

forming and factoring a single covariance matrix Ak. The total computational cost for the 

grouped version is on the order

memory: ∑
k = 1

K
( # Uk)2, flops: ∑

k = 1

K
( # Uk)3,

where (#Uk) is the size of the set Uk. If a group of observations share a substantial number 

of neighbors, it is possible that these quantities are less than the memory and flop burden of 

the ungrouped approximation-n(m + l)2 and n(m + 1)3-and so computational savings can be 

gained by computing each group’s contribution to the likelihood in this simultaneous way.

To illustrate this point, consider the canonical ordering and two observations yi and yi+2 with 

Ji = (i − m,...,i) and Ji+2 = (i − m + 2,...,i + 2), so that each observation conditions on the m 

previous ones. The computational cost of factoring the covariance matrices for the 

observations and their respective neighbors is 1/3(m + 1)3 floating point operatations each, 

for a total of 2/3(m + 1)3 operations, and (m + 1)2 memory units each, for a total of 2(m 

+ 1)2 memory units. Now, suppose that B1 = {i, i + 2}, and thus U1={i-m,…,i+2} 

Ji = Ji, Ji + 2 = i − m, …, i + 2 , and A1 is the (m + 3) × (m + 3) covariance matrix for 

(yi-m,..., yi+2). Row m + 1 of C1 encodes the conditional distribution of yi given 

(yi-m,...,yi−1), and row m + 3 of C1 encodes the conditional distribution of yj+2 given (yj-m,..., 

yj+1), which is what is required for calculating the contribution from yi and yi+2 to the 

grouped likelihood approximation. The computational cost of storing and factoring A1 is (m 

+ 3)2 memory units and 1/3(m + 3)3 flops, so in addition to the increased accuracy of the 
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approximation (Corollary 1), we also achieve computational savings in flops if m> 6 and in 

memory if m> 3.

3.3 Grouping Algorithm

Since the groupings are a partition of the set of observations, it is of interest to find good 

partitions that improve the model and lessen computational cost. Here, we describe a fast 

greedy algorithm that depends only on the ordering and the neighbor sets. The algorithm 

starts with Bk = {k}, each index in its own block and proceeds to propose joining pairs of 

blocks.

Grouping algorithm:

 Set B = 1 , …, n
 for 𝓁 = 1, …, m do
 for i = 1, …, n do 
  Identify the k for which i ∈ Bk
  Identify the k′ for which  ji𝓁 ∈ Bk′

  if ( # (Uk ∪ Uk′))
2 ≤ ( # Uk)2 + ( # Uk′)

2 then 
  Set Bk = Bk ∪ Bk′
  Set Bk′ =

  end if
end for

end for

The joining of two blocks is accepted if the square of the number of neighbors of the joined 

block is less then the sum of the squares of the number of neighbors in the two blocks. This 

ensures that the memory burden is made no worse when combining blocks, since the 

covariance matrices we need to form are governed by (#Uk)2. In practice, this rule also does 

not increase the computational burden since, when working with small covariance matrices, 

the computational demand is often dominated by filling in the entries of the covariance 

matrix rather than factoring the matrix. Only neighbors are considered as candidates for 

joining, ensuring that at most nm comparisons are made, and that we make comparisons 

between blocks that contain points that are near each other, which is advisable because 

distant points are unlikely to share many neighbors unless they appear early in the ordering.
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4 Further computational considerations

This section describes computational considerations for the problems of finding orderings 

and nearest neighbors, approximately drawing from unconditional and conditional Gaussian 

process distributions, and profiling out linear mean parameters. Code for all methods is 

provided in online supplementary material.

4.1 Finding Orderings and Nearest Neighbors

Considering arbitrary permutations of the observations presents two computational issues 

that are not encountered in coordinate-based orderings. The first is finding the orderings. For 

example, finding the MMD ordering is O(n3) in computing time. The second problem is how 

to find the ordered nearest neighbors, that is, the set of m nearest neighbors to location x(i)) 

among x𝜏(1),...,x𝜏(i-1). A naïve algorithm for finding neighbors would require O(n log n) 

operations to compute and sort distances to any point, and thus a total of O(n2 log n) 

operations.

Searching for nearest neighbors in metric spaces is a well-studied problem. Vaidya (1989) 

describes an O(nlog n) algorithm for finding the nearest neighbor to all n points. The FNN R 

package (Beygelzimer et al., 2013) has an implementation of a kd-tree algorithm. The 

algorithm uses a tree-based partitioning of the points to quickly narrow down the set of 

points that are candidates for being nearest each point. However, the FNN software cannot 

be used directly because the functions return nearest neighbors from the set of all points, 

rather than nearest previous neighbors, which is what we need for Vecchia’s approximation. 

To bridge this gap, we first find the nearest 2m neighbor sets for each point. For the neighbor 

sets that contain at least m previous points, we have found the nearest m previous points. 

Those points are set aside, and for the remaining points, we find the nearest 4m points, again 

setting aside the points that have at least m previous neighbors. This is repeated until all 

points previous neighbors have been found.

It is possible to construct approximations to the MMD ordering that run in O(n log n) time. 

First divide the domain up into grid boxes, with the number of grid boxes proportional to the 

number of observations. Assigning each point to its grid box can be done in linear time with 

a simple rounding method. Using the center of each grid box as its location, then use MMD 

to order the grid boxes. Once the grid boxes are ordered, loop over the grid boxes according 

to the grid box ordering, each time picking the point from the current grid box with largest 

minimum distance to any selected points in the current or neighboring grid boxes, stopping 

when all points have been ordered. If the number of grid boxes g is large this algorithm can 

be used recursively to order the grid boxes, thus giving an O(n log n) algorithm.

4.2 Unconditional and Conditional Draws

Whereas Kriging interpolation requires only matrix multiplication and linear solves with the 

covariance matrix, which can usually be done in O(n2) operations with a good iterative 

solver, unconditional and conditional draws (simulations) from the Gaussian process model 

generally require us to factor the covariance matrix, which is O(n3) operations. One 

advantage that Vecchia’s approximation has is that it defines an approximation to the inverse 
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Cholesky factor, which can be used to perform approximate draws from the Gaussian 

process model. This approximation can also be used to perform conditional draws of 

unobserved values given the observations, which, when done many times in an ensemble, is 

a useful way of quantifying the joint uncertainty associated with interpolated maps.

To simplify the following equations, write Γ as the inverse Cholesky factor of the n × n 
covariance matrix Σ, and Γ as the approximation to Γ implied by Vecchia’s likelihood. Let Z 

be an uncorrelated vector of standard normals of length n. Then Y = Γ−1Z is approximately 

N(0, Σ). We use Kullback- Leibler divergence in Section 5 to monitor the quality of the 

approximations. Since Γ is sparse and triangular, solving for Y, and thus drawing 

approximately from from N(0, Σ), can be done in O(n) operations. Suppose Y is parititioned 

into two subvectors as Y = (Y1_,Y2) and write Σ as a 2 × 2 block matrix ∑i j i = 1, 2. To 

predict Y2 from Yi, We compute E(Y2 |Y1) = Σ21Σ11
−1Y1 This can be rewritten in terms of the 

inverse Cholesky factor as E(Y2 |Y1) = − Γ22
−1Γ21Y1. Thus we can compute approximate 

conditional expectations as −Γ22
−1Γ21Y1. Solving a linear system with Γ

22
 can also be 

achieved in linear time because Γ
22

 is sparse and lower triangular.

Conditional draws can be done at the cost of one unconditional draw and one conditional 

expectation. Suppose that the data are in the vector Y1, and that Y* = (Y1*, Y2*) is an 

unconditional draw from N(0, Σ). Then, conditionally on Y1, − Γ
22
−1Γ

21
(Y1 − Y1*) + Y2*

approximately has mean Σ21Σ11
−1Y1 and covariance matrix Σ22 − Σ21Σ11

−1Σ12 and thus is an 

approximate conditional draw of Y2 given Y1. We use ensembles of conditional draws in 

Section 6 to quantify joint uncertainties in interpolations of satellite data.

4.3 Profile Likelihood with Linear Mean Parameters

The Gaussian process model often includes a mean function that is linear with respect to a 

set of spatial covariates. Stein et al. (2004) outlined methods for computing residual (also 

known as restricted) likelihoods to avoid having to numerically maximize the approximate 

likelihood over the mean parameters. If one prefers to obtain the maximum approximate 

likelihood estimates of all parameters, it is usually computationally advantageous to profile 

out the mean parameters. Writing E(Y) = Χβ, where X is the n × p design matrix, and β is 

the vector of linear mean parameters, Vecchia’s approximate likelihood becomes

logpθ, β, τ, J(y) = − n
2log(2π) + logdetΓ − 1

2‖Γ(y − Xβ)‖2 .

For fixed θ, the maximum approximate likelihood estimate for β is

β(θ) = (XTΓTΓX)−1
XTΓTΓy = (ΓX)T(ΓX) −1(ΓX)T(Γy) .
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Multiplying ΓX can be done column-by-column, each of which takes the same 

computational effort as multiplyingΓy, which is the most computationally demanding task in 

the approximate likelihood evaluation. Thus profiling out the linear mean parameters can be 

done at the roughly the cost of p additional approximate likelihood evaluations per iteration 

when maximizing over θ.

5 Numerical and timing comparisons

This section contains numerical results studying differences in the relative quality Vecchia’s 

approximation with respect to choices for the permutation and grouping, under different 

model settings and in two, three, and four dimensional domains. Vecchia’s approximation is 

also compared to a simple block independent Gaussian process approximation, since this 

approximation is easily constructed and has been shown to be competitive with state-of-the-

art approximations (Stein, 2014). Comparisons are also made with stochastic partial 

differential equation (SPDE) approximations (Lindgren et al., 2011) and tapered covariance 

approximations (Furrer et al., 2006; Kaufman et al., 2008). For all comparisons, the Matern 

covariance function is used,

M(r; σ2, α, ν) = σ2

Γ(ν)2ν − 1
r
α

ν
𝒦ν

r
α ,

which has emerged as the model of choice for practitioners of spatial statistics (Guttorp and 

Gneiting, 2006). The covariance function has three positive parameters σ2, α, and v, which 

are the variance, range, and smoothness parameters, respectively. The mean of the process is 

assumed to be known to be zero.

In the two-dimensional numerical studies, six different parameter choices are presented, 

with σ2 = 1 in all six, while the range and smoothness cover all combinations of α∈ 
{0.1,0.2} and v ∈ {1/2,1, 3/2}. The locations form an 80×80 regular grid on the unit square, 

giving 6400 locations. Example realizations from the six models are given in Figure 12 in 

Appendix A. Four orderings are considered: sorted coordinate, middle out, completely 

random, and AMMD. Ungrouped and grouped versions, and 30 and 60 nearest neighbors are 

considered. As mentioned in Section 3, calculations in the grouped versions effectively 

condition on more neighbors, so when discussing the results, “grouped version with 30 

neighbors” refers to a grouped version of a likelihood approximation that initially 

conditioned on 30 neighbors. For each ordering and number of initial neighbors, Table 1 

includes statistics on the number of blocks K, the sizes of the blocks (#Uk), and the sizes of 

the conditioning sets ( # Ji).

The combinations above consist of (6 parameter settings) × (4 orderings) × (30 vs. 60 

neighbors) × (ungrouped vs. grouped) = 96 settings, not counting the block approximations 

or the SPDE approximations. Exploring such a large number of scenarios with simulations 

would not be feasible since many replicates would be required to control Monte Carlo error 

size. Instead, we use two deterministic criteria to evaluate the different approximations: (1) 

KL-divergence from the implied approximate model to the target model, (2) asymptotic 
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relative efficiency for estimating covariance parameters, computed using the the usual 

generalization of Fisher information for misspecified likelihoods (Heyde, 2008). If ℓ(θ) is 

the approximate likelihood, the information criterion is

H(θ) = E ∇2ℓ(θ) E (∇ℓ(θ))(∇ℓ(θ))T −1
E ∇2ℓ(θ) ,

where ∇ indicates gradient, and ∇2 is the Hessian. The criterion H(θ) is of course equal to 

the Fisher information in the case that ℓ is equal to the true loglikelihood. The inverse of H 
gives the asymptotic covariance matrix for the three Vecchia likelihood parameter estimates, 

estimated simultaneously. Relative efficiencies are obtained by comparing the diagonal 

values of H−1 to the diagonal values of the inverse of the Fisher information.

In the three- and four-dimensional numerical studies, the grids on the unit square are of size 

193 and 94, giving totals of 6859 and 6561 locations. We use the exponential covariance 

function with range parameters 0.1,0.2, and 0.4 Only the KL-divergence criterion and the 

ungrouped approximations are considered, but the same four orderings and up to 240 

neighbors are used.

The section concludes with a timing study showing how the various computational tasks for 

Vecchia’s approximation scale with the number of observations. All timing comparisons are 

done on a 2016 Macbook Pro with a 3.3GHz Intel Core i7 processor (two cores) with 16GB 

RAM. Code is mostly written in the R programming language (R Development Core Team, 

2008), aside from the Vecchia likelihood functions, which have been implemented in C++. 

Computations are done while running R version 3.4.2, linked to Apple Accelerate 

multithreaded linear algebra libraries.

5.1 Kullback-Leibler Divergence Comparisons

For the v = 1 cases, an SPDE approximation (Lindgren et al., 2011) is also considered. The 

SPDE approximation provides computational savings by using a sparse inverse covariance 

matrix and is valid for integer values of the smoothness parameter in two spatial dimensions. 

To address edge effects in the SPDE approximation, we use the boundary extension 

described in Lindgren et al. (2011). Several choices of boundary parameters were 

considered, with only small differences among choices. For the v = 1/2 case, we also 

consider a tapered covariance approximation (Furrer et al., 2006; Kaufman et al., 2008) with 

three tapering ranges as a competitor. In contrast to Vecchia’s approximation, the KL 

divergence from the SPDE or tapered approximations to the target model is not minimized at 

the target model’s parameter values, so we perform an optimization to find the range and 

variance parameters to minimize the KL-divergence. SPDE computations were implemented 

using functions from the R-INLA package (Rue et al., 2009), tapering from the fields 

package (Nychka et al., 2016).

The KL divergence results are plotted in Figure 3, and the discussion of the results is 

organized according to the smoothness parameter setting. When v = 1/2, which corresponds 

to an exponential covariance function, AMMD ordering reduces KL divergence relative to 

sorted coordinate ordering by factors of 16 and 22 for the two range parameter settings when 
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the number of neighbors is 30. Both orderings run in roughly the same amount of time. 

When the observations are grouped, the approximations improve. When using the AMMD 

ordering, the improvement in KL divergence over the sorted coordinate ordering with no 

grouping increases to a factor of 64 when α = 0.1 and a factor of 75 when α = 0.2. For 60 

neighbors the effect of ordering is more striking; AMMD ordering and grouping results 

reduces KL divergence by factors of 285 and 244. Covariance tapering is not competitive for 

any of the tapering ranges. The grouped approximation with AMMD ordering and 30 

neighbors is more than 12,000 times more accurate than the tapered approximation that runs 

in roughly the same amount of time.

When v =1, the major story is that the grouped approximations with AMMD ordering run 

faster than the SPDE approximation and are far more accurate; for α = 0.1, KL-divergence is 

reduced by a factor of 160, and for α = 0.2 by a factor of 148. Computing times for the 

SPDE approximation include creating the mesh, forming the precision matrix (with 

boundary extension), and computing the sparse Cholesky factor. Reordering of the precision 

matrix is done by internal functions in the R Matrix package (Bates and Maechler, 2016). As 

before, the AMMD orderings are most accurate, especially with 60 neighbors.

When v = 3/2, which is the smoothest model considered, the AMMD ordering is again most 

accurate for 60 neighbors. For 30 ungrouped neighbors, the differences among orderings is 

less substantial. In all cases, grouped approximations are more accurate than their ungrouped 

counterparts. In all parameter settings, the block independent approximations are never 

competitive in accuracy. The 3 × 3 block approximation generally runs slower than the 

fastest grouped approximation and is orders of magnitude less accurate. Finer blocking in 

the block independent approximation will run faster but will decrease in accuracy.

KL-divergences for three and four dimensions are plotted in Figure 4, where we see that the 

middle out ordering is the best choice in all but two covariance settings. In three dimensions, 

the random and MMD orderings appear to have KL-divergences that decay faster as the 

number of neighbors increase, whereas the sorted coordinate orderings have a slower decay. 

However, the gains for random and MMD come only after a large number of neighbors, 

which are unlikely to be used in practice due to the cubic scaling in number of neighbors. In 

four dimensions, middle out performs best. KL divergences were also computed for 

covariance tapering with three different taper ranges. Covariance tapering was not 

competitive with Vecchia’s approximation in any setting; KL divergences were larger than 

102 in all settings, with some larger than 103.

5.2 Relative Efficiency Comparisons

The results of the numerical study on relative efficiency are summarized in Figure 5. In 

every parameter setting, for all three parameters, and for both neighbor sizes, the AMMD 

ordering with grouping out-performs the default sorted coordinate ordering without 

grouping. In some cases, the difference is quite large. For example, when estimating the 

range parameter for the Matérn with smoothness 1 and range 0.2, using the default sorted 

coordinate without grouping has 93.2% relative efficiency, whereas AMMD with grouping 

has 99.7% relative efficiency. This gain in efficiency comes at no additional computational 

cost.
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In every case, using 30 neighbors with the AMMD ordering and grouping is superior to 

using 60 neighbors with the default sorted coordinate ordering without grouping. Since the 

computational complexity scales with the cube of the number of neighbors, this means our 

proposed improvements to Vecchia’s likelihood can achieve increases in relative efficiency 

while simulataneously reducing the computational cost by a factor of 8. Finally, perhaps the 

most surprising result of this numerical study is that the default orderings are almost always 

outperformed by a completely random ordering of the points. This is also true in the KL 

divergence study. In both cases, the AMMD ordering offers further improvement.

5.3 Timing

In the context of analyzing data, it is useful to note which calculations must be carried out 

just once versus multiple times, and which calculations can be parallelized, although no 

explicit parallelization has been used in these studies. The ordering, grouping, and nearest 

neighbor calculations are computed just once. The likelihood calculations generally need to 

be repeated many times in the process of either numerically maximizing it with respect to 

covariance parameters, or sampling from posterior distributions in MCMC algorithms, but 

likelihood evaluations are embarassingly parallel due to the separability of Vecchia’s 

specification. The nearest neighbor searches can be done in parallel.

Figure 6 presents the results of the timing study for an increasing number of observations 

with the exponential covariance function and AMMD ordering. The study is carried out for 

30 and 60 neighbors and up to 105 observations. For 30 neighbors, the slowest operation is 

grouping, followed by ordering, then finding neighbors, then the likelihood evaluations. The 

grouped likelihood for 105 observations was computed in 1.5 seconds. For 60 neighbors, the 

grouping algorithm was slowest, followed by ordering.The grouped likelihood with 60 

neighbors required 7.4 seconds for 105 observations.

6 Jason-3 Satellite Wind Speed Observations

Launched in January 2016, the Jason-3 satellite is the latest in a series of satellites equipped 

with radar altimeters for measuring ocean surface height, wave height, and ocean wind speed 

(NASA-JPL, 2016). Jason-3 orbits the earth every 112 minutes along a path that repeats 

every 9.9 days. The data we consider are ocean surface wind speed values reported roughly 

once per second between August 4 and August 9, 2016 and are available at http://

www.nodc.noaa.gov/sog/jason/. The goal of this analysis is to create interpolated maps of 

wind speed and quantify the joint uncertainty in the interpolations.

Data Preprocessing:

The Jason-3 data files include rain and ice flags to signify the presence of liquid water and 

ice along the radar signal’s path. These disruptions degrade the quality of the signal, and the 

Jason-3 products handbook (CNES et al., 2016) states that flagged measurements should be 

ignored. As a conservative measure, we discard any measurement taken within 30 seconds 

of passing over rain or ice. In order to ensure that we can perform extensive comparisons 

among statistical analyses for data spanning a reasonably long time period, we average the 

one second measurements within 10 second intervals, discarding any intervals that have 
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missing values. The resulting data vector has 18,973 values. A map of the data is plotted in 

Figure 7.

Since the satellite can measure wind speeds at only a single location at any given time, it is 

expected that uncertainties in interpolated maps at specific times and locations will depend 

on whether there are nearby observations in space and time. This feature can be captured by 

modeling the data with a space-time Gaussian process. Specifically, for wind speeds at 

location x ∈ 2 and t ∈ ℝ, we consider ageostatistical model of the form

Y(x, t) = μ + Z(x, t) + ε(x, t),

where μ is considered nonrandom, 𝜀(x,t) is uncorrelated N(0, τ2) (nugget term), and Z(x,t) is 

a spacetime Gaussian process with a Matern covariance function

Cov(Z(x1, t1), Z(x2, t2)) = σ2

2ν − 1Γ(ν)
(d12)ν𝒦ν(d12),

Where 𝒦ν is a modified Bessel function of the second kind, and

d12 =
‖x1 − x2‖2

α1
2 +

t1 − t2
2

α2
2 ,

so that the covariance function is isotropic in space, stationary in time, but with different 

range parameters for the space and time dimensions. This method for constructing 

covariance functions on the sphere-time domain was originally used in Jun and Stein (2007). 

The Matérn covariance is not generally valid with great circle distance metric on the sphere 

(Gneiting, 2013), so Euclidean distance is used. Porcu et al. (2016) constructed some 

alternative space-time covariance functions, but Guinness and Fuentes (2016) argued that 

there is no reason to expect the use of covariance functions constructed on Euclidean spaces 

and restricted to the sphere to cause any distortions. The numerical results in Porcu et al. 

(2016) support this idea. The model we consider has five unknown covariance parameters, 

(σ2, α1, α2, v τ2).

We consider four orderings for the observations in Vecchia’s likelihood. The first is ordered 

in time, which I consider to be a default choice for this application. The second is 

completely random, the third is MMD in time, and the fourth is MMD in space. Since the 

orbital pattern of the satellite follows a regular path over time, the MMD in time ordering 

provides good spatial coverage early in the ordering, as can be seen in Figure 8, which 

shows the locations of the first 1000 observations from the MMD in time ordering.

For neighbor selection, Datta et al. (2016c) defined “nearest” neighbors in space and time 

based on the correlation function. Here, we define distance based on the spatial dimension 

only. The reason for this choice is to encourage the neighbor sets to contain observations 

Guinness Page 16

Technometrics. Author manuscript; available in PMC 2019 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



from different time points so that the conditional likelihoods contain information about the 

temporal range parameter.

Since the quality of Vecchia’s approximation increases as neighbors are added, and 

maximum likelihood estimates are obtained in an iterative numerical search procedure, it is 

natural to consider a sequence of maximum approximate likelihood estimates, where each 

step in the sequence uses a larger number of neighbors than in the previous step. The 

estimates from an iterative procedure such as this can be monitored for convergence and 

stopped when successive parameter estimates do not change beyond some tolerance level. 

For each ordering, we start with 10 neighbors, find the maximum approximate likelihood 

estimate, and then we consider 20 neighbors, starting the optimization at the 10-neighbor 

parameter estimate, and so on up to 100 neighbors. As long as the optimization procedures 

are finding the legitimate maximum of the approximate likelihoods, the sequence of 

estimates from all orderings will all converge to the same maximum likelihood estimate, 

since all of the likelihood approximations converge to the exact likelihood when we 

condition on all possible past observations. Orderings can be compared to each other based 

on how many neighbors are required for convergence.

The results for the four orderings are plotted in Figure 9. Only the variance, spatial range, 

temporal range, and smoothness parameters are plotted because the nugget variance is 

esentially zero for every ordering and number of neighbors. It is clear that the parameter 

estimates from the random ordering and the two MMD orderings are converging more 

rapidly than are the estimates from the time ordering.

The MMD orderings appear to be converging slightly more quickly than the random 

ordering. For the random and MMD orderings, the estimates for all parameters are within 

2% of the 100 neighbor estimates with just 50 neighbors, whereas the time ordered estimates 

do not appear to have settled down, even with 100 neighbors. The exception is the 

smoothness parameter, whose estimates for 10 neighbors are within 2% of the 100 neighbor 

estimates for all orderings.

Spatial interpolations are computed on an evenly spaced grid of size 120 × 240 in latitude 

and longitude at two time periods. The first is at the average of all the observation times, to 

represent a hindcast-a prediction of past values from past data. The second is at the time of 

the last observation, to represent real-time interpolation of the data. Using ordering 3 for the 

observations, a random ordering for the prediction points, and 60 nearest neighbors with 

grouping, we compute 4000 conditional draws and use the sample variances of the 

conditional draws to estimate the conditional variances at each of the prediction points. The 

predictions and their standard deviations are plotted in Figure 10. As expected, the standard 

deviations are generally smaller for the hindcast predictions, and one can clearly see the 

effect of the orbital path of the satellite; locations along recently visited paths have smaller 

standard deviations. Further, the standard deviations are small at high and low latitudes, 

reflecting the fact that the satellite passes near the poles on every orbit. Finally, Figure 11 

contains two individual hindcast conditional draws and maps of conditional correlations with 

two points in the soutern Atlantic Ocean.One can see that the conditional correlation 

structure is quite complex and inhomogenous among the two points. A possible explanation 
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is that this region has nearby observations in space and time, as can be seen from bottom left 

panel of Figure 10.

7 Discussion

This paper demonstrates that reordering and grouping operations can lead to substantial 

improvements in the quality of Vecchia’s approximation, sometimes by more than two 

orders of magnitude compared to default ungrouped approximations. Grouping also reduces 

the computational effort over ungrouped versions, and the grouping algorithm introduced 

here is general in that it can be applied to any choice of ordering and neighbor sets. I have 

also provided the R code written for reordering, finding nearest neighbors, automatic 

grouping, and likelihood evaluations.

One perhaps surprising result of this study is that Vecchia’s approximation with MMD 

ordering and grouping with 30 neighbors runs faster than an SPDE approximation, while 

being two orders of magnitude more accurate in terms of KL divergence. Certainly more 

numerical results are needed in more cases, but this result coupled with the fact that 

Vecchia’s approximation is valid for general covariance functions rather than being 

restricted to Matern with integer smoothness, suggests that Vecchia’s approximation should 

be considered as a candidate for approximating Matern models whenever the SPDE 

approximation is considered.

The paper introduces a grouped version of Vecchia’s approximation, based on a partitioning 

of the observations into blocks. Each block’s contribution to the likelihood can be computed 

simultaneously.

A theorem is provided to explain why grouping improves the model approximation, and an 

algorithm is described for finding a partition that is guaranteed control the memory burden. 

Exploring new partitioning algorithms for Vecchia’s approximation could be a fruitful 

avenue for future work.

While developing some theory for grouping has been successful, a general theory for 

reordering remains elusive. One reason for this is the diversity of covariance functions and 

observation settings to be considered. Results on the screening effect (Stein, 2002) may be 

helpful for pushing the theory forward in some special cases, and perhaps theoretical results 

on estimates from subsamples could be useful as well (Hung and Zhao, 2016). However, I 

caution against drawing strong conclusions based on one-dimensional results. For example, 

for the exponential covariance in one-dimension, Vecchia’s approximation is exact when 

observations are sorted along the coordinate and just a single nearest neighbor is used. 

Unsorted orderings require two neighbors for at least one of the points. I suspect that 

intuition gleaned from these one-dimensional examples has been incorrectly applied to the 

two-dimensional case, leading to the preference for sorted coordinate orderings in two 

dimensions. The numerical results in three and four dimensions are an attempt to study how 

ordering influences Vecchia’s approximation in higher dimensions, which is relevant for 

computer experiment applications (Sacks et al., 1989; Santner et al.,2013). There is some 

evidence that KL divergence decays faster with the number of neighbors under random or 
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MMD ordering in three dimensions, but middle out ordering appears to be best in four 

dimensions, at least in the examples considered here. This is further evidence to be wary of 

applying intuition from lower dimensions to higher dimensions.

This work considers the effect of ordering with the rule for choosing neighbor sets held 

constant.

Stein et al. (2004) presented examples where including some distant neighbors can help in 

estimating parameters that control the behavior of the covariance function away from the 

origin. I have tried this approach but was not able to improve on nearest neighbors. A 

possible explanation is that I consider the Matern model with a different parameterization 

than in Stein et al. (2004). I note here that the likelihood with MMD ordering automatically 

includes information about distant relationships since observations early in the ordering 

necessarily condition on distant observations since early observations are necessarily distant 

from one another.

The work on the local approximate Gaussian process (laGP) (Gramacy and Apley, 2015) 

explores fast automatic neighbor selection in a different context and could be relavent to this 

question. While neighbors figure prominently in both the present paper and in laGP, 

neighbors in laGP can be selected from anywhere in the ordering, whereas Vecchia’s 

approximation requires neighbors to come from previous in the ordering. Ordered neighbors 

ensure that the approximation corresponds to a valid joint density, which is intended to 

approximate a specified joint density, whereras laGP constructs a framework for 

interpolation and does not target any particular global model.
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Refer to Web version on PubMed Central for supplementary material.
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Appendix

A: Realizations from Models Studied

Figure 12 contains example realizations from the models used in the KL-divergence and 

relative efficiency studies.
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Figure 1: 
Examples of four orderings of 400 locations on a 20 × 20 grid. From left to right are 

completely random, maximum minimum distance, middle out, and sorted on vertical 

coordinate. On the top row, the black circles are ordered 1–50, circled point is number 50, 

and squared points are 30 nearest neighbors to point 50 among previous points. Bottom row 

is the same for point ordered number 330.
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Figure 2: 
Example with Bi = {45, 60}. (a) Point 45 (circled), points 1 through 45 (black or red), J45 

(red). (b) Point 60 (circled), points 1 through 60 (black or blue), J60 (blue). (c) Points 1 

through 60 (not gray), J45 (purple), J60 (purple + blue). J45 has three more points than J45, 

and J60 has 7 more points than J60.
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Figure 3: 
KL-divergences for Matérn covariances with range ∈ {0.1, 0.2}, and smoothness ∈ {1/2,1, 

3/2}. Locations form 80 × 80 grid on the unit square. Number of neighbors (30 and 60) 

indicated next to ungrouped symbols.
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Figure 4: 
KL-divergences as a function of ordering and number of nearest neighbors for ungrouped 

version of Vecchia’s approximation with exponential covariance. Locations form a regular 

grid in 3 and 4 dimensions, totaling 6859 and 6561 locations.
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Figure 5: 
Relative efficiencies for estimating three Matérn covariance parameters, variance = 2, range 

∈ {0.1, 0.2}, and smoothness ∈ {1/2,1, 3/2}. Locations form 80 × 80 grid on the unit square, 

and the four orderings considered are sorted coordinate, middle out, completely random, and 

AMMD. Results for ungrouped (black) and not grouped (magenta) are presented.
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Figure 6: 
Timing Results for increasing number of observations regularly spaced on a square grid.
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Figure 7: 
Jason-3 wind speed values and observation times.
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Figure 8: 
For MMD time ordering, first 1000 locations (black) and all locations (gray).
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Figure 9: 
Estimated parameters for increasing number of neighbors. Vertical axis heights are 20% of 

the value of the last estimate from ordering 3.
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Figure 10: 
Predictions (top row) and simulated prediction standard deviations (bottom row) of 

windspeed at the mean observation time (left) and the last observation time (right).
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Figure 11: 
For hindcast, two individual conditional draws (top row) and empirical conditional 

correlations at two points in the southern Atlantic.
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Figure 12: 
Gaussian process realizations at the six Matérn parameter settings.
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Table 1:

For each ordering scheme and for both initial number of neighbor choices m, statistics on the number of 

blocks returned by the grouping algorithm K, the size of the neighbor sets in each group (#Uk), and the actual 

number of neighbors ( # Ji). Here k = 1,...,K, and i = 1,...,n.

Ordering m K mean (#Uk) max (#Uk) mean ( # Ji) max ( # Ji)

MMD 30 1406 51.35 124 55.83 123

random 30 1361 50.82 114 53.01 113

coordinate 30 788 58.95 171 66.02 170

middle out 30 773 60.33 154 60.35 153

MMD 60 754 116.46 291 133.36 290

random 60 714 118.46 308 129.74 307

coordinate 60 358 136.83 450 166.49 449

middle out 60 320 145.27 418 155.87 417
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