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Crosstalk Between Mitochondrial Hyperacetylation and
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Abstract

Significance: Vascular dysfunction plays a key role in the development of arteriosclerosis, heart disease, and
hypertension, which causes one-third of deaths worldwide. Vascular oxidative stress and metabolic disorders
contribute to vascular dysfunction, leading to impaired vasorelaxation, vascular hypertrophy, fibrosis, and aortic
stiffening. Mitochondria are critical in the regulation of metabolic and antioxidant functions; therefore,
mitochondria-targeted treatments could be beneficial.
Recent Advances: Vascular dysfunction is crucial in hypertension pathophysiology and exhibits bidirectional
relationship. Metabolic disorders and oxidative stress contribute to the pathogenesis of vascular dysfunction and
hypertension, which are associated with mitochondrial impairment and hyperacetylation. Mitochondrial dea-
cetylase Sirtuin 3 (Sirt3) is critical in the regulation of metabolic and antioxidant functions. Clinical studies
show that cardiovascular disease risk factors reduce Sirt3 level and Sirt3 declines with age, paralleling the
increased incidence of cardiovascular disease and hypertension. An imbalance between mitochondrial acety-
lation and reduced Sirt3 activity contributes to mitochondrial dysfunction and oxidative stress. We propose that
mitochondrial hyperacetylation drives a vicious cycle between metabolic disorders and mitochondrial oxidative
stress, promoting vascular dysfunction and hypertension.
Critical Issues: The mechanisms of mitochondrial dysfunction are still obscure in human hypertension. Mi-
tochondrial hyperacetylation and oxidative stress contribute to mitochondrial dysfunction; however, regulation
of mitochondrial acetylation, the role of GCN5L1 (acetyl-CoA-binding protein promoting acetyltransferase
protein acetylation) acetyltransferase, Sirt3 deacetylase, and acetylation of specific proteins require further
investigations.
Future Directions: There is an urgent need to define molecular mechanisms and the pathophysiological role of
mitochondrial hyperacetylation, identify novel pharmacological targets, and develop therapeutic approaches to
reduce this phenomenon. Antioxid. Redox Signal. 31, 710–721.
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Introduction

Hypertension is a multifactorial disorder (52);
however, in almost all experimental models of hyper-

tension, production of reactive oxygen species (ROS: O2
�-

and hydrogen peroxide [H2O2]) is increased in multiple
organs. In the brain, ROS promote neuronal firing, increasing
sympathetic outflow (78, 132). In the kidney, ROS act in
multiple sites to promote sodium resorption and volume re-

tention (114). In the vasculature, ROS promote vasocon-
striction and remodeling, increasing systemic vascular
resistance (72). There are several sources of ROS contribut-
ing to hypertension, including the NADPH oxidase, un-
coupled nitric oxide (NO) synthase, and the mitochondria
(28) and we defined their interaction (25, 27). ROS over-
production leads to oxidative stress, which promotes target-
organ-damage in hypertension (22); however, antioxidant
therapy is not currently available and common antioxidants
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such as ascorbate and vitamin E are ineffective in preventing
cardiovascular diseases and hypertension (47). These agents
unlikely reach important sites of ROS production such as the
mitochondria whereas therapies specifically targeted at mi-
tochondria represent promising strategies to reduce target-
organ-damage (95).

Mitochondrial dysfunction contributes to the pathogenesis
of hypertension and cardiovascular disease (34, 95); how-
ever, despite the central role of mitochondria in human health
and disease, there are no approved drugs that directly target
mitochondria (118). Mitochondrial dysfunction is charac-
terized by impaired adenosine triphosphate (ATP) production
and increased oxidative stress, leading to cell dysfunction and
apoptosis (36). Mitochondrial permeability transition pore
(mPTP) plays a key role in mitochondrial dysfunction (48)
and target-organ-damage in hypertension (36, 95). We have
recently reported that depletion or inhibition of cyclophilin
D (CypD), a regulatory subunit of mPTP opening (37), im-
proves vascular function and attenuates hypertension (59).
Previous studies implicated CypD in cell death (68, 111) and
we showed that CypD is critical in the regulation of cytokine-
induced vascular oxidative stress and endothelial dysfunction
(59). Meanwhile, the precise regulation of CypD is elusive
and specific CypD blockers are not available.

Experimental studies have shown an important role of
mitochondrial ROS in the development of endothelial dys-
function, hypertension, and atherosclerosis (86, 94), and the
overexpression of the key mitochondrial antioxidant, Mn-
superoxide dismutase (SOD2), attenuates hypertension (30).
SOD2 expression is regulated by peroxisome proliferator-
activated receptor gamma coactivator 1-alpha (PGC-1a)
(65), and mitochondrial deacetylase Sirtuin 3 (Sirt3) activates
SOD2 by deacetylation of specific lysine residues near active
center (55, 93, 131). Interestingly, human SOD2 expression
is not changed with age but the activity of Sirt3 and SOD2 is
diminished (12), suggesting that SOD2 inactivation by acet-
ylation contributes to human hypertension. These data suggest
Sirt3 depletion in endothelial dysfunction and hypertension.
Indeed, we have found that hypertension is associated with
diminished Sirt3 level, a profound increase in SOD2-K68
acetylation in humans with essential hypertension, and re-
duced SOD2 activity in the vasculature of hypertensive mice
and that SOD2 mimetics improve vasorelaxation and reduce
blood pressure (30, 31).

Sirt3 is a key node in the regulation of mitochondrial
function (53). It activates mitochondrial metabolism by
deacetylation of Krebs cycle (103), complex I (1, 90), and
fatty acid b-oxidation enzymes (7, 56), and it maintains mi-
tochondrial NADPH-GSH redox status by deacetylation of
isocitrate dehydrogenase 2 (IDH2) (128). Sirt3 deacetylation
is opposed by spontaneous acetylation of mitochondrial
protein lysine residues with acetyl coenzyme A (Acetyl-
CoA) (61, 91) and GCN5L1 (acetyl-CoA-binding protein
promoting acetyltransferase protein acetylation) mediated
acetyltransferase (97). An imbalance between mitochon-
drial acetylation and Sirt3 activity leads to mitochondrial
hyperacetylation and contributes to impaired metabolism and
oxidative stress (16, 24). Interestingly, hypertension and
endothelial dysfunction are associated with mitochondrial
hyperacetylation (31); however, molecular mechanisms and
the pathophysiological role of mitochondrial hyperacetyla-
tion are not completely understood.

In this work, we reviewed specific pathways involved in
the metabolic and redox regulation of mitochondrial func-
tions. These data suggest a potential pathophysiological role
of crosstalk between mitochondrial hyperacetylation and
oxidative stress. We suggest that targeting of this feed-
forward vicious cycle between metabolic disorders and mi-
tochondrial oxidative stress can be beneficial for the treat-
ment of vascular dysfunction and hypertension.

Mitochondrial Acetylation as a Major
Post-Translational Modification

Mitochondrial metabolism generates high levels of Acetyl-
CoA (0.1–1.5 mM), which is 3–50 times higher than cytosol
and nucleus Acetyl-CoA concentrations (51). High concen-
tration of Acetyl-CoA and high pH in mitochondrial matrix
drive non-enzymatic acetylation of lysine residues (116).
Acetylation can be more favorable at the active site lysine
residues, with reduced pKa values suggesting that regulatory
lysine residues can attract acetylation (43). Recently, Mi-
chael Murphy group showed that non-enzymatic N-
acetylation of lysine residues in mitochondrial proteins fre-
quently occurs via a proximal S-acetylated thiol intermediate
(61). It is clear that metabolic disorders are associated with
high levels of Acetyl-CoA and promote mitochondrial acet-
ylation; however, these data do not exclude the possibility of
enzyme-mediated protein acetylation in mitochondria. In-
deed, Michael Sack group has described GCN5L1-mediated
acetyltransferase, which plays a critical role in the acetylation
of key mitochondrial enzymes such as SOD2 (97, 98). It has
been proposed that GCN5L1-mediated acetylation counter-
balances the Sirt3 deacetylase activity. Both enzymatic and
non-enzymatic pathways account for protein acetylation as a
major post-translational modification in the mitochondria,
and *35% of all mitochondrial proteins are acetylated (4).

Mitochondrial Deacetylase Sirt3 in Regulation
of Metabolic and Antioxidant Functions

Sirtuin family of nicotinamide adenine dinucleotide, oxi-
dized form (NAD+)-dependent histone deacetylases cata-
lyzes deacetylation of both histone and non-histone lysine
residues and consists of seven isoforms (123). Mitochondria
contain one known enzyme with deacetylase activity, Sirt3
(80). It plays a key role in the regulation of mitochondrial
metabolism and the activity of mitochondrial antioxidants.
Sirt3 activates a key fatty acid b-oxidation enzyme, long-chain
acyl coenzyme A dehydrogenase (LCAD) (7, 56), Krebs cycle
(103), nicotinamide adenine dinucleotide, reduced form
(NADH) oxidase activity by complex I (1, 90), NADPH-
producing IDH2 (128), and critical mitochondrial antioxidant
SOD2 (110) by deacetylation of specific lysine residues (55,
56, 93, 131). Sirt3 can potentially activate AMP protein kinase
via deacetylation/activation of LKB1 (serine/threonine liver
kinase B1) (40), and it is conceivable that crosstalk between
Sirt3 and adenosine monophosphate-activated protein kinase
(AMPK) contributes to metabolic regulations. It has been
suggested that both nuclear deacetylase Sirtuin 1 (Sirt1) and
Sirt3 induce mitochondrial biogenesis via the PGC-1a pathway
(79); however, the role of Sirt3 in mitochondrial biogenesis has
not been confirmed. Of note, activation of different Sirtuin
isoforms not only regulates distinct pathways but also may
have opposing effects. For example, Sirt4 negatively affects
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fatty acid oxidation and Sirt4 depletion increases expression of
Sirt1 and Sirt3 (130).

Sirt3 is associated with human longevity (5, 44). Variable
number tandem repeat (VNTR) enhancer in Sirt3 gene is as-
sociated with human longevity, and two non-synonymous
human SIRT3 single-nucleotide polymorphisms impact SIRT3
activity and stability (33). Activation of the angiotensin II/
AT1R pathway reduces Sirt3 (15), and Sirt3 is downregulated
in the metabolic syndrome, hyperlipidemia, diabetes, aging,
and smoking (Fig. 1) (17, 75, 129). Reduced Sirt3 expression is
associated with cell aging, as measured by diminished telo-
merase reverse transcriptase (hTERT) and increased
senescence-associated b-galactosidase (SA-b-gal) (66, 121).
Animal studies indicate that Sirt3 deficiency promotes tissue
fibrosis (60) and cardiac hypertrophy (108), which are atten-
uated by Sirt3 activation (2, 107); however, the cell-specific
role of Sirt3, its alterations in human pathological conditions,
and Sirt3 targeting translational potential are not clear.

Redox and Metabolic Regulations of Sirt3

Sirt3 requires NAD+ for its deacetylase activity, and ‘‘heal-
thy’’ mitochondria have high NAD+ level and only a small
fraction of reduced NADH form (122). Pathological conditions
such as hypoxia and metabolic disorders are associated with (i)
reduction of NAD+ to NADH diminishing NAD+ level, and (ii)
depletion of NAD pool due to PPARc activation (92). For ex-
ample, inhibition of mitochondrial complex I NADH oxidase
activity reduces NAD+ level, leading to Sirt3 inactivation and
mitochondrial hyperacetylation (1). It has been suggested that
NAD+ depletion contributes to Sirt3 inactivation in cardiovas-
cular conditions and supplementation with NAD+ donors is
beneficial due to Sirt3 activation (58); however, oral supple-
mentation with NAD+ donors has limited pharmacological ef-
fect, potentially due to rapid liver metabolism (77).

Sirt3 activity depends on mitochondrial function and ma-
trix pH (127); therefore, reduced membrane potential
downregulates Sirt3 activity. Sirt3 is important for metabolic
flexibility and Sirt3 depletion induces a switch of skeletal
muscle substrate utilization from carbohydrate oxidation to-
ward lactate production (62). Meanwhile, increased substrate

utilization leads to high NADH/NAD+ ratio and elevated
Acetyl-CoA, which inhibits Sirt3 activity and provides ‘‘on-
demand’’ On/Off metabolic switch.

In recent years, it has become clear that Sirtuins can be
inactivated by oxidative stress. For example, the activity of
Sirt1 is regulated by reversible S-glutathionylation at Cys204
in the catalytic region (11). Sirt1 cysteine reaction with H2O2

drives S-glutathionylation, and glutaredoxin 2 activates Sirt1
by deglutathionylation of cysteine residue in the conserved
catalytic region (11). Because the NAD+-dependent deace-
tylases are highly homologous, we hypothesized that Sirt3
might undergo redox inactivation in a manner similar to Sirt1.
Indeed, incubation of human recombinant Sirt3 in the pres-
ence of H2O2 and reduced glutathione caused a dose-
dependent inactivation of Sirt3, which was associated with
Sirt3 S-glutathionylation (31). We reasoned that Sirt3 S-
glutathionylation would be reduced in transgenic mCAT
(mice expressing mitochondria-targeted catalase) mice with
mitochondria-targeted expression of catalase. Indeed, an-
giotensin II-induced hypertension was associated with robust
Sirt3 S-glutathionylation in the mitochondria of wild-type
mice but scavenging of mitochondrial H2O2 in mCAT mice
abrogates Sirt3 S-glutathionylation, prevents SOD2 inacti-
vation by acetylation, diminishes mitochondrial superoxide,
and attenuates hypertension (31). These data support the
pathophysiological significance of Sirt3 S-glutathionylation
in vascular dysfunction and hypertension.

It is important that glutaredoxins 1/2 in the mitochondrial
intermembrane and thioredoxin-thioredoxin reductase in the
matrix are critical for reversing mitochondrial protein S-
glutathionylation in the vasculature and heart (42, 54).
Acetylation of these proteins affects their activity and alters
the redox maintenance (124). Further, hyperoxidation of
cysteine residues into sulfenic, sulfinic, and sulfonic acids
may cause irreversible loss of enzymatic activities and impair
the recovery from oxidative stress (45).

Redox and Metabolic Regulations of CypD

CypD plays a dual function in mitochondria: peptidyl
prolyl cis-trans isomerase F and a regulatory subunit of the

FIG. 1. Multiple risk factors downregulate Sirt3, leading to mitochondrial dysfunction and oxidative stress. Sirt3
depletion causes mitochondrial hyperacetylation due to imbalance between acetylation and deacetylation pathways. This
leads to SOD2 inactivation, inhibition of fatty acid b-oxidation, and altered redox status due to inactivation of SOD2,
LCAD, and IDH2, which contribute to vascular dysfunction and hypertension. IDH2, isocitrate dehydrogenase 2; LCAD,
long-chain acyl coenzyme A dehydrogenase; Sirt3, mitochondrial deacetylase Sirtuin 3; SOD2, mitochondrial manganese
superoxide dismutase. Color images are available online.
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mPTP acting as a Ca2+ sensitizer for mPTP opening (83).
Previous studies were focused on the important role of CypD
in the regulation of cell death (68, 111), but recent data im-
plicate CypD in the regulation of mitochondrial metabolism
(71). CypD is exquisitely H2O2 sensitive via its cysteine 203
residue, which acts as a redox switch when it is S-
glutathionylated (76). Further, CypD acetylation at lysine
166 promotes mPTP opening and mitochondrial Sirt3 dea-
cetylates CypD-K166 (49). These data implicate both redox
and metabolic regulations of CypD activity (Fig. 2).

Recent data suggest a feed-forward regulation of CypD by
oxidative stress. It has been shown that inhibition of CypD in
isolated endothelial mitochondria reduces superoxide pro-
duction and CypD deficiency attenuates superoxide produc-
tion in leukocytes (32, 69). We tested whether mitochondrial
H2O2 activates CypD by S-glutathionylation and this induces
overproduction of mitochondrial ROS in the electron trans-
port chain. Indeed, treatment of isolated aortic segments with
H2O2 significantly increased mitochondrial superoxide and
induced CypD S-glutathionylation whereas supplementation
with the specific CypD inhibitor Sanglifehrin A or treatment
with the complex I inhibitor rotenone blocked H2O2-induced
mitochondrial superoxide production (59). Further, scavenging
mitochondrial H2O2 by mitoEbselen (mitochondria-targeted
glutathione peroxidase mimetic) or mitochondrial-targeted
catalase in aorta isolated from mCAT mice completely pre-
vented CypD S-glutathionylation and reduced mitochondrial
superoxide. These data support the pathophysiological role of
CypD redox modulation; however, specific molecular mech-
anisms of CypD S-glutathionylation and deglutathionylation
are not clear.

David Sinclair group reported that global Sirt3 depletion
induces acetylation of CypD at lysine 166 (K166), which
promotes age-dependent mPTP opening, cardiac hypertro-

phy, and fibrosis (49). Authors suggested that age-associated
Sirt3 depletion causes CypD hyperacetylation, which in-
creases induction of the mPTP opening and the decline in
cardiac function with age. CypD-K166-directed mutagenesis
and Sirt3 overexpression in cardiomyoblasts prevented CypD
acetylation, limited PTP opening, and reduced cell death in
response to hypoxia-reoxygenation (9). Meanwhile, the ef-
fects of global Sirt3 depletion or Sirt3 overexpression are not
limited by CypD acetylation, and further studies are neces-
sary to define the specific regulation of CypD acetylation/
deacetylation and its tissue-specific pathophysiological role.

Deacetylation of IDH2 in Regulation of Redox Status

Several mitochondrial enzymes maintain thiol redox status
by NADPH-dependent reduction of glutathione, S-
glutathionylated proteins, and protein disulfides such as
glutathione reductase and thioredoxin reductase (63). Glu-
tathione and thioredoxin systems serve parallel and non-
redundant functions to maintain the dynamic mitochondrial
redox balance and disruption of this redox organization is a
common basis for disease (63, 64). Meanwhile, the mainte-
nance of mitochondrial redox balance requires NADPH
produced mainly by nicotinamide nucleotide transhy-
drogenase and IDH2 (74, 128). Depletion of either nicotin-
amide nucleotide transhydrogenase or IDH2 induces
endothelial dysfunction and promotes hypertension (74, 88).
Meanwhile, Sirt3-mediated deacetylation of IDH2 at lysine
413 is critical for IDH2 activity (128). Site-specific, genetic
incorporation of N(e)-acetyllysine into position 413 of IDH2
causes a dramatic 44-fold loss of activity.

Disruption of IDH2-mediated cellular redox balance en-
hances H2O2-induced apoptosis and hypertrophy (70). IDH2
deficiency increases mitochondrial superoxide, leading to
mitochondrial dysfunction and diminished endothelial NO,
which can be rescued by SOD2 mimetic mitoTEMPO (88).
IDH2 functions as the principal source of NADPH for the
mitochondrial GPx (Fig. 2) and thioredoxin antioxidant de-
fense (50), and IDH2 depletion accelerates age-dependent
hearing loss and renal dysfunction (73, 119). Meanwhile,
IDH2 overexpression leads to ‘‘reductive stress’’ and con-
tributes to genome instability and cancer (21). Therefore,
Sirt3-mediated regulation of IDH2 plays an important role in
cellular homeostasis.

Regulation of Mitochondrial Oxidative Stress

Mitochondrial oxidative stress is commonly defined as an
imbalance between mitochondrial ROS production and an-
tioxidant activity, which is associated with oxidative damage
and cell dysfunction (29). It is frequently confused with redox
signaling by thiol redox reactions serving as redox sensors in
response to oxygen, metabolic, and oxidant fluxes (46, 101).
Initial ROS production can induce specific cell signaling
pathways mediated by protein phosphorylation and tran-
scriptional factors such as NO synthase and NRF2 (tran-
scription factor nuclear factor erythroid 2-related factor 2),
which later provide a feed-back to downregulate the ROS
production (13, 102). The dysregulation of redox signaling
(wrong time-wrong place) leads to a feed-forward ROS-
induced-ROS production and development of oxidative
stress (25). Indeed, mitochondrial oxidative stress is associ-
ated with altered thiol redox status and scavenging of

FIG. 2. CypD activation by S-glutathionylation and acet-
ylation promotes mitochondrial impairment and oxidative
stress, which contribute to vascular dysfunction and hyper-
tension, and CypD depletion or CypD inhibition improves
vascular function and diminishes hypertension. CypD,
cyclophilin D; H2O2, hydrogen peroxide; mPTP, mitochondrial
permeability transition pore. Color images are available online.
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mitochondrial H2O2 reduces production of mitochondrial
superoxide (28, 32). It has been suggested that both redox and
metabolic alterations contribute to the development of mi-
tochondrial oxidative stress (101).

Production of mitochondrial superoxide via reverse elec-
tron transport (RET) is of particular importance in vascular
and cardiac oxidative stress (20, 84). Inhibition of mito-
chondrial complex II with malate reduces RET to complex I,
inhibits superoxide production at complex I, and reduces
endothelial oxidative stress (84, 87). Mitochondrial ROS
promote T cell activation and prohypertensive immune re-
sponse (29). RET is induced by high mitochondrial mem-
brane potential and mitochondrial matrix alkalization, which
can be associated with opening of the ATP-sensitive potas-
sium channel (84) and CypD-mediated mPTP (59). Indeed,
blocking the ATP-sensitive potassium channel and treatment
with complex I and complex II inhibitors prevent endothelial
oxidative stress (84). Further, CypD depletion or CypD in-
hibition prevents the rotenone-sensitive superoxide produc-
tion (59). Interestingly, scavenging of mitochondrial H2O2

prevents CypD redox activation by S-glutathionylation, re-
duces mitochondrial superoxide production, and prevents
cytokine-induced endothelial dysfunction (59) (Fig. 2).
Meanwhile, the specific roles of redox and metabolic alter-
ations of complex I and CypD in RET and mitochondrial
dysfunction are still obscure.

In recent years, it has become clear that metabolic condi-
tions drive mitochondrial hyperacetylation, which induces
mitochondrial oxidative stress and vascular dysfunction (41,
126). Hypertension is associated with metabolic impairment,
and we showed that vascular oxidative stress and hyperten-
sion are associated with inactivation of key mitochondrial
antioxidant enzyme, SOD2, due to SOD2 hyperacetylation.
Treatment of mitochondrial lysate with recombinant Sirt3
deacetylates SOD2 and restores SOD2 activity (31). The
impairment of Sirt3 in hypertension is likely mediated by
Sirt3 depletion and Sirt3 S-glutathionylation (31). Sirt3 de-
pletion in endothelial cells increases superoxide level in these
cells and promotes endothelial dysfunction, whereas treat-
ment of Sirt3-depleted mice after onset of hypertension with
SOD2 mimetic mitoTEMPO rescues endothelial function
and reduces hypertension (31). We suggest that Sirt3 inacti-
vation results in imbalance between CypD-dependent su-
peroxide production and SOD2/IDH2 activities, leading to
mitochondrial oxidative stress, which contributes to vascular
dysfunction and hypertension (Fig. 3).

Fatty Acid b-Oxidation and Sirt3

Fatty acids derived from triacylglycerols (fat) are impor-
tant sources of energy and in tissues with high-energy re-
quirement, such as the heart, more than 50% of ATP comes
from fatty acid b-oxidation (81). Fatty acids are oxidized in
peroxisomes and mitochondria. Mitochondria can oxidize
fatty acids all the way to CO2 and H2O; however, peroxi-
somes are only able to chain-shorten fatty acids and the end
products of peroxisomal b-oxidation must be transported to
mitochondria for full oxidation (117). Fatty acids are trans-
formed into fatty acyl-CoA and transported via Carnitine
shuttle into mitochondrial matrix for b-oxidation. Sirt3 dea-
cetylates and activates a key component of mitochondrial
fatty acid b-oxidation, LCAD (7, 55, 56) (Fig. 4). K318 and

K322 were identified as an Sirt3-targeted lysines (7).
Medium-chain acyl-CoA dehydrogenase and acyl-CoA de-
hydrogenase 9 have lysines at positions equivalent to Lys-
318/Lys-322, which were also efficiently deacetylated by
Sirt3 (7).

Fatty acid b-oxidation is critical for endothelial and
smooth muscle cells function (18, 125). Impaired fatty acid
b-oxidation alters mitochondrial function and leads to accu-
mulation of non-oxidized fatty acids, which promotes cell
dedifferentiation and inflammation (14, 112). Fatty acid ox-
idation is critical for endothelial cell function, and disruption
of fatty acid oxidation leads to phenotypic switch to
endothelial-to-mesenchymal transition associated with vas-
cular permeability and inflammation (19, 125) (Fig. 4). Fatty
acids are important components of vascular smooth muscle
cell function (100); dysregulation of long-chain fatty acid
metabolism causes a shift toward glycolysis (109), down-
regulates expression of smooth muscle cell marker a-smooth

FIG. 3. An imbalance between mitochondrial ROS
(O2
�2 and H2O2) and antioxidant activity (SOD2 and

IDH2) leads to mitochondrial oxidative stress and con-
tributes to vascular dysfunction and hypertension. ROS,
reactive oxygen species. Color images are available online.

FIG. 4. The role of LCAD in vascular cell metabolism
and potential effect of LCAD hyperacetylation. Hyper-
acetylation of LCAD contributes to mitochondrial dys-
function, increasing inflammation and metabolic switch to
glycolysis, which promotes vascular dysfunction. Activation
of the Sirt3 pathway deacetylates and activates LCAD,
improving fatty acid b-oxidation and vascular metabolism,
which support vascular homeostasis and protect from vas-
cular dysfunction. Color images are available online.
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muscle actin, and induces a phenotypic switch of smooth
muscle cells (106). Multiple risk factors for cardiovascular
disease and hypertension are associated with reduced Sirt3
expression and activity (39), and we suggest Sirt3 inactiva-
tion as a convergent mechanism that underlies the interplay
of major risk factors leading to impaired fatty acid b-
oxidation and mitochondrial dysfunction in these pathologi-
cal conditions (Fig. 4).

Crosstalk Between Mitochondrial Dysfunction
and Oxidative Stress

The sections described earlier provide an important insight
into the molecular mechanisms of mitochondrial dysfunction
and oxidative stress. It is interesting that oxidative stress is
commonly associated with mitochondrial dysfunction and,
vice versa, mitochondrial dysfunction causes ROS overpro-
duction and development of oxidative stress. Indeed, en-
zymes that typically produce ROS are associated with
metabolic regulation, and diseases associated with metabolic
dysfunction involve changes in redox balance (38). There-
fore, we suggest a crosstalk between mitochondrial dys-
function and oxidative stress (Fig. 5).

Metabolic disorders and aging cause mitochondrial dys-
function associated with diminished respiration, increased
mitochondrial uncoupling, altered membrane potential, and
depletion of ATP and NAD+ (10, 23), which promote mPTP
and ATP-sensitive potassium channel opening (84, 113),
increase ROS production via RET, and reduce Sirt3 activity,
decreasing redox state and antioxidant activity. Mitochon-
drial dysfunction may result from direct impairment by hy-
peracetylation and accumulation of toxic metabolites in
certain metabolic diseases (96, 105). The activation of these
pathways leads to development of oxidative stress (Fig. 5).

On the other hand, oxidative stress inhibits Sirt3 and tricar-
boxylic acid (TCA) activity, reduces electron transfer by
complex I, and promotes mPTP opening by S-glutathionylation
of critical cysteine residues (31, 76, 82), leading to impaired
mitochondrial metabolism and mitochondrial dysfunction.
These data support a novel concept of crosstalk between
mitochondrial dysfunction and oxidative stress. Meanwhile,
the precise molecular mechanisms of this feed-forward vi-
cious cycle and its pathophysiological significance in human
diseases are still elusive. Further studies are required to define
the role of individual pathways to specific human disease and
develop mitochondria-targeted therapies.

Targeting Vicious Cycle Between Metabolic Disorders
and Oxidative Stress

Both metabolic disorders and oxidative stress contribute to
mitochondrial dysfunction, which plays an important role in
multiple pathological conditions such as cardiovascular dis-
ease, hypertension, and neurodegeneration (38, 85). In the
past decade, the focus of many studies was the role of oxi-
dative stress in mitochondria dysfunction (26, 105); however,
antioxidant therapy has not been developed. Mitochondria
are an important source of superoxide and H2O2, which
contribute to mitochondrial dysfunction and hypertension
(28, 30, 120). This is likely mediated by S-glutathionylation/
inactivation of key metabolic nodes, such as Sirt3 and com-
plex I, redox activation of CypD-mediated mPTP opening
(31, 76, 82), and impaired redox recovery by thioredoxin 2
(120). Oxidative stress triggers a vicious cycle where mito-
chondria are both the site and the target of oxidative damage
(25). Oxidative modifications of mitochondrial metabolic
targets such as Sirt3 lead to hyperacetylation of key mito-
chondrial metabolic and antioxidant enzymes such as LCAD,

FIG. 5. Crosstalk between mitochondrial dysfunction and oxidative stress. Mitochondrial dysfunction is associated
with depletion of ATP and NAD+, diminished membrane potential (Dw), increased matrix pH, mPTP opening, and in-
creased ROS production via RET, which reduces Sirt3 activity, decreases antioxidants and redox state leading to devel-
opment of oxidative stress. On the other hand, ROS overproduction directly inactivates Sirt3, Krebs cycle (TCA), and ETC
and promotes mPTP opening, which leads to development of mitochondrial dysfunction. This feed-forward crosstalk results
in the vicious cycle between mitochondrial dysfunction and oxidative stress. ATP, adenosine triphosphate; ETC, electron
transport chain; NAD+, nicotinamide adenine dinucleotide, oxidized form; RET, reverse electron transport; TCA, tricar-
boxylic acid. Color images are available online.
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IDH2, CypD, and SOD2 (31), which promote metabolic
disorders and disease progression (35, 99). On the other
hand, metabolic disorders decrease NAD+/NADH ratio and
increase acetyl-CoA/CoA ratio, leading to imbalance in
mitochondrial protein acetylation/deacetylation and devel-
opment of mitochondrial hyperacetylation (6), which con-
tributes to mitochondrial dysfunction (91). This creates a
vicious cycle between metabolic disorders and oxidative
stress (Fig. 6).

It is important to emphasize that metabolic disorders in-
crease mitochondrial protein acetylation, which directly
contributes to mitochondrial dysfunction (Fig. 6) in cardio-
vascular diseases and heart failure (57). The hyperacetylation
of electron transport chain (complex I–V), TCA cycle en-
zymes, and LCAD inhibits mitochondrial bioenergetics (4).
Mitochondrial hyperacetylation directly impairs mito-
chondrial dynamics (fusion/fission), protein synthesis, mi-
tochondrial protein imports, calcium homeostasis, and cell
signaling (3, 49, 89), which may occur without involvement
of mitochondrial ROS. Meanwhile, we know that metabolic
disorders are commonly associated with increased oxida-
tive stress (8) and it is conceivable that targeting mi-
tochondrial oxidative stress in metabolic disorders can
improve mitochondrial function and alleviate these patho-
logical conditions.

Recent studies show that treatment with mitochondria SOD2
mimetic mitoTEMPO, deacetylation of SOD2 by Sirt3 activa-
tors, and inhibition of mitochondrial ROS with CypD blockers
or mitoEbselen can interrupt this vicious cycle and attenuate the
mitochondrial dysfunction and disease progression (31, 59). On
the other hand, calorie restriction and exercise increase Sirt3
activity, reduce mitochondrial acetylation, and inhibit mito-
chondrial oxidative stress (67, 93, 104, 115). Meanwhile, spe-
cific molecular targets that can be used for diagnostics and
treatments in human disease are not clear, and further studies

are warranted for the development of specific mitochondria-
targeted therapies to break this vicious feed-forward cycle.

The direct links between the hyperacetylation of specific
mitochondrial proteins, cell function, and hypertension have
been supported by SOD2 hyperacetylation in human subjects
with essential hypertension (31), mitochondrial hyper-
acetylation in pulmonary hypertension (35), and CypD
acetylation in cardiac hypertrophy (49), which are in line with
reduced Sirt3 level (39) and activity (12) in cardiovascular
conditions, providing new insight into pathogenesis of mi-
tochondrial dysfunction in cardiovascular conditions.

Conclusions

It is known that metabolic disorders increase risk of hy-
pertension and cardiovascular disease. On the other hand,
hypertension is frequently associated with metabolic abnor-
malities such as obesity, glucose intolerance, and dyslipide-
mia. These pathological conditions are associated with
altered mitochondrial function and oxidative stress, sug-
gesting the crosstalk between metabolic disorders and mito-
chondrial oxidative stress, which can be mediated by
mitochondrial hyperacetylation. Metabolic disorders such as
hyperglycemia and hyperlipidemia cause mitochondrial hy-
peracetylation, which leads to mitochondrial dysfunction and
overproduction of mitochondrial ROS. On the other hand,
mitochondrial oxidative stress in hypoxia and inflammation
alter mitochondrial metabolism, causing the development of
pathological conditions. We propose a novel crosstalk be-
tween mitochondrial hyperacetylation and oxidative stress.
This crosstalk identifies potential novel targets for treatment
of metabolic disorders and cardiovascular disease. There are
many common conditions including aging, atherosclerosis,
diabetes, heart failure, and neurodegenerative disorders in
which mitochondrial dysfunction seems to play a role. It is

FIG. 6. Clinical translation: targeting vicious cycle between metabolic disorders and oxidative stress. Imbalance
between acetylation and deacetylation leads to mitochondrial hyperacetylation, promotes mitochondrial dysfunction and
oxidative stress, and, vice versa, oxidative stress contributes to redox impairment of key metabolic targets, resulting in
mitochondrial dysfunction and metabolic impairment. Targeting of this feed-forward vicious cycle can be beneficial in
the treatment of pathological conditions. Acetyl-CoA, acetyl coenzyme A; GCN5L1, acetyl-CoA-binding protein promoting
acetyltransferase protein acetylation; mitoEbelson, mitochondria-targeted glutathione peroxidase mimetic; mitoTEMPO,
mitochondria-targeted SOD2 mimetic. Color images are available online.
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conceivable that mitochondria-targeted interventions targeting
the crosstalk between mitochondrial hyperacetylation and
oxidative stress would be effective in these conditions.
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dier SY, Robb EL, Logan A, Nadtochiy SM, Ord ENJ,
Smith AC, Eyassu F, Shirley R, Hu CH, Dare AJ, James
AM, Rogatti S, Hartley RC, Eaton S, Costa ASH, Brookes
PS, Davidson SM, Duchen MR, Saeb-Parsy K, Shattock
MJ, Robinson AJ, Work LM, Frezza C, Krieg T, and
Murphy MP. Ischaemic accumulation of succinate con-
trols reperfusion injury through mitochondrial ROS. Nat-
ure 515: 431–435, 2014.

21. Clark O, Yen K, and Mellinghoff IK. molecular pathways:
isocitrate dehydrogenase mutations in cancer. Clin Cancer
Res 22: 1837–1842, 2016.

22. Coats A and Jain S. Protective effects of nebivolol from
oxidative stress to prevent hypertension-related target or-
gan damage. J Hum Hypertens 31: 376–381, 2017.

23. Conley KE, Marcinek DJ, and Villarin J. Mitochondrial
dysfunction and age. Curr Opin Clin Nutr Metab Care 10:
688–692, 2007.

24. D’Onofrio N, Vitiello M, Casale R, Servillo L, Giovane
A, and Balestrieri ML. Sirtuins in vascular diseases:
emerging roles and therapeutic potential. Biochim Biophys
Acta 1852: 1311–1322, 2015.

25. Dikalov S. Cross talk between mitochondria and NADPH
oxidases. Free Radic Biol Med 51: 1289–1301, 2011.

26. Dikalov SI and Dikalova AE. Contribution of mitochon-
drial oxidative stress to hypertension. Curr Opin Nephrol
Hypertens 25: 73–80, 2016.

27. Dikalov SI and Nazarewicz RR. Angiotensin II-induced
production of mitochondrial reactive oxygen species:

MITOCHONDRIAL HYPERACETYLATION AND OXIDATIVE STRESS 717



potential mechanisms and relevance for cardiovascular
disease. Antioxid Redox Signal 19: 1085–1094, 2013.

28. Dikalov SI, Nazarewicz RR, Bikineyeva A, Hilenski L,
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Abbreviations Used

Acetyl-CoA¼ acetyl coenzyme A
ATP¼ adenosine triphosphate

CypD¼ cyclophilin D
GCN5L1¼ acetyl-CoA-binding protein promoting

acetyltransferase protein acetylation
H2O2¼ hydrogen peroxide
IDH2¼ isocitrate dehydrogenase 2

LCAD¼ long-chain acyl coenzyme A dehydrogenase
mCAT¼mice expressing mitochondria-targeted

catalase
mitoEbselen¼mitochondria-targeted glutathione

peroxidase mimetic
mitoTEMPO¼mitochondria-targeted SOD2 mimetic

mPTP¼mitochondrial permeability transition pore
NAD+¼ nicotinamide adenine dinucleotide, oxidized

form
NADH¼ nicotinamide adenine dinucleotide, reduced

form
NO¼ nitric oxide

PGC-1a¼ peroxisome proliferator-activated receptor
gamma coactivator 1-alpha

RET¼ reverse electron transport
ROS¼ reactive oxygen species
Sirt1¼ nuclear deacetylase Sirtuin 1
Sirt3¼mitochondrial deacetylase Sirtuin 3

SOD2¼mitochondrial manganese superoxide
dismutase

TCA¼ tricarboxylic acid
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