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Abstract

Background: Radiotherapy continues to be delivered uniformly without consideration of 

individual tumor characteristics. To advance toward more precise treatments in radiotherapy, we 

queried the lung computed tomography (CT)-derived feature space to identify radiation sensitivity 

parameters that can predict treatment failure and hence guide the individualization of radiotherapy 

dose.

Methods: We used a cohort-based registry of 849 patients with cancer in the lung treated with 

high dose radiotherapy using stereotactic body radiotherapy. We input pre-therapy lung CT images 

into a multi-task deep neural network, Deep Profiler, to generate an image fingerprint that 

primarily predicts time to event treatment outcomes and secondarily approximates classical 

radiomic features. We validated our findings in an independent study population (n = 95). Deep 
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Profiler was combined with clinical variables to derive iGray, an individualized dose that estimates 

treatment failure probability to be <5%.

Findings: Radiation treatments in patients with high Deep Profiler scores fail at a significantly 

higher rate than in those with low scores. The 3-year cumulative incidences of local failure were 

20.3% (95% CI: 16.0–24.9) and 5.7% (95% CI: 3.5–8.8), respectively. Deep Profiler 

independently predicted local failure (hazard ratio 1.65, 95% 1.02–2.66, p = 0.04). Models that 

included Deep Profiler and clinical variables predicted treatment failures with a concordance index 

of 0.72 (95% CI: 0.67–0.77), a significant improvement compared to classical radiomics or 

clinical variables alone (p = <0.001 and <0.001, respectively). Deep Profiler performed well in an 

external study population (n = 95), accurately predicting treatment failures across diverse clinical 

settings and CT scanner types (concordance index = 0.77 [95% CI: 0.69–0.92]). iGray had a wide 

dose range (21.1–277 Gy, BED), suggested dose reductions in 23.3% of patients and can be safely 

delivered in the majority of cases.

Interpretation: Our results indicate that there are image-distinct subpopulations that have 

differential sensitivity to radiotherapy. The image-based deep learning framework proposed herein 

is the first opportunity to use medical images to individualize radiotherapy dose.
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INTRODUCTION

Medical imaging is integral to the management of patients with cancer, with significant roles 

extending from diagnosis to treatment response monitoring.1 Its ubiquity in clinical practices 

notwithstanding, its current use remains largely subjective, exemplified by annotations of 

dimensions delimited by a range of human exactness. Computed tomography (CT) is the 

most frequently used modality across all cancers and comprises information beyond tumor 

geometry.2 Information acquired by the scanner is conveyed by a matrix of voxels across 

thin sections of the body composed of X-ray attenuation values proportional to the density of 

the incident matter. These values can have a total range of >4,096 intensities. The human 

eye, on the other hand, resolves a minor proportion of these intensities.3,4 Such limited 

discriminatory capacity clamors for ‘machine-like’ methods of information extraction and 

knowledge optimization.

Recent advances in image analysis have allowed for precisely this task. Radiomics permits 

the extraction of quantitative imaging descriptors or features that could characterize more 

objective tumor characteristics beyond human detection. This approach converts image data 

into a high dimensional feature space using a large number of data characterization 

algorithms.5,6 Some of these features have been shown to capture distinct tumor 

characteristics and exhibit prognostic power, indicating some value to this approach.7 

Limitations to the utility of handcrafted image features, however, are their manual labeling 

and their inability to conform to a specific task. Manual labeling confines the feature space 

to elements that humans can learn and lack of deformability is a characteristic of the a priori 
design of the features, which cannot be modified based on the classification task at hand.
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The process of feeding a machine raw data, like CT pixels, and allowing it to discover 

vectors for classification through the use of multiple layers of features is known as deep 

learning.8 Compared to natural images, medical images have regulated quality that can 

reduce noise and therefore make them more useful for deep learning-based approaches.9 

However, while medical images can be an ideal source for deep learning, it remains difficult 

to secure a large quantity of clinically annotated datasets.10 Since classification accuracy is 

dependent on the size of the initial training datasets, computational methods that seek to 

optimize model performance are critical.

Cancers are characterized by substantial diversity and the optimal therapeutic approach has 

been shown to vary on the basis of the genetic features of individual cancers.11,12 Similarly, 

image-based profiling of tumors may reveal subpopulations that are more or less likely to be 

sensitive to a particular therapy and therefore guide its delivery. Classifications made by 

deep learning algorithms have begun to stratify patients on the basis of the type of cancer 

and genetic alterations.13,14 However, very little progress has been made in the use of deep 

learning to predict tumor responses to individual anti-cancer therapies.

High dose radiation delivery to the lung via stereotactic body radiotherapy (SBRT) was 

developed with the intent to effect local tumor control while potentially obviating 

perioperative or long-term surgical morbidity in patients with early-stage lung cancer or 

oligometastatic disease to the lung. Despite several prospective clinical trials demonstrating 

excellent local tumor control rates in medically inoperable patients with lung cancer,15–17 

recent studies describe unacceptably high local failure rates in some patient subgroups.18–20 

Ongoing and future studies of lung SBRT are likely to be significantly informed by a more 

accurate and quantitative determination of treatment failure risk and the mitigation of that 

failure by adjusting radiotherapy dose.

Herein, we incorporated domain-specific information, namely radiomics, in the training 

signal of a deep neural network and then combined this data with clinical variables to predict 

the likelihood of treatment success after lung SBRT, a mainstay of treatment for patients 

with early-stage lung cancer and oligometastatic disease to the lung. Our results signify a 

new roadmap for deep learning-guided predictions and treatment guidance in the image-

replete and highly standardized discipline of radiation oncology.

METHODS

Clinical Characteristics

An institutional review board-approved study (IRB 14–562) was used to identify 1275 

patients treated with lung stereotactic body radiotherapy (SBRT). Patients with primary 

(stage IA-IV) or recurrent lung cancer as well as patients with other cancer types with 

solitary or oligometastases to the lung were included. Patients without digitally accessible 

CT image or radiotherapy structure data were excluded from the study. A total of 944 

patients met our eligibility criteria. 849 that were treated at the main campus in downtown 

Cleveland represented the internal study cohort. 95 patients that were treated at eight affiliate 

regional or national sites (Fairview, Ohio; Hillcrest, OH; Independence, OH; Mansfield, OH; 
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Sandusky, OH; Wooster, OH; Weston, Florida) represented the independent validation 

cohort.

Patients were treated based on either a pathological or radiographic diagnosis. All primary 

lung cancer patients were staged using CT of the chest. PET and imaging of the brain 

(magnetic resonance imaging [MRI] or CT) was employed when clinically indicated. In 

cases where imaging revealed mediastinal or hilar lymph nodes enlarged by accepted 

radiographic criteria or where the standardized uptake value (SUV) exceeded a value of 3.0 

on PET, pathological mediastinal evaluation with endobronchial ultrasonography-guided 

sampling (EBUS) was requested.

Radiotherapy was conducted first by patient immobilization with abdominal compression to 

restrict breathing motion. In cases where motion could not be adequately restricted to less 

than 1 cm (11.3% of patients), Active Breathing Coordinator (ABC) (Elekta, Stockholm, 

Sweden) was used. Tumors within a 2-cm expansion of the tracheobronchial tree were 

categorized as central. A risk-adapted approach for radiation dose delivery was used. Most 

patients received 50 Gy in five fractions. When the RTOG 0236 trial commenced, eligible 

patients with peripheral tumors to 60 Gy in three fractions we treated as per protocol while 

patients with central tumors continued to receive 50 Gy in five fractions. Alternative 

fractionations were employed for patients enrolled in a clinical trial, if constraints for our 

standard fractionation schedules could not be met or at the discretion of the treating 

radiation oncologist. Local failure was defined as radiographic progression within 1 cm of 

the planning target volume (PTV) to maintain a consistent definition of local/marginal 

failure in clinical trials of SBRT. Failures within the same lobe of the lung but greater than 1 

cm from the PTV of the initial treatment site were defined as lobar failure and were not 

considered in this analysis. 8.5% of patients received adjuvant chemotherapy. The main 

indication for adjuvant chemotherapy was a perceived high risk of treatment failure. The 

recommendation to deliver adjuvant treatments was also influenced by considerations of 

patient tolerance for additional therapy.

CT Image Dataset

Planning CT images with corresponding physician-designated gross tumor volumes (GTV) 

were used. Images with contrast were excluded. Four scanners were used in the internal 

study population, namely three Philips Brilliance CT Big Bore (annotated CT-1, CT-2 and 

CT-3) and a Philips AcQSim (CT-4). The number of cases scanned on each of the scanners 

were 499, 244, 40 and 61, respectively; the identity of the scanner could not be definitively 

determined for 5 cases. The independent validation cohort had CT scanners made by GE, 

Siemens or Philips and four distinct models were used: GE Medical Systems Discovery ST, 

Philips Brilliance CT Big Bore, Philips Gemini GXL and a Siemens SOMATOM Definition 

AS.

Deep Profiler and Multi-task Learning

The schema for deriving the Deep Profiler signature is shown in Figure 1a. For a step-by-

step protocol for generating Deep Profiler scores and a detailed description of the multi-task 

learning framework, see Supplementary Methods.
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Classical Radiomics

The 3D handcrafted radiomic features were extracted from GTV encompassing regions of 

interest (ROI). The handcrafted features can be divided into four groups: (1) intensity, (2) 

geometry, (3) texture, and (4) wavelet features. The intensity features quantified the first-

order statistical distribution of the voxel intensities within the GTV. The geometry features 

quantified 3D shape characteristics of the tumor. The texture features described spatial 

distribution of the voxel intensities, thereby quantifying the intratumoral heterogeneity. The 

intensity and texture features were also computed after applying wavelet transformations to 

the original image. A total of 365 radiomic features were extracted. A list of all features can 

be found in Supplementary Table 1. All handcrafted features were extracted using 

Pyradiomics.21

We examined the performance of handcrafted radiomics to predict local failure. Five-fold 

cross-validation was also used for this analysis. Given that the number of radiomic features 

is much larger than the number of failures, either strong feature selection or model 

regularization was required to prevent overfitting. Feature selection was performed as 

previously described7. In the training set, we computed the performance of all individual 

features using C-index, and selected the one best feature from each of the four feature 

groups. These four features were then combined in a multivariate model for predicting local 

failure. Parameters estimated from the training were applied to the testing set for 

performance evaluation. To assess the performance of full handcrafted features, we also 

designed a multivariate model with Ridge L2 regularization on regression coefficients. 

Parameters were optimized using the training set and selected based on the performance in 

the validation set. Similar to the feature selection method, the final performance was 

evaluated using the testing set.

Clinical Variable Integration and iGray

We also assessed the complementary effect of the image score with other clinical risk factors 

such as biologically effective dose (BED) and histological subtypes. BED was calculated 

using an α/β ratio of 10 Gy, modeled as a continuous variable. We assessed the effects of 

two main histological subtypes, adenocarcinoma and squamous cell carcinoma (SqCC) and 

modeled them as categorical data. In the presence of the competing risk (death), Fine and 

Gray regression modeling was used to examine the effect of all factors to the local failure. 

Univariate analysis was first used to confirm the significance level of each individual factor. 

All three variables were included in the multivariable model. For directly evaluating the 

effect of histological subtype between adenocarcinoma and SqCC variable, the model was 

fitted to a subset of the data (i.e. adenocarcinoma and SqCC patients only).

We used the multivariate regression model with Deep Profiler score and BED to both predict 

failure and calibrate the radiation dose to modulate the risk of local failure. iGray was 

defined as the dose that results in a probability of failure of <5% at 24 months and is in units 

of BED. The calibration was achieved by estimating the cumulative incidence function (CIF) 

from the regression model. According to the assumptions in Fine and Gray’s model, the 

predicted CIF can be computed for a subject with covariate vector X as follows
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I t|X = 1 − 1 − I0 t
exp βTX

where I0(t) is the estimated baseline CIF, X = (ximg, xBED)T is the covariate vector, and β = 

(βimg, βBED)T are the regression coefficients for image and BED covariates.

To estimate the feasibility of delivering iGray recommended doses, we permitted prescribed 

doses up to 180 Gy BED for GTVs that were outside of the central zone per RTOG 023615 

and 0618.22 For central tumors, we partitioned the central zone region, which is within a 2 

cm radius of large airways or the proximal bronchial tree (PBT), into four equal segments. 

We assigned a gradient BED schema to tumors from the most proximal to the most distal 

segments: 108, 132, 149.5 and 168 Gy, respectively. 108 Gy BED (60 Gy in 8 fractions) has 

been previously shown to be safe for ultra-central tumors.23,24 The use of 132 Gy BED in 

the next segment is per RTOG 0813, which indicated that the maximal tolerated dose in 

patients with centrally located tumors is 12 Gy in 5 fractions.25 For tumors from 1–2 cm, 

minimal to no overlap between the treated volume and the PBT and central organs at risk is 

expected due to more limited respiratory motion in the central zone and PTV expansions of 

only ~5 mm. Nevertheless, we used a conservative linear gradient of risk to estimate putative 

safe doses in these regions. These latter estimates are theoretical as the relationships between 

dose escalation, a stratified central zone and toxicity have yet to be thoroughly investigated.

Saliency Map

To find the voxels of an input volume that contribute the most toward the prediction of 

treatment failures, we took the derivative of the final partial likelihood loss with respect to 

the input CT volume and evaluated each volume Xi as 
∂ℒs
∂X Xi

. This derivative provides a 

scalar quantity for each of the voxels in the input volume, indicating the influence of the 

variation of voxel to the output of the model. The magnitude of these values was projected 

on the CT image to create a saliency map.

Statistical Analysis

To quantify the predictive performance, the concordance index (C-index) was measured 

between network output and actual event (local failure) time. The concordance index is a 

measurement between 0 and 1 that indicates how well the prediction model can order the 

actual event times - 1 indicates perfect concordance while 0.5 indicates no better 

concordance than chance. The averaged C-index across all five folds was calculated. The 

confidence interval was calculated using a bootstrap approach. We calculated cross-validated 

C-indices based on bootstrap resampling of the testing set and repeated 1000 times. The 

2.5th and 97.5th percentile of the bootstrapped C-index distribution was used as an 

estimation of the 95% confidence interval.

We compared the predictive performance of handcrafted radiomics and our imaging 

fingerprint using the C-index. The performance of tumor 2D CT size, the maximum 3D 

diameter and volume were used as comparators. We applied a bootstrap method to compare 
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the significance between different models. For each model, we randomly resampled the 

testing set and calculated the C-index. This was repeated 100 times for all five folds. 

Wilcoxon test was used to assess the significance between the C-index distributions of 

different models.

To further explore the association between the imaging index and failure time, competing 

risk analysis was performed to estimate the cumulative incidences of local failure. The 

Kaplan-Meier method is inappropriate for estimating the incidence rate of therapy failure in 

the presence of death because patient death leads to the censoring of the primary outcome. 

As mortality is not completely independent from therapy failure, death without evidence of 

local failure was treated as a competing event. The median score in the training set was 

computed and then applied as a threshold to stratify patients in the testing set into high and 

low risk groups. After the cross-validation was complete, each patient was classified into 

one of the risk groups. Cumulative incidence curves (CICs) were estimated for each group, 

and Gray’s test was used to determine the significance of difference between two curves.26 

Statistical analysis was performed using R 3.2.5.27

Role of the funding source

This work was supported, in part, by Siemens Healthcare. Siemens contributed to data 

analysis and interpretation and the writing of aspects of the manuscript (see Contributors). 

The corresponding author had full access to all the data in the study and had final 

responsibility for the decision to submit for publication.

RESULTS

Deep Profiler Accurately Predicts Radiation Treatment Failures

A total of 849 patients met our eligibility criteria. 86.9% of the patients enrolled received 

definitive treatment for early stage non-small cell lung cancer (Table 1). The cumulative 

incidence of local failure at 3 years was 13.5% (95% CI: 10.8–16.2). Patients were stratified 

into high and low risk groups based on a median score cutoff of a neural network derived 

imaging signature from the training set. This process was repeated for each partition and the 

results of all five folds were concatenated for statistical analysis. A total of 469 patients were 

stratified into the high-risk group and 380 patients were in the low risk group. Estimated 

CICs of local failure for overall population and each risk group are shown in (Figure 2a & 

b). Gray’s test for equality across Deep Profiler risk groups was significant (p = <0.001). 

Patients in the low risk group failed radiotherapy at a significantly lower rate than do those 

in the high-risk group, with 3-year cumulative incidences of local failure of 5.7% (95% CI: 

3.5–8.8) and 20.3% (95% CI: 16.0–24.9), respectively.

To determine the clinical setting(s) in which Deep Profiler can be most predictive of local 

failure, we examined the impact of tumor stage on Deep Profiler and its prediction accuracy. 

Scores varied based on tumor stage, with IA tumors having the lowest mean score (Figure 

2c). Despite differences in the mean scores of Deep Profiler across some stages of disease, 

there was significant variation within and across individual stages. These results suggested 

that information beyond tumor stage was learned by Deep Profiler. Consistent with this 
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observation, Deep Profiler predicted local failure in patients with early- or late-stage cancers 

(Figure 2d & e).

To assess the influence of possible variation in the types of treatments delivered or CT image 

acquisition, we assessed the impact of motion management, the use of adjuvant 

chemotherapy and CT scanner type on Deep Profiler. Scores were not significantly different 

based on the type of motion management used for treatment (ABC versus abdominal 

compression, p = 0.353) (Supplementary Figure 1). Scores were, however, significantly 

higher in patients that received adjuvant chemotherapy (p = <0.001), although there was 

significant overlap across the two groups (Supplementary Figure 2). This data is consistent 

with the physician-directed recommendation of adjuvant chemotherapy on the basis of 

variables that are perceived to lead to a higher risk of treatment failure28 and suggests that 

Deep Profiler could potentially inform these recommendations. Lastly, scores obtained from 

the two most frequently used CT scanners (both of which are Philips Big Bore had similar 

accuracy in predicting local failures (Supplementary Figure 3).

Deep Learning Outperforms Classical Radiomics

We compared the performance of our neural network-derived imaging index to two-

dimensional (2D) CT size, maximum 3D CT size, 3D tumor volume and classical radiomic 

features. Our learning-based framework is superior to classical radiomics features, which 

were in turn superior to tumor volume followed by 2D size values (Table 2). The superiority 

of Deep Profiler indicated that features beyond tumor size, which has been previously shown 

to be associated with local failure after high-dose radiotherapy to the lung,29 can be 

identified using our deep learning algorithm.

On univariate analysis, a higher image-based risk score (Deep Profiler), lower radiation dose 

and histological subtype were associated with an increased risk of local failure 

(Supplementary Table 2). On multivariate analyses, all three factors remained significantly 

associated with local failure (Table 3). The multivariable models that included Deep Profiler 

and clinical variables predicted treatment failures with a C-index of 0.72 (95% CI: 0.67–

0.77), which was a significant improvement when compared to classical radiomics (p = 

<0.001) or 3D volume (p = <0.001). These results indicated that an image-based score can 

provide complementary information to the clinical established variables of histological 

subtype and radiation dose18.

iGray and Personalized Radiation Dose Delivery

We posited that treatment failures can be mitigated by higher radiation doses and that we can 

model this relationship for the purpose of guiding dose individualization. First, we built a 

Fine and Gray’s regression model using the imaging signature and dose of radiation. This 

enabled us to model the risk of local recurrence by tuning the dose of radiation accordingly. 

Importantly, the type of treatment delivered is the only mutable variable identified in the 

model; tumor size, CT image features and histology are fixed. Using this model, we 

calculated the probability of local failure at 24-months after treatment as a function of 

radiation dose. Our results indicated that local failure can be significantly reduced as a 

function of radiation dose (Figure 3a).
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We then calculated the patient-specific dose that reduces the probability of treatment failure 

to <5%, iGray, for each patient using a permuted holdout set design. The kernel densities of 

dose delivered compared to iGray showed significant overlap (Figure 3b). The range of 

iGray was wider (21.15–277.1 Gy) with greater standard deviation (40.6 v. 30 Gy). The 

percent dose difference required to achieve iGray for each patient was calculated and its 

distributions were plotted for a function of each dose delivery interval (Figure 3c). These 

results indicated that iGray is likely to be feasible in a majority of patients receiving high-

dose radiotherapy to the lung.

To assess the feasibility of delivering iGray dose recommendations, we first estimated the 

impact of incremental dose increases on the probability of local failure in patients who 

received a BED of 100 Gy, the most frequent treatment dose in the cohort (n = 445). We 

used our model to estimate local failure probabilities at 24-months (Figure 3d) and showed 

that even incremental increases in the dose delivered to these patients can significantly 

reduce treatment failure probability. To generate an estimate of the extent of feasibility in all 

patients in our cohort, we used a gradient dose scheme that is extrapolated from previous 

dose escalation studies to avoid airway toxicity in based on the proximity of the tumor to the 

proximal bronchial tree (Figure 3e and Methods). Using this scheme, the cumulative relative 

frequency of safely achieving iGray is 63.5% (Figure 3f).

Model Accuracy and Scalability

To examine the agreement between the observed outcomes and the multivariate model with 

the iGray and BED, we calculated calibration curves. A calibration curve was obtained by 

plotting the average predicted probability at 1, 2, or 3 years after radiation treatment against 

CIC estimates of the actual outcome (Figure 4a). Our results indicated that our model 

accurately predicts treatment outcomes.

In addition, we sought to determine the impact of dataset size on prediction accuracy. To 

achieve this, we randomly selected 60% of the patients in the dataset and calculated the 

concordance indices using our deep learning platform and a classical clinical risk factor (i.e. 

volume) and compared it to our analyses using 100% of the patients. Our results indicated 

that whereas volume appears to reach a plateau in accuracy, our framework’s performance is 

significantly higher with increases in sample size (Figure 4b). These results establish the 

scalability of deep learning in our dataset and suggest that improvements in accuracy are 

more likely using deep learning-based approaches compared to tumor volume measurements 

with dataset growth.

Voxel Saliency and Tumor Volume

To determine the significance of each voxel on treatment failure, we calculated a saliency 

map for each tumor. Saliency projects a weight in heatmap form to each voxel in the image 

and this weight reflects the importance of that voxel on the image risk score (Figure 5a). 

Critically, the majority of the most salient voxels were within the GTVs and PTVs across all 

tumors, indicating that the gross tumor and the peri-tumoral region are the most relevant 

voxels to the model (Figure 5b). This saliency detection method is also a critical 

examination of the spatial sampling methodology of cropping to a 64 × 64 × 32 sub-volume 
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encompassing the tumor, indicating that the volume is sufficiently large to encompass the 

most salient voxels but not too broad resulting in a classifier that fails to understand despite 

having high accuracy (e.g. spurious voxel associations).30 Lastly, there were a number of 

salient voxels outside of the GTV (37.8%) and PTV (20.5%) across the dataset. The role of 

these outlying salient voxels in marginal treatment failures remains unclear.

Deep Profiler Generalizes to Independent Populations

We sought to measure the accuracy of Deep Profiler using a different but plausibly related 

independent population of patients who received SBRT to the lung. A total of 95 patients 

with 102 tumors (metachronous and/or synchronous treatments were included) from eight 

affiliate treatment centers met our eligibility criteria. Differences in baseline patient 

characteristic compared to our internal study population included a shorter median time to 

follow-up (p < 0.01), smaller tumors (p < 0.001) and lower radiation doses (p < 0.01) (Table 

4). These results indicated sufficient differences between the internal and independent 

validation cohorts to allow for an assessment of both the reproducibility and transportability 

of the model.31

The cumulative incidence of local failure in this population at 2 years was 19.7% (95% CI: 

10.9–30.4). Patients were stratified into high and low risk groups based on a median Deep 

Profiler score from a training dataset that included all 849 patients in our internal study 

population. Estimated CICs of local failure for overall population and each risk group are 

shown in (Figure 6). Gray’s test for equality across Deep Profiler risk groups was significant 

(p = 0.002). Patients in the low risk group failed radiotherapy at a significantly lower rate 

than do those in the high-risk group, with 2-year cumulative incidences of local failure of 

9.5% (95% CI: 2.8–21.3) and 39% (95% CI: 19.6–58.1), respectively. Deep Profiler 

predicted treatment failure with a C-index of 0.77 (95% CI: 0.66–0.92), which was 

calculated based on bootstrap resampling of the external dataset and repeated 1000x. These 

results indicate that Deep Profiler can predict treatment failures accurately across diverse 

clinical settings and distinct CT simulator scanners (Table 4).

DISCUSSION

Accurate estimates of the probability of treatment success for individual patients can 

significantly improve clinical outcomes. In this study, we show that the clinical responses of 

cancer to radiotherapy vary in a manner not fully explained by clinical and histopathological 

variables alone and that CT image-based features contribute to this variance. The most 

important message in our study is that predictive features can be learned from CT images 

and contribute to the individualization of radiation dose.

Quantitative image analyses to date have not been used to personalize cancer treatment 

delivery.32–34 To address these limitations, we trained a machine to learn the multi-

dimensional feature space in a large cohort of patients with cancer in the lung that was 

treated with a wide dose range of radiation. In unconstrained machine learning algorithms of 

imaging data, the machine predominantly seeks relationships between multi-dimensional 

inputs and outcomes data. However, most clinically available datasets have generally been 

smaller and more limited than the datasets other disciplines may use to tune their predictive 
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algorithms, and the quality and completeness of existing outcomes data could be key barrier 

to these approaches. To address these limitations, we used a multi-task approach that takes 

advantage of established image-based radiomic features to partially delimit and inform the 

neural network. We demonstrated that this approach, Deep Profiler, is superior to deep 

learning or classical radiomics alone. We also demonstrated that Deep Profiler can 

accurately predict treatment failures in varied clinical settings.

To limit spurious voxel associations with our predicted outcome, we incorporated prior 

knowledge by using the physician delimited tumor volume as part of the input into our 

network. Although manual annotation could bias the feature extractions, we showed that the 

voxels that are most deterministic for treatment failure localize within the physician 

contoured volumes (GTV or PTV). Conversely, some salient voxels localized to the peri-

tumoral regions or tumor margin. Since classical radiomics approaches disregard image 

information outside of the GTV, the identification of these salient voxels is an additional 

advantage of this approach. The potential association of these voxels with marginal 

recurrences remains to be explored. To the extent that marginal salient voxels are predictive 

of local failures, automatic contouring of tumor saliency maps could represent a leap toward 

more accurate tumor volume delineation and informed inhomogeneous dose delivery.35,36

Our results have several additional clinical implications. First, there are image-distinct 

subpopulations that demonstrate differential sensitivity to radiotherapy. We showed that 

Deep Profiler has a wide range of values and is significantly associated with treatment 

failures across varied clinical settings, including plausibly related populations. These 

populations, in part, included distinct stages of disease, CT simulation scanners, motion 

management techniques, linear accelerators, radiation oncologists and therapists, 

geographies (local, regional and national) and longitudinal periods. Second, we provide an 

integrated method that uses image and, importantly, established clinical variables to 

individualize radiation dose. Moreover, iGray uses the clinically validated linear quadratic 

model,37 is empirically derived in that no assumptions are made regarding individual tumor 

radiosensitivity (α and β in the tumor toxicity isoeffect remain constant) and its output is 

directly clinically actionable by recommending a dose that can be achieved using several 

treatment schedules. Third, our prediction accuracy is evolvable. A critical feature of neural 

network-based prediction is the potential for substantial improvements in accuracy with 

scale. As our dataset increases in sample size and/or is augmented by integration into large 

data sharing collaborations, the network is expected to substantially improve in prediction 

accuracy. This is in contrast with other computational methods like classical radiomics, 

whose accuracy appears to plateau in the early phases of dataset growth (see Figure 4). 

Another important element of the evolvability of our model is the eventual stratification of 

the dataset into more homogeneous populations based on variables such as cancer subtype, 

clinical stage, use of systemic adjuvant therapy, et cetera. This is particularly compelling 

considering the demonstrated preliminary efficacy of SBRT in patients with oligometastatic 

disease from distinct cancer types.38,39 The use of SBRT in varied clinical settings will 

result in larger and more diverse datasets that are more amenable to data partitions, and 

therefore improved model accuracy.
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An image-based framework for the personalization of radiotherapy dose can substantially 

alter the clinical radiotherapy paradigm. The radiation oncologist is advantaged because the 

dose of radiation delivered can be calibrated on the basis the risk of treatment failure, which 

itself is a continuum. This largely mitigates binary decisions of “to treat or not to treat” and 

instead permits the adjustment of radiation treatments to prevent treatment failures. iGray 

can assist in the design of image-stratified, radiotherapy-based trials. In this role, it can 

guide the evolution of radiotherapy toward dose delivery strategies that are calibrated on the 

basis of individual predictions of tumor control probability.

There are several characteristics of Deep Profiler and iGray that suggest a lower 

implementation barrier. Due to the strict requirement for the acquisition of radiation 

planning CT images for radiotherapy, each radiation treatment center is likely to have an 

extensive CT dataset that could be utilized for model development and implementation. 

Combined with the automated feature algorithms of scalable deep learning-based prediction 

platforms, this represents an accessible opportunity to directly improve medical-decision 

support across broad cancer patient populations receiving radiotherapy.

The strengths of our study include the large number of patients evaluated, the completeness 

of the dataset, the use of a carefully annotated radiotherapy specific outcome (local failure) 

rather than surrogate of treatment failure (e.g. progression-free survival, cancer-specific 

mortality or overall survival) and the use of readily implementable and highly tractable 

image-based score as a backbone for our analyses. The limitations of our study include the 

following: we cannot fully account for all potential causes of bias, there is explicit 

population heterogeneity in our datasets (e.g. clinical stage, radiation dose, CT scanners, 

motion management, et cetera), the independent validation cohort is limited in size and we 

do not account for normal tissue toxicity. These limitations can, in part, be addressed with 

the incorporation of new datasets and emerging tools that predict lung toxicity,40 

respectively.

In summary, we combined clinical variables with deformable radiomic features through the 

deep learning of CT imaging-based features to individualize radiation dose delivery using a 

clinically meaningful unit, the Gray (iGray). This framework could be readily implemented 

for pretreatment risk stratification and risk-adapted dose optimization in clinical trials and, 

ultimately, in everyday clinical practices that use radiotherapy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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RESEARCH IN CONTEXT

Evidence before this study

CT images comprise voxel intensities that, to the extent that they are discernable by the 

treating physician, can guide the manual delineation of tumor volumes. They do not, 

however, currently contribute to the individualization of radiation dose prescriptions. 

Extraction and analysis of rigidly defined radiomic features has been used to transform 

medical imaging data into quantifiable variables used to predict survival, other failure 

modes and response to therapeutic agents.

Added value of this study

To our knowledge, this study is the first to implement a deep neural network using 

deformable multi-tasking with the ability to create new radiomic features to predict the 

risk of failure for patients treated with radiotherapy. This study also represents an 

innovation in personalized medicine by the projection of an optimized radiation dose, 

iGray. The cohort of patients evaluated represents one of the largest datasets of chest CT 

images heretofore used in outcome prediction analysis.

Implications of all the available evidence

Accurate estimates of the likelihood of response to treatments coupled with optimized 

dose delivery can significantly improve clinical outcomes and limit toxicity for patients 

treated with radiotherapy. Our framework could provide readily implementable treatment 

strategy guidance for under-resourced medical facilities and populations. The ability of 

the neural network, Deep Profiler, to generate new predictive features represents a major 

advance in radiomics and artificial intelligence (AI). Augmenting this impact, Deep 

Profiler’s prediction accuracy is scalable in that it will improve as our dataset increases in 

sample number via natural growth, federated datasets and data partitions into more 

homogenous populations.
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Figure 1. 
Study design and neural network architecture. (a) Deep Profiler and iGray are obtained using 

a 5-fold cross-validation with an 80:20 ratio for training and validation within each fold, 

respectively. iGray is calculated by combining image and clinical data and using the 

cumulative incidence function of the regression model. (b) Neural network structure. The 

neural network consists of three main parts: an encoder for extracting imaging features and 

building a task-specific fingerprint, a decoder for estimating handcrafted radiomic features 

and a task-specific network for generating an image signature for therapy outcome 

prediction. A 3-D convolutional neural network (CNN) was used as an encoder for 

extracting imaging features. A fully-connected layer was adopted to link the latent 

fingerprint space with classical radiomics. Another neural network was used to predict the 

outcome based on latent fingerprint variables. Since therapeutic outcomes contain time-to-

event information, we used a proportional hazards model to relate the time that passes before 

local failure occurs to classify failures.
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Figure 2. 
Deep Profiler predicts local failure. Estimated cumulative incidence curves for local failure 

in the overall population (a) or apportioned by the median Deep Profiler score based on each 

cross-validation step followed by concatenation (b). (c) Violin plot of Deep Profiler scores 

by tumor overall stage. The mean (point) and standard deviations (point range) are shown. 

(d) Estimated cumulative incidence curves for local failure apportioned by the median Deep 

Profiler score for early stage (IA-IIB) (e) or late stage tumors (III, IV and recurrent) (f). 

Gray’s test was used to test for equality across Deep Profiler risk groups.
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Figure 3. 
Ameliorating treatment failure by adjusting the radiation dose. (a) Heatmap demonstrating 

the relationship between Deep Profiler score (x-axis), iGray in biologically effective dose 

(BED) units (y-axis) and the probability of local failure (right legend). As iGray dose 

increases, the risk of failure decreases and vice versa. (b) The kernel density estimation of 

the actual dose of radiation delivered and iGray. (c) Violin plots of the distribution for the 

percent change in dose delivered required to achieve iGray stratified by the four treatment 

categories (y-axis). (d) The probability of local failure was calculated for patients receiving 

the most common treatment regimen of 100 Gy BED after incremental increases in radiation 

dose. The overall rate of local failure is significantly diminished at the highest doses. (e) A 

depiction of the proximal bronchial tree (PBT). A proposed theoretical dose scheme to avoid 

proximal airway toxicity is shown in the bottom (see Methods). (f) The cumulative relative 

frequency of feasibly delivering iGray per the scheme in (e). Some iGray doses are shown 

(arrows) to highlight the range in which a substantial decrement in feasibility occurs.
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Figure 4. 
Model performance and the scalability of the deep neural network. (a) The calibration curves 

for the multivariable model that includes iGray and BED demonstrated strong agreement 

between the estimated and observed 1-, 2-, and 3-year outcomes. Vertical bars represent 95% 

confidence intervals for observed local failure probabilities. (b) Comparison of model 

performance using the full data set and 60% of the dataset demonstrates the superiority and 

the potential scalability of the deep learning algorithm. Horizontal lines and error bars 

represent the mean C-indices and standard errors across five folds.
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Figure 5. 
Tumor saliency extends beyond the physician delimited tumor volume. (a) A saliency map 

represents an overlay of heatmap color (red=high saliency; black=low saliency) on voxels in 

the CT image region of interest. Blue contour lines represent the delineation of tumor 

volume. Two patient examples are shown. (b) The proportion of voxels with saliency >0.20 

within the gross tumor volume (GTV) (green), the planning target volume (PTV) or beyond 

both volumes (gray) are shown.
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Figure 6. 
Deep Profiler accurately predicts local failure in an external study population. Estimated 

cumulative incidence curves for local failure apportioned by the median Deep Profiler score 

derived from the internal study population.
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Table 1.

Baseline Characteristics of the Study Population

Characteristics

No. patients 849

Follow-up, months 20.93 (11.03–37.97)

Age 74.1 (67.6–80.7)

Sex

 Female 440 (51.8%)

 Male 409 (48.2%)

Treated tumor size, cm 2.3 (1.6–3.4)

Overall stage

 I 645 (76%)

 II 81 (9.5%)

 III 8 (0.9%)

 IV 74 (8.7%)

 Recurrent 41 (4.8%)

Histology

 Adeno 255 (30.0%)

 SqCC 248 (29.2%)

 NSCLC (NOS) 47 (5.5%)

 Neuroendocrine 14 (1.7%)

 Other 22 (2.6%)

 Non-diagnostic biopsy 74 (8.7%)

 No biopsy 189 (22.3%)

Indications for treatment

 Definitive 738 (86.9%)

 Salvage 52 (6.0%)

 Oligometastatic 50 (5.9%)

 Other 9 (1.1%)

Total dose, Gy 50 (30–60)

No. fractions 5 (1–10)

BED, Gy 100 (39–180)

1
Continuous variables are represented as medians with inter-quartile ranges, with the exception of total dose, no. of fraction and BED, Gy, which 

are represented by median and range.

2
Abbreviations: Adeno, adenocarcinoma; BED, biologically effective dose; CT, computed tomography; IQR, inter-quartile range; NOS, not 

otherwise specified; SqCC, squamous cell carcinoma; SUV, standardized uptake values.
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Table 2.

Prognostic performance of different models

Model Concordance Index Confidence Interval v. Deep Profiler p-value

2D CT Size 0.610 [0.545, 0.672] 2.05×10−32

Max 3D diameter 0.655 [0.600, 0.712] 1.06×10−20

3D Volume 0.669 [0.611, 0.726] 9.78×10−14

Classical Radiomics (feature selection) 0.651 [0.600, 0.710] 4.23×10−25

Classical Radiomics (regularization) 0.680 [0.625, 0.739] 1.18×10−10

Deep Profiler 0.711 [0.660, 0.767] -
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Table 3.

Predictors of Local Failure in Multivariable Analysis

HR 95% L 90% U p-value

Deep Profiler signature 1.645 1.016 2.663 0.042

BED (continuous) 0.978 0.969 0.987 0.026

Adeno vs. SqCC 0.494 0.281 0.868 0.029

Adeno vs. Others 0.515 0.286 0.927 0.027
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Table 4.

Baseline Characteristics of the External Validation Population

Characteristics P value

No. patients / tumors 95 / 102

Follow-up, months 16.4 (11.4–24.6) <0.01

Treated tumor size, cm 1.8 (1.3–2.7) <0.001

Overall stage 0.29

 I 78 (76.5%)

 II 10 (9.8%)

 III 0 (0 %)

 IV 5 (4.9%)

 Recurrent 9 (8.8%)

Histology 0.21

 Adeno 43 (42.1%)

 SqCC 24 (23.5%)

 NSCLC (NOS) 8 (7.8%)

 Neuroendocrine 1 (0.9%)

 Other 1 (0.9%)

 Non-diagnostic biopsy 6 (5.9%)

 No biopsy 19 (18.6%)

Indications for treatment 0.52

 Definitive 88 (86.2%)

 Salvage 9 (8.8%)

 Oligometastatic 5 (4.9%)

 Other 0 (0%)

Total dose, Gy 50 (34–60) 0.02

No. fractions 5 (1–5) <0.01

BED, Gy 100 (72–180) <0.01

CT Simulator Type NA

 GE Medical Systems Discovery ST 14 (13.7%)

 Philips Brilliance CT Big Bore 22 (21.6%)

 Philips Gemini GXL 17 (16.7%)

 Siemens SOMATOM Definition AS 49 (48.0%)

1
Continuous variables are represented as medians with inter-quartile ranges, with the exception of total dose, no. of fraction and BED, Gy, which 

are represented by median and range.

2
Abbreviations: Adeno, adenocarcinoma; BED, biologically effective dose; CT, computed tomography; IQR, inter-quartile range; NOS, not 

otherwise specified; SqCC, squamous cell carcinoma; SUV, standardized uptake values.

3
p values were calculated using Pearson’s Chi-squared test for categorical variables and by the non-parametric test of medians for continuous 

variables. *p value of < 0.05 was considered statistically significant.
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