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Understanding the community assembly mechanisms controlling
biodiversity patterns is a central issue in ecology. Although it is
generally accepted that both deterministic and stochastic pro-
cesses play important roles in community assembly, quantifying
their relative importance is challenging. Here we propose a
general mathematical framework to quantify ecological stochas-
ticity under different situations in which deterministic factors drive
the communities more similar or dissimilar than null expectation. An
index, normalized stochasticity ratio (NST), was developed with
50% as the boundary point between more deterministic (<50%)
and more stochastic (>50%) assembly. NST was tested with simu-
lated communities by considering abiotic filtering, competition,
environmental noise, and spatial scales. All tested approaches
showed limited performance at large spatial scales or under very
high environmental noise. However, in all of the other simulated
scenarios, NST showed high accuracy (0.90 to 1.00) and precision
(0.91 to 0.99), with averages of 0.37 higher accuracy (0.1 to 0.7)
and 0.33 higher precision (0.0 to 1.8) than previous approaches.
NST was also applied to estimate stochasticity in the succession of
a groundwater microbial community in response to organic car-
bon (vegetable oil) injection. Our results showed that community
assembly was shifted from more deterministic (NST = 21%)
to more stochastic (NST = 70%) right after organic carbon input.
As the vegetable oil was consumed, the community gradually
returned to be more deterministic (NST = 27%). In addition, our
results demonstrated that null model algorithms and community
similarity metrics had strong effects on quantifying ecological
stochasticity.
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One of the major goals in community ecology is to understand
the processes and mechanisms underlying the biodiversity

patterns across space and time (1–5). There are 2 types of pro-
cesses controlling community assembly: deterministic and
stochastic. The former is generally referred to as any ecolog-
ical process that involves nonrandom, niche-based mecha-
nisms, including environmental filtering (e.g., pH, temperature,
moisture, and salinity) and various biological interactions (e.g.,
competition, facilitation, mutualisms, predation, and tradeoffs)
(3, 5–7). In contrast, the latter signifies ecological processes
generating community diversity patterns indistinguishable from
random chance alone, which typically include random birth–
death events, probabilistic dispersal (e.g., random chance for
colonization), and ecological drift (random changes in or-
ganism abundances) (2, 3, 5, 7, 8). After over a decade’s de-
bate, now it is generally believed that both deterministic and
stochastic processes work together simultaneously in struc-
turing ecological communities (9–11). However, determining
their relative importance in governing community diver-
sity, especially in microbial ecology, is still challenging (3, 5,
12, 13). Quantifying their relative importance is even more
difficult (14).

Several different types of approaches have been used to infer
the importance of deterministic and stochastic processes in deter-
mining ecological communities (4), including multivariate analysis
(15–17), null modeling (18–20), and theory-based approaches (2,
21). Null model-based methods are most widely used (5–7, 13, 19,
20, 22–27). However, most null model-based inferences on
community assembly mechanisms are qualitative rather than
quantitative (6, 7, 13, 19, 22, 25). Previously, we proposed se-
lection strength (SS) to quantify the relative importance of
determinism and stochasticity in a fluidic groundwater ecosys-
tem in response to a carbon source addition, in this case
emulsified vegetable oil (EVO) to stimulate bioremediation
(5). EVO has low solubility and provides diverse organic carbon
sources for longer-term stimulation of the microbial commu-
nity. The selection strength for a pairwise comparison is de-
fined as the proportion of the difference between the observed
similarity and the null expected similarity divided by the ob-
served similarity, and their average across all pairwise com-
parisons is used as a quantitative index for measuring the
importance of determinism vs. stochasticity (5). Since its pub-
lication, many readers have expressed interest in using this
approach in their studies. This approach, however, is not gen-
eral enough and sometimes gave values exceeding expected
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maximum (>100%) because it only considers the situation when
deterministic forces drive communities more similar than random
patterns. Thus, in this study, we refined the model to suit more
general situations in quantifying ecological stochasticity underly-
ing community assembly. We first developed a general mathe-
matical framework with a normalized index, followed by testing it
with different simulated communities by considering environmen-
tal noise, biotic interactions, and spatial scales. We then used it to
reassess the importance of determinism and stochasticity in medi-
ating the succession of groundwater microbial communities in re-
sponse to organic carbon injection (5). In addition, we evaluated the
effects of different null model algorithms and similarity metrics
on quantitative assessment of stochasticity in governing the
groundwater microbial community assembly in response to the
carbon amendment. To avoid confusion, in this paper, we refer
to the random changes in community structure with respect to
species identities and/or functional traits due to stochastic pro-
cesses of birth, death, immigration and emigration, spatiotem-
poral variation, and/or historical contingency as “ecological
stochasticity” (or stochasticity if not specified) (4) and the ran-
dom fluctuations of deterministic environmental factors (e.g.,
temperature, moisture, and salinity) over space and time as
“environmental noise,” which is also commonly called “envi-
ronmental stochasticity” (28, 29). In addition, “community sim-
ilarity” (or “dissimilarity”) here serves as a general term to
describe any measure used to quantify the resemblance (or dif-
ference) between 2 local communities.

Mathematical Framework. Theoretically, deterministic processes can
drive ecological communities more similar or more dissimilar than
null expectation (12, 30, 31). For instance, since phylogenetically
closely related species are ecologically more similar, they could
cooccur more than expected upon abiotic environmental selection
(32). Thus, this type of deterministic process (e.g., environmental
filtering) is expected to drive the community to be more similar
under homogeneous environmental conditions or more dissimi-
lar if the environment is heterogeneous. In contrast, some other
deterministic factors (e.g., competition and trophic interactions)
generally drive the communities to be more dissimilar because
closely related species should cooccur less than randomly
expected due to competitive exclusion (31, 33). However, com-
petition could also cause communities to be more similar if
competitive exclusion could eliminate more different and less
related species which lack certain competitive traits (30, 31). We
provide quantitative assessment of community assembly mech-
anisms by considering both situations below.
Assume that there is a metacommunity consisting of m com-

munities. Let Cij represent the observed similarity (ranging from
0 to 1) between the ith community and the jth community
ði, j  ∈ f1,   . . . ,mgÞ. If a similarity metric does not range from
0 to 1, it can be standardized (SI Appendix, Supplementary Text A).
Dij is the dissimilarity between the ith community and the jth
community, that is, Dij = 1−Cij. Let Eij represent the randomly
expected similarity between the ith community and the jth
community after randomization of the metacommunity, which is
repeated for 1,000 times to generate a set of null expected
communities. Then, we will have Eij as the average of the null
expected similarity between the ith and jth communities. Gij is
the average of the null expected dissimilarity between the ith and
jth communities. The SD of the null expected similarity is Vij.
If communities are structured by the deterministic factors

leading to communities more similar, the actual similarity values
(Cij) between the ith and the jth communities will be greater than
the null expectation ðEijÞ. Thus, the difference between the ob-
served and average null expectation can be used to assess the
strength of determinism acting against otherwise stochastic
forces with respect to the ith and jth communities (18), which is

referred to as selection strength between the ith and jth com-
munities ðSSAij Þ (5), ranging from 0 to 1. In this case,

SSAij =
Cij −Eij

Cij
, if   Cij ≥Eij, [1]

so-called type A selection strength. Correspondingly, the type A
stochasticity ratio is

STA
ij = 1− SSAij =

Eij

Cij
, if   Cij ≥Eij. [2]

If communities are structured by the deterministic factors which
produce communities more dissimilar, the actual similarity
values (Cij) between the ith and the jth communities should be
less than the null expectation between ðEijÞ with a SD Vij (i.e.,
Cij <Eij). In other words, the actual dissimilarity, Dijð=1−CijÞ
will be larger than the randomly expected dissimilarity,
Gijð=1−GijÞ. The larger the differences between the actual dis-
similarity and the null expected dissimilarity, the greater the roles
of this type of deterministic factors. Thus, in this case, we should
use dissimilarity to measure the selection strength ðSSBij Þ, that is,

SSBij =
Dij −Gij

Dij
=
Eij −Cij

1−Cij
, if   Cij <Eij, [3]

so-called type B selection strength. Correspondingly, the type B
stochasticity ratio is

STB
ij = 1− SSBij =

Gij

Dij
=
1−Eij

1−Cij
, if   Cij <Eij. [4]

Let nA and nB be the numbers of the pairwise similarities which
are larger or less than null expectations, respectively; then the
total number of pairwise comparisons (n) is the sum of nA and
nB. The average of the selection strength of type A, type B, and
total are

SSA =

PnA
ij SS

A
ij

nA
, [5]

SSB =

PnB
ij SS

B
ij

nB
, [6]

SS=

Pm−1
i=1

Pm
j=i+1SSij
n

=

PnA
ij SS

A
ij +

PnB
ij SS

B
ij

nA + nB
. [7]

The average strength of stochasticity (ST) is

STA =

PnA
ij ST

A
ij

nA
, [8]

STB =

PnB
ij ST

B
ij

nB
, [9]

ST = 1− SS=

PnA
ij ST

A
ij +

PnB
ij ST

B
ij

nA + nB
. [10]

Ideally, if the community assembly is extremely deterministic
without any stochasticity, the selection strength index should be
100%, and the stochasticity index should be 0%. Similarly, when
the community assembly is completely stochastic without any
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determinism, the selection strength index should be 0%, and the
stochasticity index should be 100%. However, the SS and ST
described above do not necessarily vary from 0 to 100% because
Eij always have substantial deviations from 0 and 1. We applied
the following formula to obtain normalized selection strength
(NSS) and normalized stochasticity ratio (NST), which range
from 0 to 100%, and hence, they could be better measures than
SS and ST for assessing determinism and stochasticity (see SI
Appendix, Supplementary Text B, for mathematical details).

NSSA =
SSA − TSSA
DSSA − TSSA

=

PnA
ij SS

A
ij −min

k

nPnA
ij ξ

�
EðkÞ
ij ,Eij

�o
PnA

ij

�
1−Eij

�
−min

k

nPnA
ij ξ

�
EðkÞ
ij ,Eij

�o,
[11]

NSSB =
SSB − TSSB
DSSB − TSSB

=

PnB
ij SS

B
ij −min

k

nPnB
ij ξ

�
EðkÞ
ij ,Eij

�o
PnB

ij Eij −min
k

nPnB
ij ξ

�
EðkÞ
ij ,Eij

�o , [12]

NSS=
SS− TSS
DSS− TSS

=

P
ijξ
�
Cij,Eij

�
−min

k

nP
ijξ
�
EðkÞ
ij ,Eij

�o
P

ijξ
�
DCij,Eij

�
−min

k

nP
ijξ
�
EðkÞ
ij ,Eij

�o,

DCij =

8><
>:

1 Cij ≥ Eij

0 Cij < Eij

[13]

ξðx, yÞ= x− y
x− δ

δ=

(
0 x ≥ y

1 x < y
, [14]

NST = 1−NSS, [15]

where DSS and TSS are the extreme values of SS under com-
pletely deterministic and stochastic assembly, respectively. The
superscript A and B indicate type A ðCij ≥EijÞ and type B ðCij <EijÞ
pairwise comparisons. DCij is the similarity between community i
and j under extremely deterministic assembly. EðkÞ

ij is one of the null
expected values of similarity between community i and j under
stochastic assembly. ξ is a generalized function for SSij under ob-
served, extremely deterministic, or stochastic assembly.

Results
Validation with Simulated Communities. Since there is not yet a
gold-standard experimental dataset for assessing the relative
importance of determinism and stochasticity, simulated com-
munities with known levels of stochasticity are needed. In the
simulated communities, the ground truth of assembly processes
is known, and hence, the performances with different approaches
can be systematically evaluated. In this study, we used a spatially
implicit model which simply considers the communities under
the scenario of type A selection. The communities consist of a
combination of 2 types of species: one is under completely de-
terministic assembly (so-called deterministic species), and the
other is under completely stochastic assembly (so-called sto-
chastic species). The levels of stochasticity were predetermined
by assigning different ratios of stochastic species. We simulated
21 datasets with different levels of expected stochasticity ranging
from 0 to 100% (see SI Appendix, Supplementary Text C, Table
S1, and Fig. S1A, for details). The synthetic datasets were used to
evaluate the performance of ST, NST, and the neutral species
percentage (NP) calculated from Sloan’s neutral model (34, 35),

based on the accuracy and precision coefficients derived from
concordance correlations (36, 37).
NST had considerably higher accuracy and precision than ST,

which was in turn better than NP for the majority of similarity
metrics examined (Fig. 1 and SI Appendix, Table S2). Also, the
performance of NST varied substantially with similarity metrics.
The 13 incidence-based metrics tested can be classified into 3
major categories based on relative ratio of unique taxa (e.g.,
Jaccard), the number of unique taxa (e.g., Manhattan), or the
squared root of the number of unique taxa (Euclidean and
modified Euclidean) (SI Appendix, Supplementary Text A). NST
had high accuracy and precision (>0.99) with all incidence-based
metrics (SI Appendix, Table S2). About 2 to 3 times of differ-
ences in accuracy and precision were observed for NST with
various abundance-based similarity metrics (SI Appendix, Table
S2). The 15 abundance-based metrics tested can be categorized
into 4 major groups based on relative difference (e.g., Ru�zička),
average relative difference (e.g., Canberra), absolute difference
(e.g., Manhattan), and squared sum of difference (e.g., Euclid-
ean) (SI Appendix, Supplementary Text A). Abundance-based
NST showed very high accuracy and precision (>0.95) with all
relative difference metrics (Ru�zička, Bray–Curtis, Kulczynski,
and Chao), some average relative difference (modified Gower),
and some absolute difference metrics (Manhattan and modified
Manhattan) but always worse using squared-sum metrics (SI
Appendix, Table S2). In addition, it seems that the performance
of NST and ST indexes varied with stochasticity levels. For in-
stance, at lower stochasticity levels (0 to 5%), NST performed
much better than ST (22 to 50% improvement) (Fig. 1). At the
high stochasticity levels, ST showed similar or slightly higher
accuracy than NST (Fig. 1). By considering their overall per-
formance, characteristics, and popularity, NST based on Jaccard/
Ru�zička similarity metrics is recommended for estimating the
magnitude of stochasticity in community assembly.
Since community diversity patterns and the underlying as-

sembly mechanisms are scale dependent (38), we also evaluated
the accuracy and precision of different stochasticity indexes using
spatially explicit models by considering scales, environmental
noise, and biotic competitive interactions (Fig. 2 and SI Appen-
dix, Supplementary Text C, Figs. S1B and S2, and Table S1).
Communities and metacommunities were constructed in a hi-
erarchical way to simulate different spatial scales, including cells
(local communities), plots, sites, regions, continents, and global

Fig. 1. Consistency between the estimated and expected stochasticity with
different methods based on the simulated communities with various levels
of expected stochasticity. The simulation model was spatially implicit. Red
indicates NST, green indicates ST, and blue indicates NP. STexp.ab (black),
expected abundance-based stochasticity in the simulated communities. NST
and ST were calculated based on (A) Ru�zička and (B) modified Gower. The
inner tables show accuracy coefficient (χa) and precision coefficient (ρ),
which are derived from concordance correlation coefficient (SI Appendix,
Eqs. S21 and S22). See SI Appendix, Supplementary Text C, Table S1, and Fig.
S1A, for more details about the simulation model; SI Appendix, Table S2, for
the results of other similarity metrics; and SI Appendix, Table S3, for the
definition of each metric.
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(Fig. 2A and SI Appendix, Fig. S1B). These scale levels used are
to facilitate description of multilevel scales but do not mean the
corresponding real spatial scales. Scale dependence was exam-
ined by estimating stochasticity in pairwise comparisons among
all samples within individual spatial scales, and the main results
were summarized as below (Fig. 2 and SI Appendix, Fig. S2).
First, in contrast to ST and NP, NST showed high accuracy and
precision (both coefficients >0.9) at local scale (i.e., plot and site
levels) in all scenarios (Fig. 2 and SI Appendix, Fig. S1B) except
that with very high environmental noise (σt/σf = 200%, where σt
is temperature deviation and σf is fitness deviation as defined in
SI Appendix, Supplementary Text C and Fig. S2C). Second, all of
the approaches examined (NST, ST, and NP) showed scale de-
pendence. The accuracy and/or precision of stochasticity esti-
mation dramatically decreased at larger spatial scales (e.g.,
global scale in all scenarios; Fig. 2 and SI Appendix, Fig. S2 B and
C), suggesting that it might be better to apply NST and other
null/neutral model-based approaches to study community assembly
at local scale (e.g., within plot or site). Under the scenario of
competition without noise (Fig. 2D), NST had high accuracy and
precision below site scales but not above regional scales, suggesting
the influence of competition on diversity patterns could be very
sensitive to spatial scale. Third, NST precision considerably de-
creased if sample size was very small (≤6 samples in our simulation;
SI Appendix, Fig. S2A), although accuracy did not. Fourth, none of
the tested indexes showed sufficient accuracy when environmental
noise was very high (σt/σf = 200%; SI Appendix, Fig. S2C). In-
terestingly, ST still had high precision (>0.95) across all spatial
scales with high environmental noise (SI Appendix, Fig. S2C), im-
plying that the variation of ST could be still useful in examining the
relative change of ecological stochasticity even with high environ-
mental noise. In addition, when the simulated communities were
purely controlled by deterministic forces (i.e., expected stochasticity
to be 0), the observed similarity can still be close to random pattern
if environmental filtering and competition simultaneously affect
the communities and/or the spatial scale is too large, leading to

overestimation of stochasticity. In this case, NST generally per-
formed better than other approaches (SI Appendix, Fig. S2 D–F),
with relatively low overestimation (NST < 20%) within small scales
(plot and site) when 1 deterministic process is predominant (fil-
tering or competition > 80%; SI Appendix, Fig. S2G). However,
even NST still obviously overestimated stochasticity when filtering
and competition were comparable (NST > 50%) and/or spatial
scale is too large (NST up to 100% at regional to global scale; SI
Appendix, Fig. S2G), indicating pure but complex deterministic
forces can lead to random diversity pattern which is more obvi-
ous at larger spatial scales.

Applications to the Microbial Community Succession in a Fluidic
Ecosystem. Previously, SS was used to quantify the degree of
determinism in controlling the succession of the groundwater
microbial communities in response to organic carbon injection
(5) by focusing only on the situation in which deterministic forces
drive the communities to be more similar. However, it seems that
both situations (more similar or more dissimilar than null ex-
pectation) exist at day 140, although the latter occur for a rela-
tively small portion of the pairwise comparisons (19.0% more
dissimilar than null expectation). We reanalyzed the experi-
mental data using the above framework. By considering different
situations, the estimated stochasticity at day 140 (ST = 79 ± 15%;
NST = 70 ± 23%; Fig. 3A) is lower than previously reported
(previous ST = 92 ± 12%) (5). Also, as shown previously (5), the
estimated stochasticity varied substantially with time (Fig. 3). In
addition, the estimated NST at the beginning and end (21%
at day 0 and 27% at day 269 on average; Fig. 3A) were similar
to the control well (22% on average), which is considerably below
the 50% boundary point (Wilcoxon test P < 0.0001). In contrast,
the estimated NST during the middle phase of the succession
were 70% on average with Jaccard (Fig. 3A) and 74% on average
with Ru�zička (Fig. 3B), which are considerably above the 50%
boundary (Wilcoxon test P < 0.003). All of these results indicate
that stochastic processes could play more important roles in

Fig. 2. Accuracy and precision of stochasticity estimation of different methods across various spatial scales under different simulated scenarios. (A) Spatial
configurations of the spatially explicit simulation models across different spatial scales (plot [P], site [S], region [R], continent [C], and global [G]). Deterministic
species were simulated in 3 different scenarios as below: (B) abiotic filtering without environmental noise (SI Appendix, Table S1, scenario B), (C) abiotic
filtering with medium-level environmental noise (σt/σf =25%, where σt is the temperature deviation and σf is the fitness deviation defined in SI Appendix,
Supplementary Text C; scenario D in SI Appendix, Table S1), and (D) competition among a total of 256 competitors (SI Appendix, Table S1, scenario F). Three
indexes were used to estimate stochasticity at different spatial scales, including NST (red bars), ST (green bars), and NP (blue bars). NST and ST were calculated
based on Ru�zička similarity index and the null model PF (SI Appendix, Table S3). Accuracy (solid bars) and precision (crossed bars) were evaluated by the
coefficients derived from concordance correlation coefficient (SI Appendix, Eqs. S21 and S22). See SI Appendix, Supplementary Text C, Table S1, and Fig. S1B,
for more details about the simulation model and SI Appendix, Fig. S2, for the results of other scenarios.
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controlling community succession in its middle phase, while de-
terministic processes could be more important in its early (before
injection) and late phases, which are consistent with theoretical ex-
pectations and site geochemistry (5). The result in the middle phase
seems counter to intuition that adding fresh carbon should drive
selection and hence leads to a more deterministic outcome. How-
ever, since the groundwater is highly contaminated and carbon poor
(39, 40), the existing communities are under strong selection pres-
sure. Consequently, adding fresh complex carbon would relieve the
selection pressure and drive the communities more stochastic (5).
Since the results from null model analyses are very sensitive to

the model algorithms and similarity metrics (41), further analyses
were performed to understand how the choice of model algo-
rithms and similarity metrics affects the estimation of stochas-
ticity based on NST. For the incidence (presence–absence) data,
there are basically 9 null model algorithms (also referred to as
null models), differing in whether rows (representing different
taxa) and columns (representing sites, samples, or communities)
are treated as fixed sums, equiprobable, or proportional (41) (SI
Appendix, Supplementary Text D and Table S4). Equiprobable
means every taxon has equal probability to be present in a
sample, or every sample has equal probability to hold a taxon;
proportional means the probability is proportional to observed
occurrence frequency or taxon richness; and fixed means the
occurrence frequency of each taxon or taxon richness in each
sample is the same as observed. Among all 9 null model algo-
rithms tested, the 4 null models with fixed or proportional taxa
richness and equiprobable or proportional taxa occurrence fre-
quency (SI Appendix, Fig. S3) gave obvious trends which are very
similar to what we previously reported (5). However, no clear or
less consistent patterns were observed for the other 5 null models
(SI Appendix, Fig. S3), suggesting that the estimated stochasticity
is null model dependent. In general, a more constrained null
model (fixed > proportional > equiprobable) restricts the null
results closer to observed values and thus leads to higher esti-
mated stochasticity. For example, considerably higher stochas-
ticity was obtained with proportional taxa occurrence frequency
(NST up to 69 to 70%; e.g., SI Appendix, Fig. S3) than with
equiprobable taxa occurrence frequency (NST < 38%; e.g., SI
Appendix, Fig. S3; Wilcoxon test P < 0.0001) for the samples
from different time points.
The null model analysis is also dependent on the community

similarity metrics used (41). To understand whether and how

community similarity metrics affect the estimation of stochas-
ticity, 13 different incidence-based community similarity metrics
were tested (SI Appendix, Fig. S4). Since the algorithm PF
(proportional taxa occurrence frequency, fixed richness) has
been used more often (19, 26), we examined different metrics
based on this null model. With respect to the 3 types of incidence-
based metrics, only squared-root metrics showed relatively stochastic
(NST > 50%; SI Appendix, Fig. S4) assembly before the organic
carbon input, which is not expected under such a highly stressful
environment. All other incidence-based metrics showed very similar
trends in the changes of stochasticity with time (SI Appendix, Fig.
S4). However, the magnitude of NST could be different. For ex-
ample, higher (Wilcoxon test P < 0.008) stochasticity was obtained
with Grower (NST up to 79%; SI Appendix, Fig. S4) than with
Jaccard (NST less than 70%; Fig. 3A) similarity metrics. We also
tested different abundance-based similarity metrics (Fig. 3B and SI
Appendix, Fig. S4). Compared to other types of metrics, the absolute
difference and squared-sum metrics showed obviously higher sto-
chasticity before organic carbon input (NST > 45%) or large vari-
ation (interquartile range up to 50%, Morisita and Morisita–Horn;
SI Appendix, Fig. S4), which appear less preferred. All other
abundance-based metrics revealed a trend of stochasticity similar to
the incidence-based metrics. However, the magnitude of NST is
generally higher (around 20% higher on average in NST; Fig. 3B
and SI Appendix, Fig. S4) than those based on their corresponding
incidence-based metrics, suggesting higher stochasticity in terms of
quantitative change than qualitative change. In addition, compared
to ST, NST showed much less variations or even no significant
difference when using different metrics (e.g., Jaccard vs. Sørensen,
incidence-based mGower, or Ru�zička vs. Bray–Curtis, abundance-
based mGower; SI Appendix, Fig. S5), suggesting higher robustness
of NST to metrics variations. Altogether, these results suggest that
appropriate selections of community similarity indexes are also
important in quantitative estimation of stochasticity underlying
community assembly.

Discussion
Quantifying stochasticity in governing community assembly is
important but difficult, and even more so in microbial ecology.
To address this challenge, we developed a general mathematical
framework to provide quantitative assessment of ecological sto-
chasticity under both situations in which deterministic factors drive
the communities more similar or dissimilar than null expectations.
When tested with simulated communities, NST showed higher ac-
curacy and precision than ST and NP, and Jaccard/Ru�zička metrics
is the most recommended among various metrics. Applying this
framework to the succession of groundwater microbial communities
in response to carbon injection indicated that null model algorithms
and community similarity metrics had strong effects on quantita-
tively estimating ecological stochasticity. Since the rationale and
mathematical derivation are universal, NST should be applicable to
other biological systems (e.g., plants and animals) or at least other
highly diverse communities than microbial ones.
NST is different from other indexes based on null model analysis.

In null model-based indexes, the modified Raup–Crick metrics
(RC, e.g., RCJaccard and RCBray) (19, 26) and standardized effect
size (SES, e.g., βNTI based on phylogenetic dissimilarity) (7, 20, 25)
have been widely applied to infer ecological stochasticity (4). RC is
calculated from the percentage of null dissimilarity values lower
than or equal to the observed value, and SES is the difference
between observed value and null expectation divided by SD of null
results. RC and SES reflect the significance of the difference be-
tween observed and null dissimilarity and usually serve as qualita-
tive identification of deterministic patterns (i.e., jRCj > 0.95,
jSESj > 2). ST is calculated from relative difference between ob-
served and null similarity (or dissimilarity), and NST derived from
ST is to measure the relative position of observed value between the
extremes under pure deterministic and pure stochastic assembly.

Fig. 3. Dynamic changes of the estimated NST during the succession of the
groundwater microbial communities in response to emulsified vegetable oil
injection. NST was calculated based on (A) Jaccard and (B) Ru�zička metrics
using null model algorithm PF. In null model PF, the probabilities of taxa
occurrence are proportional to the observed occurrence frequencies, and
taxon richness in each sample is fixed as observed (19). When using
abundance-based metric, Ru�zička, null taxa abundances in each sample are
calculated as random draw of the observed number of individuals with
probability proportional to regional relative abundances of null taxa in the
sample (26). W8 is the control well on which the vegetable oil had no or
minimal impact. See SI Appendix, Figs. S3–S5, for results of other null model
algorithms and similarity metrics.
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Thus, NST reflects the contribution of stochastic assembly relative
to deterministic assembly, based on magnitude rather than signifi-
cance of the difference between observed and null expectation, and
therefore can serve as a better quantitative measure of stochasticity
(SI Appendix, Fig. S6).
There are several limitations for null model-based stochasticity

estimation. First, special attention is needed for selection of null
model algorithms and similarity metrics for randomization, which
could lead to quite different results of stochasticity estimation.
Based on the results presented here, the null models of fixed taxa
richness and proportional taxa occurrence frequency (PF) in cou-
pling with Jaccard/Ru�zǐcka similarity metrics appear to be more
preferred. Nevertheless, it is anticipated that the performances of
different null models and similarity metrics are also community
dependent. Therefore, depending on ecological questions, multiple
null models and metrics (both incidence- and abundance-based)
should be explored in quantifying community assembly mechanisms.
Second, deterministic forces are generally compounded by

multiple intricate abiotic and biotic processes (4, 28, 33, 42). It is
generally believed that competitive exclusion drives communities
to be more dissimilar by excluding closely related ecologically
similar species, but the impacts of competition on community
structure appear to be much more complicated. Recent studies
indicate that competitive exclusion could also drive a community
to be more similar by eliminating competitively inferior, more
distantly related taxa (30). Trophic interactions could also pro-
mote community divergence (33). However, it is difficult to
differentiate such types of biotic interactions using the null
model-based statistical approach from those of environmental
filtering, which leads community diversity to be more similar (30,
32). More interestingly, about 3 decades ago, it was argued that
competition may not be of primary importance in shaping com-
munity structure because it is less likely that niche differentiation of
competitors has come about by coevolution (43), due to low
probability of consistent coexistence of a particular pair of com-
peting species, especially under the situations of high community
diversity and high spatial and temporal heterogeneity. If this is true,
we expected that the type A situation is much more common than
type B. This is supported by this study with >90% type A even
though competition appears to be very intensive based on network
analysis (44). However, it seems that this argument is not supported
by some recent studies on animals (e.g., refs. 45 and 46) and plants
(e.g., ref. 47), in which competition was regarded as predominant
force in structuring community composition. Nevertheless, given the
extremely high diversity of microbial communities, we hypothesize
that compared to plant and animal communities, competition could
be less important in structuring microbial community as commonly
assumed (48). Alternatively, each type of deterministic force
(e.g., competition, facilitation, or environmental filtering) can pre-
dominate under certain conditions of stress and resources as found
in plants and animals (49–51). If neither is true and different de-
terministic forces are equivalent to one another, deterministic as-
sembly can lead to random patterns, and hence, null model analysis
could overestimate stochasticity (SI Appendix, Fig. S2G).
Third, community diversity patterns and the underlying as-

sembly mechanisms could vary across differential scales of space,
time, environmental gradients, and/or taxonomic and ecological
organizations (38, 52, 53). For examples, it was observed that
strong competition at local scales resulted in weak competition
at broader scales (54), and bird competition is important from
plot to country scale but becomes unimportant at continental
scale (53). However, the challenge is how to define appropriate
scales that are relevant to the organisms or processes being ex-
amined (38) because the characteristics and behaviors of natural
ecosystems are quite different across different spatial, temporal,
and/or organizational scales. According to our simulation, NST
can maintain good performance and robustness when the spatial
scale is where dispersal rates within the metacommunity (i.e.,

randomization range in null model) are the same or comparable
(e.g., simulated plot and site level; Fig. 2 and SI Appendix, Fig. S2).
Fourth, since different assembly mechanisms could generate

similar diversity patterns, using the null model-based statistical
approach to infer assembly mechanisms from empirical diversity
patterns is only an introductory point (4, 38). Although NST was
evaluated with taxonomic β-diversity metrics in this study, it is
applicable to phylogenetic β-diversity metrics (SI Appendix, Ta-
ble S3) as we did for ST recently (55), and integration of multiple
dimensions of diversity (taxonomic, phylogenetic, functional,
etc.) will facilitate further disentanglement of complicated assembly
processes (4, 26). As a next step, process-based modeling ap-
proaches by considering various ecological processes such as dis-
persal limitation, life history traits (e.g., growth, reproduction, and
dormancy), conspecific density dependence, and/or ecological drift
(e.g., ref. 56) should allow us to further assess the relative im-
portance of various assembly mechanisms, design possible
experiments for validation, differentiate the possible conse-
quences of individual biotic and abiotic factors which are not
easily separated via experimentation, and evaluate the scale the
observed phenomena from local to regional and global (38, 56).
In addition, the operational distinction of stochasticity and

determinism can appear somewhat arbitrary (28, 57), and it is
difficult to distinguish ecological stochasticity from the noise
caused by deterministic environmental factors, as shown in our
simulation (SI Appendix, Fig. S2C). More importantly, because
of the measurement noise associated with high-throughput tech-
nologies in terms of reproducibility, sensitivity and/or quantification,
and uncertainties in data processing and analyses (58–60), it is very
challenging to obtain measurements close to the true values of
stochasticity and determinism for particular communities. Thus, the
ecological stochasticity and determinism estimated using the
framework described above should be viewed as statistical proxi-
mate rather than ultimate forces in shaping community diversity
and structure (4). Thus, as statistical proximate, the estimation re-
quires sufficient biological replicates (e.g., >6) to ensure enough
statistical power as our simulation showed (SI Appendix, Fig. S2A).
Finally, because of the inherent uncertainty in selecting appropriate
null model algorithms, similarity metrics, spatial scales for com-
parisons, and regional species pool for a particular study, the esti-
mated degree of stochasticity should be best used for relative
comparison across different conditions or treatments, rather than
used as absolute values.

Materials and Methods
Details for all methods are provided in SI Appendix, Supplementary Text.
Briefly, 21 datasets were simulated by a spatially implicit model, and 11
datasets under each of 5 scenarios were simulated by a spatially explicit
model, with the defined stochasticity ranging from 0 to 100% (SI Appendix,
Table S1). Each local community is a combination of deterministic and sto-
chastic species with a ratio fitting the defined stochasticity. The stochastic
species are assembled according to neutral theory models (2, 34, 61) in a
spatially implicit model, while spatially explicit stochastic assembly is neutral
theory-based assembly across 4-level metacommunities from 1 global meta-
community down to 16,384 local communities. Deterministic species can only
live in their preferred environment due to strong abiotic filtering in the
scenarios of abiotic filtering without noise in spatially implicit and explicit
models (scenarios A and B in SI Appendix, Table S1). If environmental noise is
considered (scenarios C through E in SI Appendix, Table S1), the abundances
of deterministic species are determined by temperature in each local com-
munity, which has a normal-distributed random deviation from plot mean
temperature. If competition is considered (scenario F in SI Appendix, Table
S1), deterministic species consist of 256 competitors randomly occupying
local communities, where the first-arrived competitor excludes other
competitor(s) and stops them passing through. To investigate complex de-
terministic forces, simulated species controlled by abiotic filtering are com-
bined with those controlled by competition to generate deterministic part
of each simulated community (scenario G in SI Appendix, Table S1). For
each simulated dataset, stochasticity was estimated with NP (35), ST (5),
and NST, of which the quantitative performance was evaluated by accuracy
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(χa; SI Appendix, Eq. S21) and precision (ρ; SI Appendix, Eq. S22) coeffi-
cients derived from concordance correlation coefficient (36). The em-
pirical data were obtained from the previous publication (5). Then,
stochasticity was estimated by NST and ST based on different null model
algorithms and different similarity metrics for comparison. NST analy-
sis can be performed using a package NST written with the R language
(62), which can be downloaded or installed from CRAN (https://cran.r-
project.org/package=NST), or a web-based pipeline (http://ieg3.rccc.
ou.edu:8080) built on Galaxy platform (63).
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