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A vast array of natural phenomena can be understood through
the long-established schema of chemical bonding. Conventional
chemical bonds arise through local gradients resulting from the
rearrangement of electrons; however, it is possible that the hall-
mark features of chemical bonding could arise through local
gradients resulting from nonelectronic forms of mediation. If
other forms of mediation give rise to “bonds” that act like con-
ventional ones, recognizing them as bonds could open new forms
of supramolecular descriptions of phenomena at the nano- and
microscales. Here, we show via a minimal model that crowded
hard-particle systems governed solely by entropy exhibit the
hallmark features of bonding despite the absence of chemical
interactions. We quantitatively characterize these features and
compare them to those exhibited by chemical bonds to argue for
the existence of entropic bonds. As an example of the utility of
the entropic bond classification, we demonstrate the nearly equiv-
alent tradeoff between chemical bonds and entropic bonds in the
colloidal crystallization of hard hexagonal nanoplates.
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Chemical approaches to the study of matter are based on the
notion of bonding (1). Covalent and ionic bonds, metallic

bonds (1), and even hydrogen bonds, whose definition contin-
ues to be refined (2, 3), rely on the reconfiguration of electron
density to bind atoms and molecules. However, key characteris-
tics of chemical bonds (4)—local energy gradients and temporal
stability—could be provided by unconventional mechanisms.
The “mechanical bond” (5), for instance, connects ring-like
molecules by virtue of their topology. Although the rings are not
covalently bonded to each other, they cannot be separated with-
out breaking a covalent bond in one of the rings. The mechanical
bond is defined primarily through what it does, rather than what
it is (3).

Entropic ordering (6–9) is another unconventional mechanism
that involves local (free) energy gradients (10) and tempo-
ral stability. Counterintuitively, hard particles in the range of
nanometers to a few microns and with no interactions other than
excluded volume can rearrange from a disordered fluid into an
ordered crystal, or from one crystal structure to another, upon
crowding (8–26). These colloidal crystals can be surprisingly
complex and remarkably structurally diverse, and arise solely
from particle shape anisotropy and the statistical thermodynamic
principle of entropy maximization. Many of them are isostruc-
tural to known atomic or molecular crystals, and even crystallize
along similar kinetic pathways (27), despite the absence of chem-
ical bonds between particles. Instead, the apparent “effective”
interparticle attraction in hard particle colloidal crystals is purely
statistical, arising from the tendency to maximize the number of
microstates available to the system (10). This phenomenon raises
the question of whether the directional entropic forces associ-
ated with ordering in dense colloids imply the existence of, for all
intents and purposes, bonds between particles—bonds mediated
not by electrons, but by entropy.

Here, we argue for the consideration of “entropic bonds”—
emergent, statistical bonds mediated, upon crowding, by entropy.
To support our argument, we map the change in entropy due
to local rearrangement of particles and compute bond lifetimes

in a model system of hard nanoplates. We demonstrate how
to manipulate the structure of bonded states, thereby control-
ling entropic valence. We show that this schema can be used
to predict the strength of enthalpic bonds needed to assem-
ble ligand-stabilized nanoplates, rather than relying on entropy,
demonstrating how entropic and enthalpic bonds can be inter-
changed for self-assembly (28). Our results open up the possibil-
ity of classes of systems in which bonding can be designed (18,
26, 29) and continuously manipulated.

Model Systems and Results
We study a model system of hard hexagonal nanoplates. In
experiments (28), lanthanide-fluoride (LnF3) nanoplates are
functionalized by ligands on their edges and driven to self-
assemble 2D superlattices (Fig. 1A) by either/both entropy and
enthalpy, depending on experimental conditions. They may be
synthesized over a wide range of elongated hexagonal shapes and
thus provide a tunable shape with which to explore quantitatively
the notion of the entropic bond. We consider hexagonal particles
defined by the angle α and elongation γ (Fig. 1B). We define reg-
ular hexagons as having α= 120◦ and γ= 1, so that analogs of
the LnF3 nanoplates studied in ref. 28 have α= 68◦ with a vari-
able γ. Monte Carlo (MC) simulations, in which small, local MC
trial moves to translate or rotate particles approximate physical
time for a Brownian colloidal particle (30), were used to equili-
brate the systems of nanoplates over a range of densities. Details
of the simulation methodology are described in Methods.

We first consider the entropy-driven self-assembly of hard
nanoplates, in which all interparticle interactions other than
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Fig. 1. (A) Schematic of the two superlattices formed by LNF3

nanoplatelets: hexagonal (light blue) and herringbone (light orange). To
highlight the difference in the local arrangement within the superlattices,
a reference particle is colored purple, and the different lattice positions are
highlighted: primary (green), hexagonal (blue), and herringbone (orange).
Note this schematic is for an elongation value γ= 1 for which both tilings
fill space. (B) Transformation of a regular hexagon (α= 120◦, γ= 1) into an
elongated hexagon (α= 68◦, γ). γ is the ratio of sides B and A, a tunable
shape parameter to study the influence of shape on entropic bonds

excluded volume (steric) interactions are suppressed. In such sys-
tems, any changes in free energy F are a result of changes in
entropy S : β∆F12 =−∆S/kB. We can directly account for the
rearrangement of entropy (∆S/kB) by the associated change in
free energy of particle pairs (β∆F12), thus increases in entropy
are associated with decreases in free energy and consequently
increases in the stability of the system. We calculate the entropy
of particle pairs in their local coordinate system (Fig. 2A) by
computing the potential of mean force and torque (PMFT) (10),
yielding the change of entropy of a pair configuration relative to
that of an ideal gas: ∆S/kB =S/kB −SIG/kB. In Fig. 2 B and C,
we show lines (B) and surfaces (C) of constant ∆S/kB for hard
hexagons at packing fractions of φ= 0.55, 0.65, 0.75, 0.85. These
computed entropy landscapes quantify the structure of entropi-
cally driven self-assembled states (see Methods, Bond Identifica-
tion and SI Appendix, Fig. S3 for the method of segmenting the
PMFT into bonding regions).

Analysis of the PMFT of hard hexagons explains their ten-
dency to self-assemble into edge-aligned pairs: for example,
at a packing fraction φ= 0.75, the edge-aligned configuration
(Fig. 2C)

(
r = 1.026, θ1 = π

6
, θ2 = π

6

)
, shown as a dark purple

sphere, results in an increase in the entropy over a similar
arrangement in an ideal gas by ∆S/kB > 1.36± 0.004. As shown
in Fig. 2E, a lifetime is associated with this alignment tendency,
compelling us to refer to pairs of aligned hexagons as “bound.”
These bound configurations are separated by transition state

configurations of vertex-to-edge-aligned pairs (Fig. 2 C and D,
shown as a light purple sphere in C and in gray in D); e.g., at
φ= 0.75, the transition state decreases the system entropy by
∆S/kB ≥ 1.83± 0.003.

We next compute for several packing fractions the probabil-
ity P that a pair of hexagons remains bound for MC time τ
(Fig. 2E). We observe longer lived bonds at higher packing frac-
tions. Bond-lifetime distributions over four decades of MC time
indicate power-law decay followed by exponential decay. Similar
lifetime distributions were reported for hydrogen bonds in simu-
lations of liquid water (31, 32). In water, the power law decay is
ascribed to relative molecular rotation, called “libration,” which
causes bonds to quickly break and reform. Libration also occurs
in hard particle systems, (33) where it is convenient to combine
the relative nanoplate orientations as θ±= θ1 ± θ2 (Fig. 3A). We
note that the entropy landscapes in Fig. 2 C and D indicate a high
entropy penalty for θ− libration (gear-like motion, top left cor-
ner to bottom right corner in plots), but a low entropy penalty for
θ+ libration (coordinated rolling motion; bottom left corner to
top right corner). The low entropy penalty for θ+ libration indi-
cates that mode of nanoplate dynamics should be fast, leading to
bond-breaking and reforming on short time scales. The observed
exponential decay at longer times results from the long time
required for a particle pair in a configuration near the entropy
maximum (free-energy minimum) to break its entropic bond.
The second exponential decay observed in φ= 0.85 is a result
of the collective rearrangements of many particles required for
bond breaking at very high densities (see SI Appendix, Fig. S1 for
snapshots of simulations at φ= 0.55, 0.65, 0.75 and 0.85).

Fig. 3 B–D indicates that hard hexagonal platelets exhibit
local gradients (here, in entropy) that drive the formation of
preferred spatial arrangements of particles, as in conventional
chemical bonds. Also, as in conventional chemical bonds, these
arrangements exhibit measurable lifetimes indicating temporal
stability. In these 2 respects, entropic bonds reproduce hallmarks
of conventional chemical bonds. However, the macroscopic scale
(i.e., nanometers to microns) of systems that exhibit entropic
bonding means that the properties of the bonded particles can
be manipulated, which thereby manipulating the structure of
the bonds.

To demonstrate and quantify the manipulation of entropic
bonds, we examine the effect of particle-shape changes on
bond structure. To see this, we compute the entropy landscape
for elongated hexagons. Elongating the particle shape breaks
rotational symmetry and results in four geometrically distinct
edge-to-edge-aligned configurations (Fig. 3A), which we label
as primary, hexagonal, herringbone, and defect, according to
the crystals in which these motifs arise (Fig. 2A). Isosurfaces
of constant ∆S/kB are shown in Fig. 3A for particles with
γ= 2

3
at pressure P = 14.9 (the highest pressure fluid observed).

The computed entropy landscape shows the distinct bonded
states that correspond to each of the geometrically distinct
edge-to-edge nanoplate configurations or “motifs.”

To understand how we may use the shape parameter γ to
manipulate entropic bonds, we use alluvial diagrams (Fig. 4).
Originally developed (34) to visualize change in complex net-
works, these diagrams allow us to understand the relation-
ship between bond size and particle shape. For each shape
parameter γ investigated, we identify geometric configurations
belonging to a particular entropic bond, as defined by a voxel
centered at (r , θ1, θ2) in Fig. 3C and aggregate them into a
colored rectangle, where the size of the rectangle increases
with the number of identified configurations. The identification
of each configuration is computed independently for different
particle shapes. Different particle shapes lead to entropy land-
scapes with different topographies. Because of this topography
change, a geometric configuration that is identified with a par-
ticular bonded state for one particle shape can be identified
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Fig. 2. (A, Top) Schematic of a pair of regular hexagons, describing the coordinate system for directional entropic forces in 2D systems: (r, θ1, θ2). θ1 is
the angle between the orientation of particle i and the interparticle vector ~rij (and vice versa for θ2). This coordinate system distinguishes between pair
orientations integrated over in the (x, y) coordinate system. (A, Bottom) Schematic illustrating alternate coordinates for particle orientation associated
with particle libration: θ+ and θ−. θ+ accounts for shearing motion, and θ− accounts for twisting motion. (B) Contour plots of the entropy (∆S/kB) in
the (x, y) coordinate system at 4 different densities: φ= 0.55, 0.65, 0.75, 0.85. At low density (φ= 0.55), there is very little attraction or repulsion between
hexagons. As density increases, regions of effective attraction and repulsion begin to develop as evidenced by the dark purple “ring” around the geo-
metrically forbidden ring that aligns with the edges of the hexagon, showing that these edges are effectively attractive, while the rings that develop
further out correspond to low-entropy configurations that are not favorable and are effectively repulsive. Once in the solid phase (φ= 0.75), these regions
of attraction and repulsion (high-entropy regions and low-entropy regions) are more distinct. (C) Contour plots of the entropy (∆S/kB) in the (r, θ1, θ2))
coordinate systems at 4 different densities: φ= 0.55, 0.65, 0.75, 0.85. In both B and C, the color bar indicates constant ∆S/kB contours corresponding to
isosurfaces; negative entropy indicates that such configurations are unfavorable, while positive entropy indicates favorable configurations of particle pairs.
(D) Schematic of an entropic bonding transition from a view of the θ1− θ2 plane (Top) and the ~rij − θ1 plane (Bottom) at a density of φ= 0.75. Differ-
ent entropic bonds are indicated by color, while the darker shade indicates a higher entropy, with the shades being at the same isosurfaces shown in C.
A proposed reaction coordinate is provided, showing a possible pathway particles may take to reconfigure from one bond configuration to another. (E)
Bond lifetime distribution for hard regular hexagons at 4 densities φ= 0.55, 0.65, 0.75, 0.85, corresponding to low-density fluid, high-density fluid, low-
density solid, and high-density solid phases, respectively. Each data series is shifted by a decade for visual clarity. For each dataset, statistical error calculated
from four independent samples is smaller than plot markers. The line added above the data shows the power-law decay behavior of entropic bonds at
short times.

with a different bonded state for a different particle shape.
Bonded-state identification changes are indicated via gray bands
between the colored rectangles in Fig. 4. Analysis of the alluvial
diagram reveals the ability to manipulate and control entropic
bonds simply by changing the shape of a hard particle, in this
case by increasing or decreasing the value of γ. As shown in
Fig. 4 (black line), a configuration identified with a defect bond
for γ= 1

2
may be manipulated to belong to a herringbone bond

at γ= 1 or a primary bond at γ= 2
3

or γ= 2. This ability to con-
tinuously (as opposed to discretely) manipulate entropic bonds
makes such bonds unique, providing a method to design and con-
trol interparticle interactions and their resulting self-assembly
behavior.

Entropic bonds can be manipulated and the alluvial diagram
in Fig. 4 helps to summarize changes to the topography of the
bonding landscape, however entropic bonds also allow manip-

ulation of the topology of the bonding landscape, in terms of
connectivity and transition states between bonding states. In par-
ticular, visual inspection of the entropic bonds shown in Fig. 3C
indicates that the shape parameter γ does not only have a sig-
nificant effect on the size and shape of the resulting entropic
bonds, but also on the maximal entropy of and connectivity
between each bond. To quantify the effect that γ has on these
variables and the resulting entropic bonds, we use techniques
from the study of transition states that have previously been used
to study protein folding and other problems involving complex
energy landscapes, via so-called disconnectivity graphs (35). Dis-
connectivity graphs provide insight into the stability of different
conformations of a system, as well as indicate which structures
or intermediate states may impede a system from reaching its
most stable state (its energetic minimum) (35). We use discon-
nectivity graph analysis to reveal the relationship between the

Harper et al. PNAS | August 20, 2019 | vol. 116 | no. 34 | 16705
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Fig. 3. (A) Top view of the entropy landscape of elongated hexagons at γ= 2
3 , with entropic bond motifs labeled as follows: primary bonds (green), present

in both hexagonal and herringbone lattices; hexagonal bonds (blue), present only in the hexagonal lattice; herringbone bonds (orange), present only in
the herringbone lattice; and defect bonds (red), which are antagonistic to either crystal lattice (see Fig. 1A to see these motifs in the superlattice structure).
Note that due to the symmetry of elongated hexagons, the entropy landscape is periodic, repeating every π; thus, the range of the landscapes is restricted
to θ1, θ2 ∈ [0,π]. Entropy isosurfaces indicate regions corresponding to each bond type (isosurfaces corresponding to ∆S/kB = [2.5, 2, 1.5, 1, 0.5] shown in
lighter coloring). ∆S/kB = 0 is indicated with a gray isosurface for reference. Note that because β∆F12 =−∆S/kB, entropy maxima, rather than minima,
represent the entropically preferred (energetically preferred) local motifs. (B) Orthographic views of (r, θ+) (Top) and (r, θ−) (Bottom) showing the curvature
of the entropy landscape in r. The greater elongation along the θ+ direction compared with θ− indicates greater ability for shear libration, as opposed to
twist libration. Included between them is a schematic illustrating these alternate coordinates for convenience. (C) Orthographic view of the isosurfaces of
entropically favorable configurations of elongated hexagons at γ= 1

2 , γ= 2
3 , γ= 1, γ= 3

2 , and γ= 2 at pressures P = [16.0, 14.9, 13.5, 12.6, 12.1], respec-
tively. Changing the shape parameter γ has a significant impact on the size, shape, and connectivity between entropic bonding regions: as γ increases, the
favorable defect regions shrink, and become unfavorable for γ= [ 3

2 , 2], while those for herringbone and hexagonal bonds grow. See SI Appendix, Entropic
Bonding Landscapes in Elongated Hexagon Systems and Figs. S4–S6 for alternate views of these entropy landscapes.

shape parameter γ, the emergent directional entropic forces, the
entropic bonds that form, and the self-assembled structure of the
hard hexagonal platelet system (Fig. 5). Disconnectivity graphs
in other contexts depict the structure of (free-)energy landscapes
as trees, where minima of distinct conformations are “leaves”,
and transition states (saddle points) between conformations are
nodes. Because we are concerned with the entropy, we represent
entropy maxima as leaves and saddle points in the entropy as
nodes. Also note that instead of plotting ∆S directly, we plot
the entropy maxima as −∆S12/kB =β∆F12 to facilitate com-
parison with the standard approach (using free energy). We use
the values of the maximal entropy associated with each entropic
bond, as well as the lowest entropy value associated with the tran-
sition between two bonds to create the disconnectivity graphs

(35) shown in Fig. 5. Fig. 5 shows results for three representa-
tive values of γ; see SI Appendix, Figs. S7 and S8 for discon-
nectivity graphs for the regular hexagons and all elongated
hexagons, respectively.

Examining Fig. 5 reveals increasing entropic penalty for pairs
of particles bound in the defect configuration with increasing
elongation (∆S/kB changes by more than 2 from γ= 1

2
to γ= 2;

Fig. 5), which occurs along with a disappearance of states within
the entropy basin for defect bonding (Fig. 4). In contrast, we see
an increase in the entropic preference for pairs of nanoplates
bound in the hexagonal motif (∆S/kB changes by nearly 2 from
γ= 1

2
to γ= 2; Fig. 5), but the size of the entropy basin for

hexagonal bonding shows little variation across particle shape
(Fig. 4). Further analysis of disconnectivity graphs (Fig. 5 A–C)
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Fig. 4. Manipulation of entropic bonds, shown via an alluvial diagram, indicating particle shape modification of bonded state structure in (r, θ1, θ2) space
for elongated hexagons at P = [16.0, 14.9, 13.5, 12.6, 12.1] for shape parameters γ= ( 1

2 .
2
3 , 1, 3

2 , 2). Bar sizes correspond to phase space volume associated
with each bond type. Gray lines associate “flows” within and between bond types as particle shape changes. Additional bars indicate regions of phase
space that change from being associated with bonds to nonbonded or geometrically forbidden states, keeping total phase space volume constant across all
shapes. Examples below each shape indicate the same voxel in (r, θ1, θ2) for each shape, and the corresponding bond, demonstrating how the bonds change
as a function of particle shape. The most striking observation is the considerable increase in the voxels belonging to the herringbone bond from γ= 1

2 →
2
3 ,

followed by the reduction in defect voxels from γ= 3
2 → 2. Observation of the flow between bonding regions as γ changes shows that particle shape has

a significant impact on entropic bonding regions, suggesting the ability to strategically engineer entropic bonds via shape manipulation. See Fig. 3C and SI
Appendix, Figs. S4–S6 for the entropic bonding regions used to compute the alluvial diagram.

indicates little dependence of ∆Sprimary/kB (entropy of the
primary bonding motif) as a function of elongation (γ). However,
defect bonds depend strongly on γ; ∆Sdefect/kB increases with γ,
leading to a stronger entropic preference for bound pairs con-
sistent with the ordered crystal structures. ∆S/kB also changes
as a function of γ for hexagonal and herringbone bonds, indicat-
ing competition between these motifs in the dense fluid phase.
Taken together, these effects contribute to the long range order
observed in the experimental colloidal crystal assembly of (LnF3)
nanoplates (28). From this we conclude that the entropy of an
entropic bond, as shown in Fig. 5, and its relative depth in the
entropy landscape, rather than the size of the bond as shown
in the Fig. 4, determines the self-assembled structure of hard
hexagonal platelets.

Discussion
Motivated by a growing body of work (8–26) showing entropy-
driven self-assembly of hard, anisotropic particles into crystals
comprised of local geometric motifs with temporal stability, we

investigated whether these stable motifs act as “bonds” in a sim-
ilar sense to familiar chemical bonds. Surprisingly, our results
show that even minimal, classical, single-component systems
of hard hexagons exhibit behavior that resembles conventional
bonding. The purely entropic systems we report on here show
behaviors that resemble hydrogen bonding (3, 36), such as direc-
tionality and the ability to be broken by thermal fluctuations. Of
course, the entropic bond is not a hydrogen bond, as entropic
bonds are enforced by emergent free-energy barriers that change
with density. Rather than resulting from the rearrangement of
local electron density, these free-energy barriers result from
the rearrangement of local entropy. The emergent nature of
the entropic bond shares similarities with other traditional
bonds (1), especially metallic bonds, where electron density is
delocalized.

Our model system of hard, elongated hexagons illustrates
general features of entropic bonding, including the contrast
between bond strength and size, and how bonds can be manipu-
lated, as well as providing insight into the mechanisms driving
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Fig. 5. Disconnectivity graphs indicating entropy landscape topology for elongated hexagons at P = [16.0, 13.5, 12.1] for shape parameters γ: γ= 1
2 (A),

γ= 1 (B), and γ= 2 (C). The values of the topology are plotted as −∆S/kB = β∆F12 due to the convention of using disconnectivity graphs to analyze and
interpret free-energy landscapes. Each leaf represents an entropic bonding motif found at entropy maxima (plotted as a minima) on the landscape, while
each node is the entropy of the metabasin connecting leaves or nodes. Each line is colored by its corresponding bonding motif. Traversing the graph provides
information about the relative entropy penalty required to break a bond, as well as which bonds may directly interconvert. For example, consider A, γ= 1

2 :
while the relative entropy of a herringbone bond is greater than that of a hexagonal bond, the entropy penalty required to break the herringbone bond is
much less than that of the hexagonal bond, indicating that the hexagonal bond is more stable than the herringbone bond, which is more likely to convert
to a defect or primary bond. Analysis of these (and the other studied values of γ in Fig. 3C and SI Appendix, Figs. S4–S6) shows that the combination of
bond entropy and the relative entropy penalty required to break a bond lead to the preference for hexagonal bonds over herringbone bonds, leading to
the entropy-driven self-assembly of the hexagonal lattice.

the stabilization of nanoplate assembly. Our results show that
the entropic stabilization of hexagonal crystals of elongated
hexagons derives from the relative free energy of an entropic
bond, as well as the relative increase in free energy required
to break an entropic bond. We observe that the shape of the
nanoplates may be manipulated to alter both the size and
strength of these entropic bonds. It has been shown that super-
lattice assembly can produce alternative motifs when enthalpic
interactions dominate (Fig. 2A). Ref. 28 reported experiments
and simulations of the self assembly of a herringbone lattice
for nanoplates with excess enthalpic attraction between differ-
ent edge types. Following ref. 28, we define an interaction bias
1 + ε as the ratio of attraction between edges of opposite type to
the attraction between edges of like type (detailed derivation in
SI Appendix, Interaction Bias):

(1 + ε) =
(2∆Sprimary + 2∆Shexagonal)

4∆Sherringbone
.

We can estimate the threshold value of ε required to bias for-
mation of the enthalpically driven, herringbone lattice over the
entropically preferred hexagonal lattice by comparing the free-
energy minima associated with the entropic bonds. Despite the
fact this estimate ignores the collective nature of the entropic
bond, we find reasonable agreement between ε estimated from
our purely entropic systems and the results from systems with
enthalpic interactions reported in ref. 28 (see Fig. 6). This
result agrees with what one would expect from an approxi-
mation of interparticle interactions in which the entropic and
enthalpic effects were independent. While such a first-order
approximation is indeed simplistic, the agreement in the required
interaction bias between the 2 systems indicates that such anal-
ysis provides a starting point for assembly pathway engineering.
Indeed, the success of this prediction supports our contention
that entropic bonds are as useful a schema as traditional bonds,

as does recent work showing that 2-body approximations are
sufficient to capture relevant physical behavior (33). This com-
parison also provides a powerful approach for designing patchy
colloids (37) with considerably less computational effort.

The systems we studied here were two dimensional, but pre-
vious demonstrations of the role of directional entropic forces
in self-assembling 3D systems of hard polyhedra (10, 18, 21, 25,

Fig. 6. Comparison of the enthalpic interaction bias (28) εH and entropic
interaction bias εS required to self-assemble an alternating/herringbone lat-
tice. Because the simulations used to compute εH account for nanoplate
shape, ε implicitly contains both entropic and enthalpic contributions. Thus,
the difference in the biases results from the addition of enthalpic inter-
actions as shown in ref. 28. The fact that −ε> 0 for all γ indicates that
the hexagonal lattice should self assemble for all γ, as observed in both
this study and in ref. 28. The similarity in functional form and magni-
tude for both εH and εS indicate that manipulation of nanoplate shape
alters entropic bonds, resulting in similar changes to the interaction bias
as manipulation of the bias via chemical functionalization.
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26, 29, 38) provides further support to interpreting these forces
in the language of bonds. Moreover, the existence of differ-
ent classes of ordered structures (crystals, rotator crystals, liquid
crystals, and quasicrystals) in hard particle systems suggests that
entropic bond behavior and properties can vary widely by parti-
cle shape (14, 39). We hypothesize that further investigation to
quantify, both spatially and temporally, bonding between neigh-
boring polyhedra of varying shape will reveal entropic bonds
with properties that mimic, albeit classically, the ionic, covalent,
metallic (1), hydrogen (2), or mechanical (5) bond types that exist
in other chemical systems.

Finally, supramolecular chemical descriptions have been pre-
viously applied to Janus (40) and depletion-mediated lock-and-
key colloid interactions (41–44). The systems we studied here,
and those studied in refs. 40–44, would—like most colloidal
systems—typically be categorized as “nonbonded” interactions.
Nevertheless, we found that the, ostensibly, nonbonded platelet
systems we studied exhibit a form of bonding that could be
extracted from considering effective interactions arising between
platelets. We consider the form of bonding discussed here dif-
ferent not only from chemical bonds but also from nonbonded
interactions considered in, e.g., proteins and clusters (37, 45–51).
There, supramolecular objects reconfigure among different con-
formations via transition states that can also be described with
disconnectivity graphs. However, such conformational changes
are intramolecular. In the hard particle systems we studied
here, bonding is defined intermolecularly. In this sense, the
bonds we consider in our systems are much more aligned with
chemical bonds.

If weak, entropic mediation can lead to unconventional forms
of bonding under appropriate thermodynamic conditions, then
there may exist thermodynamic conditions under which a much
broader class of objects with other forms of mediation, includ-
ing, e.g., depletion and van der Waals interactions, might also
exhibit unconventional forms of bonding and, if so, may profit
from supramolecular bonding descriptions like those used here
and in related work (40–44).

Methods
We used the HOOMD-Blue (52–55) simulation package with the Hard Parti-
cle Monte Carlo (HPMC) (56) plugin to simulate systems of N = 4, 096 hard
nanoplatelets (see SI Appendix, Figs. S1 and S2 for example simulation
trajectory snapshots). Hard, regular hexagons (α= 120◦; γ= 1) (example
simulation trajectory frames shown in SI Appendix, Figs. S1 and S2) were
initialized on a lattice at the desired density φ and were run in the NVT
(canonical) ensemble. Hard elongated hexagons (α= 68◦; γ) were initial-
ized on a lattice at φ= 0.2, thermalized for 105 MC sweeps at constant
volume into a low-density fluid phase, and then run in the NPT (isothermal-

isobaric) thermodynamic ensemble at the desired pressure. NPT moves allow
the simulation box to shear as well as expand or contract. All systems of par-
ticles were equilibrated and then run for an additional 3× 107 MC sweeps
for the purposes of computing the required quantities. To best capture
the entropic forces that lead to the self assembly of the nanoplatelets,
the PMFTs are computed in the highest pressure fluid observed. Reduced
pressures decrease bonding strength, while increased pressures increase
bonding strength.

Bond Identification. We used automated image segmentation reliably iden-
tify the different entropic bonding states. Watershed image segmentation
(57) is well-suited to this application because it assigns each pixel/voxel of
an image to a region associated with an entropy maximum/free-energy
minimum by “flooding” the entropy landscape starting at free-energy min-
ima until these flooded regions meet, giving each pixel/voxel a unique
label associated with a given minimum (see SI Appendix, Fig. S3 for
an illustration of the watershed cut process on PMFTs of hard regular
hexagons). Watershed image segmentation has the added benefit of pro-
viding information about the boundaries between bonds, allowing for
identification of transition states between minima via network analysis
techniques.

Bond Lifetime Distribution. We calculated bond lifetime distributions from
MC simulations. Bonded particle pairs were identified as above, and we
tested every MC sweep for changes in bonding. MC moves were local
and limited to 10% of the move required to break a bond to approx-
imate particle dynamics (30) and to prevent artificial bond breaking by
unphysical moves. Four independent replicates were computed at each den-
sity. To appropriately account for both short timescale behavior and long
timescale behavior, we use logarithmic histogram binning in Fig. 1.

Disconnectivity Graphs. Topological analysis of the entropy landscape facil-
itates deeper understanding of the entropic bonds that form as a result
of the emergent directional entropic forces present in the system. Discon-
nectivity graphs (58–61) are one way to analyze such landscapes, showing
the connections between entropy maxima/free-energy minima and the
associated transitions between metabasins.

Scientific Software
Figures in this work (main text and SI Appendix) were produced with
Matplotlib, (62), Mayavi (63), and d3.js (64, 65). Data analysis was performed
using Freud (66), NumPy, SciPy, SciKit-Image, and IPython (67–72).
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