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Direct coupling analysis (DCA) for protein folding has made very
good progress, but it is not effective for proteins that lack many
sequence homologs, even coupled with time-consuming confor-
mation sampling with fragments. We show that we can accurately
predict interresidue distance distribution of a protein by deep learning,
even for proteins with ~60 sequence homologs. Using only the geo-
metric constraints given by the resulting distance matrix we may con-
struct 3D models without involving extensive conformation sampling.
Our method successfully folded 21 of the 37 CASP12 hard targets
with a median family size of 58 effective sequence homologs
within 4 h on a Linux computer of 20 central processing units. In
contrast, DCA-predicted contacts cannot be used to fold any of
these hard targets in the absence of extensive conformation sam-
pling, and the best CASP12 group folded only 11 of them by inte-
grating DCA-predicted contacts into fragment-based conformation
sampling. Rigorous experimental validation in CASP13 shows that
our distance-based folding server successfully folded 17 of 32 hard
targets (with a median family size of 36 sequence homologs) and
obtained 70% precision on the top L/5 long-range predicted con-
tacts. The latest experimental validation in CAMEO shows that our
server predicted correct folds for 2 membrane proteins while all of
the other servers failed. These results demonstrate that it is now
feasible to predict correct fold for many more proteins lack of
similar structures in the Protein Data Bank even on a personal
computer.

protein folding | deep learning | protein contact prediction |
protein distance prediction | direct coupling analysis

Computational structure prediction of proteins without de-
tectable homology to experimentally solved structures is a
very challenging problem. Even after decades of research, prog-
ress on this problem has been slow, and many methods require
considerable computational resources, even for relatively small
proteins. Nevertheless, in recent years good progress has been
achieved thanks to accurate contact prediction enabled by direct
coupling analysis (DCA) (1-9) and deep convolutional neural net-
works (DCNN) (10-16). As such, contact-assisted protein folding
has gained a lot of attention and contact prediction has garnered
considerable research effort.

We have developed the CASP12- and CASP13-winning method
RaptorX-Contact (10) that uses deep and fully convolutional re-
sidual neural network (ResNet) to predict contacts. ResNet is one
type of DCNN (17) but is much more powerful than traditional
DCNN. RaptorX-Contact has good accuracy even for some proteins
with only dozens of sequence homologs. The precision of RaptorX-
Contact decreases more slowly than DCA when more predicted
contacts are evaluated, especially when the protein under study has
few sequence homologs (10). As reported in refs. 10 and 12, without
extensive fragment-based conformation sampling, the 3D models
constructed from contacts predicted by RaptorX-Contact have much
better quality than those built from contacts predicted by DCA
methods such as CCMpred (6) and the CASP11 winner Meta-
PSICOV (18). RaptorX-Contact also works well for membrane
proteins (MPs) even trained by soluble proteins (12) and for com-
plex contact prediction even trained by single-chain proteins (19).
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Both our ResNet and DCA are global prediction methods
because they predict the contact/distance score or probability of
one residue pair by considering its correlation with other residue
pairs at distant sequence positions, which is the key to the sig-
nificant improvement in contact prediction. In principle, when
many convolutional layers are used, it is possible to capture
correlation between any two residue pairs across the whole
contact/distance matrix. However, ResNet differs from DCA in
that 1) ResNet can capture higher-order residue correlation
(e.g., structure motifs) while DCA mainly focuses on pairwise
relationships, 2) ResNet tries to learn the global context of a
contact matrix, and 3) existing DCA methods are roughly linear
models with tens of millions of parameters estimated from a
single protein family, while ResNet is a nonlinear model with
parameters estimated from thousands of protein families. Deep
learning (DL) models such as CMAPpro (20) and Deep Belief
Networks (DBN) (21) were used for contact prediction before,
but ResNet is a DL method that greatly outperforms shallow
methods such as MetaPSICOV (18). Different from ResNet and
DCA, DBN and MetaPSICOV are local prediction methods, as
they predict the label (i.e., contact or distance) of 1 residue pair
without considering the labels of others. This is one of the major
reasons why DBN and MetaPSICOV underperformed RaptorX-
Contact. Inspired by the success of RaptorX-Contact, many
CASP13 predictors have employed fully ResNet or DCNN (13, 15,
22), as shown in the CASP13 abstract book. Notably, the Cheng
group, who developed DBN, has switched to DCNN for contact
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prediction (13). The Peng group, who employed traditional DCNN
in CASP12 (16), has switched to ResNet in CASP13.

Although contact prediction is drawing considerable attention,
here we study distance prediction and treat contact prediction as
a by-product. The rationale for this decision is 2-fold. The dis-
tance matrix contains finer-grained information than the contact
matrix and provides more physical constraints of a protein struc-
ture (e.g., distance is metric but contact is not). Because of this, a
distance matrix can determine a protein structure (except mirror
image) much more accurately than a contact matrix. Trained by
distance instead of contact matrices, ResNet may learn more
about the intrinsic properties of a protein structure and thus
greatly reduce the conformation space and improve folding accu-
racy. Further, different from DCA that aims to predict only a small
number of contacts to assist time-consuming conformation sam-
pling, we would like to predict the whole distance matrix and then
directly construct protein 3D models without extensive conforma-
tion sampling. By doing so, we significantly reduce running time
needed for protein folding, especially for a large protein. As we use
many more distance restraints to construct 3D models, the impact of
individual distance prediction error may be reduced (by the law of
large numbers). In contrast, contact-assisted conformation sampling
may be misguided by several wrongly predicted contacts and needs a
long time to generate a good conformation for a large protein.

Distance prediction is not totally new (23-26). We have
employed a probabilistic neural network to predict interresidue
distance distribution, converted it to protein-specific distance-
based statistical potential (27), and studied its folding simula-
tion (28). Recently, we showed that protein-specific distance
potential derived from deep ResNet may improve by a large
margin protein threading with remote templates (29). In addition
to distance prediction, we predicted secondary structure and
backbone torsion angles by deep ResNet. By feeding these pre-
dicted restraints to CNS (30), we are able to quickly construct
accurate 3D models, as evidenced by self-benchmark on 37 CASP12
hard targets (14) and 41 Continuous Automated Model Evalua-
tion (CAMEO) hard targets (10) as well as rigorous experimental
validation in CASP13 and CAMEO.

Results

Approach Summary. We use a DL network very similar to that
described in ref. 10 to predict the Euclidean distance distribution
of 2 atoms (of different residues) in a protein to be folded (Fig.
1). Our DL network consists of one 1D deep ResNet, one 2D
deep dilated ResNet, and one Softmax layer. The 1D ResNet
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Fig. 1. The overall deep network architecture for protein distance prediction.
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captures sequential context of 1 residue (or sequence motifs) and
the 2D ResNet captures pairwise context of a residue pair (or
structure motifs). A dilated 2D convolutional operation (31) is
used to capture a broader pairwise context with fewer parame-
ters. The 1D ResNet consists of 6 to 7 convolutional layers and
the same number of instance normalization layers and ReLU
activation layers. The kernel size of the 1D convolutional oper-
ation is 15. The 2D dilated ResNet is much more important,
consisting of 30 to 40 residual blocks, each having 2 convolutional
layers, 2 instance normalization layers, and 2 ReLU activation
layers. The contact and distance prediction accuracy may further
improve slightly when 50 to 60 residual blocks are used for
the 2D ResNet. We use 5 x 5 as the kernel size of the 2D
convolutional operation. Note that the convolutional operation
is applied to the whole protein sequence and matrix. In the case
that the matrix is too big to fit into the limited graphics processing
unit (GPU) memory, a submatrix of 300 x 300 or 400 x 400 is
randomly sampled. As mentioned by us before (11), we have
tested a few other slightly different network architectures such as
dense deep network, wide ResNet, and adding LSTM onto the 2D
ResNet but have not observed any significant performance gain.
. We discretize interatom distance into 23 bins: <4.5 A, 4.5to 5
A, 5t055A,...,15t015.5A,155t016 A, and >16 A and treat
each bin as a classification label. Our DL model for distance
prediction is trained using a procedure similar to that described
in ref. 10. By summing up the predicted probability values of the
first 8 distance labels (corresponding to distance <8 A), our
distance-based DL model can be used for contact prediction and
has 3 to 4% better long-range prediction accuracy than the DL
model directly trained from contact matrices.

In addition to Cs—Cg, we also trained separate DL models to
predict distance distribution for 4 other atom pairs: C,—C,, Co—C,,
Cy—C,, and N-O, where C, is the first CG atom in an amino acid.
When CG does not exist, OG or SG is used. The predicted dis-
tance of these 5 atom pairs is used together to fold a protein,
which on average yields slightly better models than using Cg—C;
distance alone. We also trained a 1D ResNet to predict backbone
torsion angles from sequence profile, which is used together with
predicted distance to build 3D models.

In CASP13 we registered RaptorX-Contact for contact prediction
and distance-based ab initio folding and RaptorX-DeepModeller
for distance-based folding of a target based upon its alignment to
weakly similar templates. In addition to features used by RaptorX-
Contact, RaptorX-DeepModeller employed a few alignment-based
input features including amino acid and profile similarity, secondary
structure similarity, and an initial distance matrix extracted from
template. In this paper we mainly focus on RaptorX-Contact.

Distance-Based Folding Outperforms Contact-Based Folding. On the
37 CASP12 FM (free-modeling) targets, our distance-based ab
initio folding method works much better than 3 contact-based
folding methods (i.e., our own contact-based method and
CCMpred- and MetaPSICOV-based) and 4 top CASP12 groups,
Baker-server (32), Baker-human (33), Zhang-server (34), and
Zhang-human (35) (Table 1, Fig. 24, and Dataset S1). The top
CASP12 groups folded some hard targets using contacts pre-
dicted by DCA and/or shallow machine learning methods.
Zhang-human also extracted information from CASP12 server
predictions. The 3D models predicted by our distance-based
folding method for CASP12 FM targets have average TMscore
of 0.466 and 0.476, respectively, when the top 1 and the best of
the top 5 models are evaluated. When all 5 models are consid-
ered, our distance-based folding method can predict correct
folds (TMscore >0.5) for 21 CASP12 FM targets, much better
than our contact-based method and the best CASP12 human
groups. With only predicted secondary structure and contacts
predicted by MetaPSICOV and CCMpred, we may generate
correct folds for 2 and 0 targets, respectively. That is, contacts
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Table 1. Modeling accuracy of selected methods on

CASP12 hard targets

Method Top 1 Top 5 #OK
This work 0.466 0.476 21
Our contact 0.354 0.397 10
CCMpred 0.216 0.235 0
MetaPSICOV 0.262 0.289 2
Baker-server 0.326 0.370 9
Zhang-server 0.347 0.404 10
Baker-human 0.392 0.422 1
Zhang-human 0.375 0.420 1"

Columns “Top 1" and “Top 5” list the average TMscore of the top 1 and
the best of top 5 models, respectively. Column “#OK" lists the number of
models with TMscore > 0.5.

predicted by CCMpred and MetaPSICOV alone are insufficient
for 3D modeling.

The folding results on the CAMEO data are consistent with
that on the CASP12 data (Table 2, Fig. 24, and Dataset S1).
When the first and the best of the top 5 models are evaluated,
our distance-based 3D models have average TMscores of 0.551
and 0.577, respectively, about 10% better than our contact-based
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models, which have average TMscores of 0.504 and 0.524, re-
spectively, and much better than the models built from contacts
generated by CCMpred and MetaPSICOV. Our distance- and
contact-based folding methods predicted correct folds for 30 and
23 of 41 CAMEDO targets, respectively.

Dependency on Multiple Sequence Alignment and Direct Coupling
Score. Our distance-based model quality is correlated (coeffi-
cient ~0.6) with logarithm of Meff (i.e., the multiple sequence
alignment [MSA] depth) (Fig. 2B). When Meff > 55 or In(Meff) > 4,
there is a good chance that our predicted 3D models have a
correct fold. Our distance-based folding method can fold 8 out of
21 CASP12 FM targets with Meff < 100: T0862-D1, T0863-D1,
T0869-D1, T0870-D1, T0894-D1, T0898-D1, T0904-D1, and T0915-
D1. Meanwhile, 5 of them have 3D models with TMscores >0.6.
In contrast, Zhang-Server, Zhang-Human, Baker-Server, and
Baker-Human predicted models with TMscores >0.6 for only 2, 1, 0,
and 0 targets with Meff <100, respectively (Dataset S1).

To evaluate the importance of direct coupling score produced
by CCMpred, we trained our ResNet without using it but keeping
all other features including raw and average product correction
(APC)-corrected mutual information (MI). On the CASP12 FM
targets, this ResNet has top L, L/2, L/5, and L/10 long-range
contact precision 36.3%, 48.4%, 61.9% and 66.7%, respectively,
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Fig. 2. Distance prediction and folding results on the 37 CASP12 FM and 41 CAMEO hard targets. (A) Quality of distance- vs. contact-based 3D models
predicted by our method. (B) Distance-based 3D model quality vs. logarithm of Meff. (C) C;—C; distance prediction error vs. logarithm of Meff. (D) Distance-
based 3D model quality vs. C;-C; distance prediction error. Here model quality or quality of a model denotes the quality of a predicted 3D model measured by

TMscore.
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Table 2. Modeling accuracy of selected methods on CAMEO
hard targets

Method Top 1 Top 5 #OK
This work 0.551 0.577 30
Our contact 0.507 0.525 23
CCMpred 0.292 0.316 4
MetaPSICOV 0.365 0.392 8

See Table 1 for explanation.

where L is the sequence length. The average TMscores of the top
1 and best of the top 5 models built from distance predicted by this
ResNet are 0.400 and 0.411, respectively. By contrast, when this
direct coupling score is used, the top L, L/2, L/5, and L/10 long-
range contact precision is 43.1%, 56.9%, 66.8%, and 73.7%, re-
spectively. That is, without this score, the long-range contact
precision and 3D model quality drop by ~7% and 0.066, respec-
tively. The performance does not decrease too much since many
targets have a small Meff and thus this direct coupling score is not
much better than MIL.

Distance Prediction Error and Implications on 3D Modeling. We only
consider the pairs of atoms with sequence separation of at least
12 residues and predicted distance <15 A. We calculated the
average quality of predicted distance on each CASP12 or
CAMEDO target (Dataset S1) and the average quality of each
dataset (SI Appendix, Table S1). Distance prediction error is
correlated (coefficient ~—0.53) with logarithm of Meff (Fig. 2C).
When Meff > 55 or In(Meff) > 4, Cy~C; distance prediction error
is likely to be less than 4 A. Three-dimensional modeling quality
is strongly correlated (coefficient ~—0.80) with distance pre-
diction error (Fig. 2D), which implies that as long as distance
prediction is accurate CNS is able to build good 3D models.
When distance error is 8 A, the resultant 3D models have very
bad quality.

Rigorous Blind Test in CASP13. RaptorX-Contact was officially
ranked first among 46 human and server contact predictors, in
terms of a combination of many metrics. In terms of F1 of top L/5
long-range predicted contacts, the top 5 groups are RaptorX-
Contact (0.233), TripletRes (0.213), ResTriplet (0.208), RRMD
(0.192), and TripletRes_AT (0.191). DeepMind did not submit
contact prediction, according to its presentation at the seventh
Critical Assessment of Prediction of Interactions meeting;
AlphaFold’s F1 values on the top L/5, L/2, and L predicted long-
range contacts are 0.227, 0.369, and 0.419, respectively, slightly
better than ours (0.233, 0.362, and 0.411). On 12 FM/TBM tar-
gets, AlphaFold’s F1 values are 31.4, 48.7, and 55.1, better than
ours (28.7,43.2, and 51.7). This could be due to the difference of
training data. AlphaFold used a larger training set (Cath S35 as
of 16 March 2018) and a much deeper ResNet. Cath S35 con-
tains proteins with <35% sequence identity and thus has a better
coverage for FM/TBM targets than PDB25 used by us. See S/
Appendix for a more detailed study of the impact of training sets
on contact prediction (SI Appendix, Table S4). To the best of our
knowledge, all these top-performing groups used deep ResNet.
As a control, MetaPSICOV ran by the CASP13 organizers has
top L/5 long-range precision = 25.16% and F1 = 0.078, respec-
tively, and a DCA method GaussDCA has precision = 21.757%
and F1 = 0.067, respectively.

Table 3 summarizes the average quality of predicted distance
on the FM targets (Dataset S2). For most targets, the Cs-Cp
distance prediction error is less than 4 A (Fig. 34) and its cor-
relation with In(Meff) is not very strong (coefficient —0.45).
RaptorX-Contact predicted distance well for quite a few targets
such as T0969-D1 and T0957s2-D1 (SI Appendix, Fig. S1) but did

Xu

badly on T0953s1 and T0989-D1, both of which have In(Meff)
around 4. T0969-D1 has MSA depth >1,000, but T0957s2-D1
has only a shallow MSA. T0953s1 has 72 residues, but only 34
long-range residue pairs with native distance <15 A, which is
much smaller than typical. While estimating distance bounds
from predicted distribution, we assumed each target had about
7L long-range Cs—C; pairs with distance <15 A, which resulted in
a big prediction error on T0953s1 (SI Appendix, Fig. S1). T0989
is a 2-domain target. Its first domain has much better coevolution
signal than the second one. We did not split T0989 into 2 do-
mains in CASP13, which resulted in many more Cp—Cy pairs in
D1 being assumed to have distance <15 A and thus led to a big
prediction error (SI Appendix, Fig. S1). When T0989-D1 is pre-
dicted independently, its Cs—Cg distance error is only 4.89 A.

Table 4 shows the modeling accuracy of top 2 human and 6
server groups for the CASP13 FM targets. Our 2 distance-based
folding servers are only slightly worse than Zhang’s 2 servers,
which used ResNet-predicted contacts to guide folding simula-
tion. If we merge our 2 servers into a single group, the best
models have an average TMscore = 0.5264. Similarly, if Zhang-
Server and QUARK are merged, the best models produced by
the Zhang group have an average TMscore = 0.5348. Robetta
underperformed the top 4 servers by a large margin, possibly
because it did not use DL to predict contacts or distance. Although
AlphaFold and RaptorX-Contact have similar contact prediction
performance, AlphaFold did much better in 3D modeling. Alpha-
Fold predicted much better 3D models for quite a few targets (e.g.,
T0968s2-D1, T0980s1-D1, T0986s2-D1, T0990-D1, T1015s1-D1,
T1017s2-D1, and T1021s3-D2), although the Zhang group or
RaptorX also predicted correct folds for them. On several FM
targets (T0950-D1, T0960-D2, and T0963-D2) the Zhang group or
RaptorX predicted better 3D models than AlphaFold, however.

The quality (TMscore) of RaptorX-Contact 3D models is
correlated (coefficient ~0.68) with top L/2 long- and medium-
range contact precision (Fig. 3B) and Cg—Cg distance prediction
error (Fig. 3C). When Meff > 55 or In(Meff) > 4, RaptorX-Contact
is likely to predict a correct fold (TMscore > 0.5). When In(Meff) is
between 3 and 4, RaptorX-Contact may predict correct folds for
half of the targets. Here we use the HHblits MSA depth reported
by CASP13 as Meff. RaptorX-Contact predicted very good 3D
models for T0969-D1 (354 residues), T0953s2-D2 (127 residues),
and T0957s2-D1 (155 residues). T0969-D1 has >1,000 sequence
homologs, but the other two target domains have only ~30 se-
quence homologs. The 3D model for T0969-D1 has TMscore =
0.8 and rmsd = 5.1 A and the models for T0953s2-D2 and
T0957s-D1 have TMscore > 0.7 and rmsd = 3 to 4 A (SI Ap-
pendix, Fig. S2).

DL Can Predict New Folds and Its Dependency on Target-Training
Similarity. Some CASP13 FM targets may have weakly similar
experimental structures in the Protein Data Bank (PDB), al-
though they are hard to detect by sequence (profile) information.
Because of this, there are 2 possible reasons why DL performed
better than previous methods. One is that DL is just a better fold

Table 3. Quality of predicted distance on the 32 CASP13 FM
targets

Atom AbsE, A RelE Prec Recall F1

CbCb 3.76 0.259 0.678 0.540 0.588
CgCg 4.02 0.278 0.656 0.532 0.573
CaCg 3.84 0.262 0.671 0.512 0.567
CaCa 3.84 0.253 0.666 0.532 0.577
NO 3.75 0.253 0.674 0.505 0.566

Columns “AbsE” and “RelE” are the absolute and relative error. “Prec”
represents precision.
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Fig. 3. Distance prediction and folding results of RaptorX-Contact on the 32 CASP13 FM targets. (A) C;—C; distance prediction error vs. logarithm of Meff. (B)
Three-dimensional model quality vs. contact precision. (C) Three-dimensional model quality vs. C;-Cg distance prediction error. (D) Three-dimensional model

quality vs. logarithm of Meff.

recognition method and the other is that DL indeed can predict
3D models better than what can be copied from individual
training proteins. To address this, we analyze the FM targets and
their models from a few different perspectives (Dataset S3).
First, we use our structure alignment tool DeepAlign (36) to
calculate target-training structure similarity, that is, the structure
similarity in terms of TMscore between target experimental
structures and their most similar training protein structures. Some
targets indeed have similar structures in our training set (Fig. 44).
However, the quality (in terms of TMscore) of RaptorX-Contact

first models is weakly and negatively correlated (correlation co-
efficient = —0.199 and trendline R* = 0.0396) with target-training
structure similarity. RaptorX-Contact first models for 11 targets
have quality (i.e., TMscore) higher than their target-training
structure similarity (SI Appendix, Table S2). Meanwhile, 6 of
them have MSA depth <200 and 8 of them have no similar folds
in the training set at all (i.e., TMscore <0.5). That is, for these
targets RaptorX-Contact can predict 3D models much better than
what can be copied from their most similar training protein
structures. Second, 26 of the 32 RaptorX-Contact first models

Table 4. Folding results of selected methods on CASP13 FM targets
Top 1 model Best of top 5 model

Methods rmsd, A ™ GDT #OK rmsd, A ™ GDT #OK
AlphaFold 9.05 0.583 0.516 20 7.85 0.625 0.561 23
Zhang-human 8.93 0.521 0.462 18 7.87 0.558 0.487 20
Zhang-server 9.92 0.487 0.422 16 8.97 0.524 0.453 20
Zhang-QUARK 9.10 0.490 0.426 16 8.85 0.514 0.442 19
RX-DeepModeller 10.64 0.471 0.406 16 9.79 0.501 0.431 17
RX-Contact 10.92 0.474 0.409 15 10.09 0.498 0.427 17
Robetta Server 13.64 0.390 0.339 7 13.02 0.430 0.372 10
RX-TBM 12.49 0.402 0.345 7 11.87 0.420 0.358 9

The scores are calculated by us and may be slightly different from the official. AlphaFold and Zhang-human are human groups and the others are server
groups. Zhang-human did not submit models for T0950-D1, so its evaluation is based upon 31 targets.
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have TMscore <0.51 with all training protein structures (Fig. 4B),
which means they are not very similar to any training proteins, that

these 26 models have quality much better than 0.51 (Dataset S3).
We have also employed another tool, TMalign, to calculate the
structure similarity of two structures/models, which does not
change the conclusion drawn here. See SI Appendix for a more
detailed description.

We further compare RaptorX-Contact with 2 in-house threading

methods, CNFpred (36, 37) and RaptorX-TBM. CNFpred integrates
sequence profile, secondary structure, and solvent accessibility via
a machine learning approach to build sequence-template align-
ments, which are then fed into MODELER (38) to build 3D
models. CNFpred is more sensitive than HHpred (39), although
both mainly rely on sequence profile similarity. RaptorX-TBM

used our new threading program DeepThreader (29) to build
sequence—template alignments and then Rosetta-CM (40) to build

3D models from alignment. DeepThreader greatly outperforms
previous threading methods by integrating CNFpred with distance-
based statistical potential converted from distance distribution
predicted by RaptorX-Contact. Although mainly a template-based
method, RaptorX-TBM performed well on the CASP13 FM tar-
gets, only second to Zhang’s 2 servers and our 2 servers that applied
contact or distance-based folding (Table 4).

CNFpred and DeepThreader used PDB90 as the template
database while RaptorX-Contact was trained by PDB25. Al-
though PDB90 has a larger coverage, in terms of TMscore of the
first 3D models, RaptorX-Contact exceeded CNFpred by 0.236
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RaptorX-Contact models and training proteins. (C) First model quality of RaptorX-Contact vs. CNFpred. (D) First model quality of RaptorX-Contact vs. RaptorX-TBM.

(Fig. 4C) and RaptorX-TBM by 0.072 (Fig. 4D). RaptorX-
Contact and CNFpred models have weakly correlated quality
(correlation coefficient = 0.431 and trendline R* = 0.1868) since
they use the same set of sequence profile, predicted secondary
structure, and solvent accessibility. The correlation coefficient
and R? may further drop to 0.351 and 0.1234, respectively, if we
exclude two targets, T0957s2-D1 and T0975-D1, for which
CNFpred generates 3D models with TMscore >0.4 (Dataset S3).
That is, RaptorX-Contact model quality is only weakly correlated
with target-PDB sequence profile similarity. RaptorX-Contact
and RaptorX-TBM model quality has higher correlation co-
efficient (0.665) and trendline R? (0.4419) because they used the
same set of predicted distance information and sequence profile.
In summary, RaptorX-Contact can do much better than a very
good fold recognition method and its modeling accuracy is only
weakly correlated with sequence profile similarity.

Distance Violation for Model Quality Assessment. In the absence of
experimental structures, although a sophisticated method could
be developed to assess the quality of a 3D model, we find out
that the quality of a model is well correlated with distance vio-
lation (produced by CNS) of this model with respect to the set of
distance restraints predicted by RaptorX-Contact (Fig. 5 and
Dataset S4). When distance violation is less than 4 A, there is a
good chance that the resultant 3D model has a TMscore >0.5.
On the CASP12 FM targets, the correlation coefficient between
model quality (TMscore) and distance violation is —0.795. On
the CASP13 FM targets, the correlation coefficient is slightly
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worse (—0.707), possibly because for CASP13 distance violation
is calculated on domains predicted by us while model quality is
calculated on official domains. In contrast, for CASP12 targets
the official domain definitions are used for both prediction and
evaluation. Note that the quality of our 3D models has a stronger
correlation with distance violation than with logarithm of MSA
depth, which is ~0.6 on both CASP12 and CASP13 FM targets
(Datasets S1 and S2).

DL Can Fold MPs. Since mid-September 2018 we have tested
RaptorX-Contact (CAMEO ID: server 60) in CAMEO (https:/
www.cameo3d.org/), an online blind benchmark currently testing
~40 servers including Robetta, RaptorX, Swiss-Model, and
HHpred. There are no hard MP targets in CASP13. We show
that RaptorX-Contact predicted correct folds for two hard MP
targets (CAMEO-3D IDs: 2018-11-03_00000053_1 and 2018-11-
17_00000062_1). The first MP target (PDB ID code 6bhpC) has
200 residues and Meff = 229. RaptorX-Contact predicted a 3D
model with TMscore = 0.68 and rmsd = 5.65 A (SI Appendix, Fig.
S2), while the other servers failed to predict a correct fold (S
Appendix, Fig. S3). The second MP target (PDB ID code 6a2jA)
has 309 residues and a few thousand sequence homologs. RaptorX-
Contact predicted a 3D model with TMscore = 0.73 and rmsd =
5.51 A (SI Appendix, Fig. S2), while the other servers predicted 3D
models with TMscore <0.4 (SI Appendix, Fig. S4). The most similar
training proteins have TMscore ~0.45 with the experimental
structure of 6a2jA. That is, 6a2jA does not have a similar fold in
our training set. For 6bhpC, 7 training proteins, 4qnlA, 5gheA,
4p79A, 4klpA, 5fnnA, 2nrjA, and 4phoA, have TMscore >0.6
(0.655, 0.633, 0.627, 0.627, 0.626, 0.623, and 0.604) with its ex-
perimental structure. Its RaptorX-Contact best model has
TMscore 0.489, 0.534, 0.533, 0.541, 0.537, 0.531, and 0.506 with
these proteins, respectively. That is, the RaptorX-Contact model
for 6bhpC is not simply copied from one of these training proteins.

Information Content of Contacts Predicted by DL. One may argue
that DL has better precision than DCA simply because DL fills
in redundant contacts in a secondary structure pair while DCA
does not. This is not true for some targets. For 4 CASP13 FM
targets, T0975-D1 (MSA depth >500), T0950-D1, T0957s2-D1,
and T0980s1-D1, even when top n predicted medium- and long-
range contacts are considered (where n is the number of native
contacts) CCMpred failed to predict any native contacts in the
circled regions but RaptorX-Contact predicted many (Fig. 6). By
the way, the most similar training proteins for T0975-D1 and
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T0980s1-D2 have TMscore 0.448 and 0.476, respectively, with
their experimental structures. Even for targets with a deep MSA,
CCMpred generates too many false positives spreading over the
whole contact matrix (SI Appendix, Fig. S5).

To evaluate information content of predicted contacts, we
employ 2 strategies (Dataset S5). First, we employ entropy score
to estimate the utility of predicted contacts for 3D modeling. A
set of widely dispersed contacts may be more useful for protein
modeling than the same number of contacts confined in a small
contact submatrix. Entropy score was introduced in CASP12 to
assess contact prediction (14). It is calculated on only correctly
predicted contacts and ignores the impact of wrongly predicted
contacts. As reported by CASP13, when top 10, L/5, and L/2
long-range contacts are considered, RaptorX-Contact has en-
tropy score 0.311, 0.643, and 1.255, respectively, much larger
than GaussDCA (41) (the only DCA method blindly tested in
CASP13), which has entropy score 0.151, 0.332, and 0.553, re-
spectively. On most targets RaptorX-Contact has better entropy
score than GaussDCA (SI Appendix, Fig. S6). Among the 5
CASP13 FM targets (T0969-D1, T0975-D1, T1000-D2, T1021S3-
D1, and T1022s1-D1) with MSA depth >500, RaptorX-Contact
has entropy score 0.198, 0.763, and 1.687, respectively, while
GaussDCA has entropy score 0.251, 0.80, and 1.365, respectively,
when top 10, L/5, and L/2 long-range contacts are evaluated. That
is, when only a small number of predicted contacts are considered,
GaussDCA is slightly better for these targets, but when more are
considered, RaptorX-Contact is better. By the way, the entropy
score of RaptorX-Contact is negatively and weakly correlated with
target-training structure similarity (Dataset S5). This further
confirms that RaptorX-Contact predicts contacts not by copying
from structurally the most similar training proteins.

In addition to entropy score, we calculate the ratio of native
contacts covered by the correct ones among top »n predicted
contacts where n is the number of native medium- and long-
range contacts (Dataset S5). We say 1 native contact (of resi-
dues i and j) is covered by a correctly predicted contact (of
residues k and /) if their city-block distance (i.e., [i — k| + |[j = I|) is
no more than a given cutoff c. When ¢ = 0, the coverage is just
the recall. If RaptorX-Contact simply predicts redundant con-
tacts, it shall have similar coverage as DCA when c is big. Besides
GaussDCA, we also evaluate CCMpred’s contact prediction
generated by us during CASP13. At the same ¢, the advantage of
RaptorX-Contact over CCMpred and GaussDCA is very large,
although it is decreasing along with increasing ¢ (SI Appendix,
Table S3). At ¢ = 6, RaptorX-Contact, CCMpred, and GaussDCA
have coverage ratio 0.726, 0.534, and 0.307, respectively. Of the
5 targets with MSA depth >500, RaptorX-Contact has a much
larger coverage on T0969-D1 and T0975-D1 than CCMpred and
GaussDCA. To exceed RaptorX-Contact’s coverage at ¢ =0, ¢ = 4
is needed for CCMpred and ¢ > 6 for GaussDCA. To reach
RaptorX-Contact’s coverage at ¢ = 1, ¢ = 6 is needed for CCMpred.
RaptorX-Contact coverage ratio is not correlated with target-
training structure similarity at all (Dataset S5), which again con-
firms that RaptorX-Contact predicts contacts not by copying from
the most similar training protein structures.

Running Time. Our algorithm runs very fast, consisting of 3 main
steps: 1) generating multiple sequence alignments and input
features, 2) predicting angles and distance, and 3) folding by
CNS. On average it takes minutes for the first step, seconds for
the second step, and 10 min to a few hours for the third step on
20 central processing units (CPUs). By running the third step in
parallel, it took in total ~13 h to fold the 41 CAMEO targets and
~4 h to fold the 37 CASP12 targets.

Discussion

We have shown that we can predict an interatom distance dis-
tribution well by deep ResNet and that even without extensive
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fragment-based conformation sampling predicted distance can be
used to fold many more proteins than ever before. Our method
works for both soluble and membrane proteins and the modeling
accuracy is not correlated with target-training structure similarity
and only weakly correlated with sequence profile similarity. For
some FM targets our method indeed can predict 3D models with
quality score much higher than target-training structure similarity.
Our method also runs very fast, taking from 10 min to a few hours
to generate 200 decoys on 20 CPUs. That is, it is now feasible to
fold a protein on a personal computer equipped with a GPU card.

We do not evaluate the accuracy of secondary structure and
torsion angle prediction because 1) although in CASP13 we

Xu

employed deep ResNet to predict them, their accuracy is sim-
ilar to what we have reported before (42, 43) and 2) secondary
structure and torsion angles are much less important than dis-
tance for protein folding. Without predicted torsion angles, the
3D model quality decreases by ~0.008 in terms of average
TMscore. Nevertheless, predicted torsion angles may help
reduce mirror images.

We only reported the folding results when all of the 5 types of
atom pairs are used. In fact, using only C3—Cg, our method can
generate slightly worse 3D models than using all 5 types of atom
pairs because their distance is highly correlated. Among the 5
types of atom pairs, Cs—C; is the most informative. Nevertheless,
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using all 5 types of atom pairs can help reduce noise and may
improve side-chain packing.

We have also experimented with discretizing the distance into
12 bins (i.e., bin width = 1 A) and 52 bins (i.e., bin width = 0.25 A).
Using 25 bins and 52 bins has similar accuracy, better than using
12 bins. Instead of using a discrete representation of distance,
we may predict a real-valued distance matrix by assuming that
distance has a log-normal distribution (44) and revising our
method to predict its mean and variance. CNS can easily take the
predicted mean and variance as distance restraints to build 3D
models. In the future, we will study whether 3D modeling ac-
curacy can be further improved by using the whole real-valued
distance matrix, especially for the determination of domain ori-
entation of a multidomain protein.

In CASP13 AlphaFold also employed deep ResNet to predict
interresidue distance distribution (which is similar to our work)
and then converted this distribution into distance-based statisti-
cal potential for energy minimization (see refs. 27 and 29) for
how to implement this). In CASP13 we employed such a distance
potential for protein threading (i.e., RaptorX-TBM) but did not
get a chance to integrate it into RaptorX-Contact. AlphaFold
used both fragment-based sampling and fragment-free gradient
descent to minimize distance-based potential and then employed
Rosetta to refine models and pack side-chain atoms. By contrast,
RaptorX-Contact did not have these steps, which may be the
reason why RaptorX-Contact generated worse 3D models than
AlphaFold. Nevertheless, AlphaFold’s performance further
confirms that deep ResNet, which was first developed by us for
contact/distance prediction, allows us to fold proteins without
time-consuming conformation sampling. Recently an end-to-end
DL method was proposed to directly predict a protein structure
from sequence profile (45). The idea is unique and attractive, but
rigorous test results are needed to show its effectiveness.

Materials and Methods

Feature Generation. To ensure a fair comparison with the results in refs. 10
and 11 and the CASP12 groups, we used the same MSAs and protein features
as described in refs. 10 and 11 for the CASP12 and CAMEO targets and the
same MSAs and protein features as described in ref. 10 for the training
proteins. That is, for each test protein we generated four MSAs by running
HHblits with 3 iterations and E-value set to 0.001 and 1, respectively, to
search the UniProt20 library released in November 2015 and February 2016,
respectively. Since the sequence databases were created before CASP12
started in May 2016, the comparison with the CASP12 groups is fair. For CASP13,
we generated MSAs (and other sequence features) using the UniClust30 library
(46) created in October 2017 and the UniRef sequence database (47) created
early in 2018. From each individual MSA, we derived both sequential and
pairwise features. Sequential features include sequence profile and secondary
structure as well as solvent accessibility predicted by RaptorX-Property (42).
Pairwise features include raw and APC-corrected MI, pairwise contact po-
tential, and interresidue coupling score generated by CCMpred (6). In sum-
mary, 1 test protein has 4 sets of input features and accordingly 4 predicted
distance matrices, which are then averaged to obtain the final prediction. In
CASP13, we did not make use of metagenomic sequence databases, which
have been reported to be useful for some proteins (48).

Predict Secondary Structure and Torsion Angles. \We employed a 1D deep
ResNet of 19 convolutional layers to predict 3-state secondary structure and

1. D. S. Marks et al., Protein 3D structure computed from evolutionary sequence varia-
tion. PLoS One 6, 28766 (2011).

2. D. S. Marks, T. A. Hopf, C. Sander, Protein structure prediction from sequence varia-
tion. Nat. Biotechnol. 30, 1072-1080 (2012).

3. F. Morcos et al., Direct-coupling analysis of residue coevolution captures native contacts
across many protein families. Proc. Natl. Acad. Sci. U.S.A. 108, E1293-E1301 (2011).

4. D.de Juan, F. Pazos, A. Valencia, Emerging methods in protein co-evolution. Nat. Rev.
Genet. 14, 249-261 (2013).

5. D. T. Jones, D. W. Buchan, D. Cozzetto, M. Pontil, PSICOV: Precise structural contact
prediction using sparse inverse covariance estimation on large multiple sequence
alignments. Bioinformatics 28, 184-190 (2012).

. S. Seemayer, M. Gruber, J. S6ding, CCMpred-Fast and precise prediction of protein
residue-residue contacts from correlated mutations. Bioinformatics 30, 3128-3130 (2014).

o
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backbone torsion angles ¢ and y for each residue (Fig. 1). Two types of input
features are used: position-specific scoring matrix generated by HHblits (49)
and primary sequence represented as a 20 x L binary matrix where L is se-
quence length. For secondary structure, logistic regression is used in the last
layer to predict the probability of 3 secondary structure types. For torsion
angles we do not use logistic regression, but directly predict the below
distribution:

B - osls
P, w | T o1, 02 p) 1 {M

1
" 27010, (1-p2) exp{_1_ﬂ2 o?
_sin(#=4) sin(w—W)“—tOS(w—W)} }
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[11

In Eq. 1, ¢, ¥ are the mean, o1, o, are the variance, and p is the correlation.
That is, our deep ResNet outputs the mean and variance of the torsion an-
gles at each residue. We use maximum likelihood to train the network for
secondary structure and angle prediction, that is, maximizing the probability
(defined by logistic regression or Eq. 1) of the observed properties of our
training proteins. Note that the predicted mean and variance for angles is
residue-specific. Our method for angle prediction is different from many
existing ones, which usually discretize angles and formulate it as a classifi-
cation problem. The same set of training proteins (created in 2016) for dis-
tance prediction is used to train our DL models for secondary structure and
angle prediction.

Folding by Predicted Distance, Secondary Structure, and Torsion Angles. Given
a protein to be folded, we first predict its interatom distance matrix, sec-
ondary structure, and backbone torsion angles then convert them into CNS
restraints for 3D model building (30). CNS is a software program for ex-
perimental protein structure determination. Given a matrix corresponding
to the distance probability distribution for each atom type, we pick 7L (L is
sequence length) of the residue pairs with the highest predicted likelihood
(probability) having distance < 15 A and assume their probability of having
distance >16 A is 0. From the predicted distance probability distribution, we
may estimate the mean distance and SD (denoted as m and s, respectively) of
one atom pair, and then use m — s and m + s as its distance lower and upper
bounds. We used the same method as CONFOLD (50) to derive hydrogen-
bond restraints from predicted alpha helices. CONFOLD derived backbone
torsion angles from predicted secondary structure, but we use the mean de-
gree and variance predicted by our 1D deep ResNet as torsion angle restraints.

For each protein, we run CNS to generate 200 possible 3D decoys and then
choose 5 with the least violation of distance restraints as the final models. CNS
uses distance geometry to build 3D models from distance restraints and thus
can generate a 3D model within seconds. CNS first builds an initial 3D model
from predicted distance by heuristicembedding, which may not have physically
plausible bond length and angles. Then CNS runs simulated annealing to refine
the bond length and angles. For a pair of atoms, the distance violation is
calculated as the absolute difference between their Euclidean distance in the
3D model and the corresponding value in the predicted distance restraint. The
distance violation of a predicted 3D model is the mean violation of all of
the atom pairs included in the distance restraint set.

Data Availability. See Datasets S6 and S7 for the training proteins used in
CASP13 and the 41 CAMEO hard targets, respectively. The CASP12 and
CASP13 targets are available at http://predictioncenter.org/. Our stand-alone
code is available at https:/github.com/j3xugit/RaptorX-Contact. Our web
server is available at http://raptorx.uchicago.edu/AblinitioFolding/.
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